Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glia ; 72(9): 1707-1724, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38864289

RESUMO

Astrocytes play an essential role in regulating synaptic transmission. This study describes a novel form of modulation of excitatory synaptic transmission in the mouse hippocampus by astrocytic G-protein-coupled receptors (GPCRs). We have previously described astrocytic glutamate release via protease-activated receptor-1 (PAR1) activation, although the regulatory mechanisms for this are complex. Through electrophysiological analysis and modeling, we discovered that PAR1 activation consistently increases the concentration and duration of glutamate in the synaptic cleft. This effect was not due to changes in the presynaptic glutamate release or alteration in glutamate transporter expression. However, blocking group II metabotropic glutamate receptors (mGluR2/3) abolished PAR1-mediated regulation of synaptic glutamate concentration, suggesting a role for this GPCR in mediating the effects of PAR1 activation on glutamate release. Furthermore, activation of mGluR2/3 causes glutamate release through the TREK-1 channel in hippocampal astrocytes. These data show that astrocytic GPCRs engage in a novel regulatory mechanism to shape the time course of synaptically-released glutamate in excitatory synapses of the hippocampus.


Assuntos
Astrócitos , Região CA1 Hipocampal , Ácido Glutâmico , Camundongos Endogâmicos C57BL , Receptor PAR-1 , Receptores de Glutamato Metabotrópico , Sinapses , Animais , Receptores de Glutamato Metabotrópico/metabolismo , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Sinapses/metabolismo , Região CA1 Hipocampal/metabolismo , Receptor PAR-1/metabolismo , Camundongos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38900249

RESUMO

We have previously discovered that the selective activation of metabotropic glutamate type 2 receptors (mGluR2) and concurrent stimulation of metabotropic glutamate types 2 and 3 receptors (mGluR2/3) enhance the anti-parkinsonian action of L-3,4-dihydroxyphenylalanine (L-DOPA). Here, we sought to determine the effects of the mGluR2/3 orthosteric agonists LY-354,740 and LY-404,039, as well as the effects of the mGluR2 positive allosteric modulators LY-487,379 and CBiPES on the range of movement, bradykinesia, posture and alertness as adjuncts to L-DOPA. Ten 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmosets entered 4 experimental streams: L-DOPA + LY-354,740 (vehicle, 0.1, 0.3 and 1 mg/kg), L-DOPA + LY-404,039 (vehicle, 0.1, 1 and 10 mg/kg), L-DOPA + LY-487,379 (vehicle, 0.1, 1 and 10 mg/kg), L-DOPA + CBiPES (vehicle, 0.1, 1 and 10 mg/kg). For each molecule, treatments were randomised, and the range of movement, bradykinesia, posture and alertness were assessed by a blinded rater. None of the tested compounds significantly altered the global range of movement. LY-404,039 and CBiPES both reduced global bradykinesia, by up to 46% (both P < 0.05). LY-354,740, LY-404,039 and CBiPES each improved global posture by 35%, 44% and 39% (each P < 0.05), respectively. LY-404,039 and CBiPES both enhanced alertness by 54% (P < 0.05) and 79% (P < 0.01), respectively. LY-487,379 did not improve any of the parameters. Our results suggest that selective mGluR2 positive allosteric modulation and combined mGluR2/3 orthosteric stimulation might benefit bradykinesia, posture and alertness in PD when added to L-DOPA, which potentially represent novel therapeutic indications for molecules acting via these mechanisms.

3.
Cell Mol Neurobiol ; 43(5): 1931-1940, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36443586

RESUMO

Depression is the most common mental illness characterized by anhedonia, avolition and loss of appetite and motivation. The majority of conventional antidepressants are monoaminergic system selective inhibitors, yet the efficacies are not sufficient. Up to 30% of depressed patients are resistant to treatment with available antidepressants, underscoring the urgent need for development of novel therapeutics to meet clinical needs. Recent years, compounds acting on the glutamate system have attracted wide attention because of their strong, rapid and sustained antidepressant effects. Among them, selective inhibitors of metabotropic glutamate receptors 2 and 3 (mGluR2/3) have shown robust antidepressant benefits with fewer side-effects in both preclinical and clinical studies. Thus, we here attempt to summarize the antidepressant effects and underlying mechanisms of these inhibitors revealed in recent years as well as analyze the potential value of mGluR2/3 selective inhibitors in the treatment of depression.


Assuntos
Antidepressivos , Transtornos Mentais , Humanos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
4.
Neurosci Lett ; 763: 136180, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416343

RESUMO

We have found that daily subcutaneous injection with a maximum tolerated dose of the mGluR2/3 agonist LY379268 (20 mg/kg) beginning at 4 weeks of age dramatically improves the motor, neuronal and neurochemical phenotype in R6/2 mice, a rapidly progressing transgenic model of Huntington's disease (HD). We also previously showed that the benefit of daily LY379268 in R6/2 mice was associated with increases in corticostriatal brain-derived neurotrophic factor (BDNF), and in particular was associated with a reduction in enkephalinergic striatal projection neuron loss. In the present study, we show that daily LY379268 also rescues expression of BDNF by neurons of the thalamic parafascicular nucleus in R6/2 mice, which projects prominently to the striatum, and this increase too is linked to the rescue of enkephalinergic striatal neurons. Thus, LY379268 may protect enkephalinergic striatal projection neurons from loss by boosting BDNF production and delivery via both the corticostriatal and thalamostriatal projection systems. These results suggest that chronic treatment with mGluR2/3 agonists may represent an approach for slowing enkephalinergic neuron loss in HD, and perhaps progression in general.


Assuntos
Aminoácidos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Doença de Huntington/tratamento farmacológico , Núcleos Intralaminares do Tálamo/efeitos dos fármacos , Aminoácidos/uso terapêutico , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Corpo Estriado/citologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Feminino , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Injeções Subcutâneas , Núcleos Intralaminares do Tálamo/metabolismo , Núcleos Intralaminares do Tálamo/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo
5.
Pharmacol Ther ; 221: 107797, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33359590

RESUMO

Glutamate transmission is an important mediator of the development of substance use disorders, particularly with regard to relapse. The present review summarizes the changes in glutamate levels in the reward system (the prefrontal cortex, nucleus accumbens, dorsal striatum, hippocampus, and ventral tegmental area) observed in preclinical studies at different stages of cocaine exposure and withdrawal as well as after reinstatement of cocaine-seeking behavior. We also summarize changes in the glutamate transporters xCT and GLT-1 and metabotropic glutamate receptors mGlu2/3, mGlu1, and mGlu5 based on preclinical and clinical studies with an emphasis on their role in cocaine-seeking. Glutamate transporters, such as GLT-1 and xc-, play a key role in maintaining glutamate homeostasis. In preclinical models, agents reversing cocaine-induced decreases in GLT-1 and xc- in the nucleus accumbens attenuate relapse. Very recent studies indicate that other mechanisms of action, such as reversing the mGlu2 receptor downregulation, contribute to these compounds' anti-relapse efficacy. In preclinical models, antagonism of mGlu5 receptors and stimulation of mGlu2/3 autoreceptors decrease relapse. Therefore, analysis of the above glutamatergic adaptations seems to be crucial because, so far, there are no prognostic biomarkers that can forecast relapse vulnerability in clinical practice, which would be helpful in alleviating or suppressing this phenomenon. Moreover, these receptor sites can be molecular targets for the development of effective medication for cocaine use disorder.


Assuntos
Sistema X-AG de Transporte de Aminoácidos , Transtornos Relacionados ao Uso de Cocaína , Receptores de Glutamato Metabotrópico , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Receptores de Glutamato Metabotrópico/metabolismo , Recidiva
6.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334826

RESUMO

Little is known about the functions of Group II metabotropic glutamate receptors (mGluRs2/3) in the inferior colliculus (IC), a midbrain structure that is a major integration region of the central auditory system. We investigated how these receptors modulate sound-evoked and spontaneous firing in the mouse IC in vivo We first performed immunostaining and tested hearing thresholds to validate vesicular GABA transporter (VGAT)-ChR2 transgenic mice on a mixed CBA/CaJ x C57BL/6J genetic background. Transgenic animals allowed for optogenetic cell-type identification. Extracellular single neuron recordings were obtained before and after pharmacological mGluR2/3 activation. We observed increased sound-evoked firing, as assessed by the rate-level functions (RLFs), in a subset of both GABAergic and non-GABAergic IC neurons following mGluR2/3 pharmacological activation. These neurons also displayed elevated spontaneous excitability and were distributed throughout the IC area tested, suggesting a widespread mGluR2/3 distribution in the mouse IC.


Assuntos
Colículos Inferiores , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Receptores de Glutamato Metabotrópico/genética , Som
7.
IBRO Rep ; 9: 241-246, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33024878

RESUMO

High-fat diets (HFDs) adversely influence glutamate metabolism and neurotransmission. The precise role of the group II metabotropic glutamate receptors (mGluR2/3) antagonist on spatial memory deficit following consumption of HFD has not yet been clarified. Therefore, in this study, we examined the effects of post-training administration of mGluR2/3 antagonism; LY341495 on spatial memory in rats fed with HFD (for 10 weeks) by using Morris Water Maze (MWM) task. The training session for testing memory acquisition in MWM consisted of 4 trials per day for 4 consecutive days. Twenty-four hours after the last training session the spatial probe test (retention) was given. Intraperitoneal injection (i.p) injection of LY341495 was done 30 min before probe test. Our results showed that 10 weeks consumption of HFD had no significant effect on escape latency and swimming distance in memory acquisition. Our finding showed that consumption of a HFD leads to reference memory impairment in the probe test. HFD animals spent less time in the target zone in compare with control animals. Also, LY341495 improved HFD-induced reference memory (retention) impairment. HFD animals treated with LY341495 spent more time in the target zone in compare with HFD animals. Escape latencies to find the visible platform during visual task were same in all experimental groups, indicating no visual impairment in the animals. We propose that a HFD may act through mGluR2/3 within the brain to reduce synaptic plasticity, which impairs memory retrieval, and post-training administration of LY341495 can reduce HFD-induced reference memory impairment.

8.
Neurobiol Dis ; 139: 104807, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32088382

RESUMO

L-DOPA-induced dyskinesia (LID) is a major complication of long-term dopamine replacement therapy in Parkinson's disease. Characteristic neural oscillation and abnormal activity of striatal projection neurons (SPNs) are typical pathological events of LID, which would be reliable biomarkers for assessment of novel anti-dyskinetic approach if fully profiled. Glutamate dysregulation plays a critical role in the development of LID, and the group II metabotropic glutamate receptors (mGluR2/3) is believed to regulate the release of glutamate on the presynaptic terminals and inhibits postsynaptic excitation. However, the anti-dyskinetic effect of modulating mGluR2/3 is still unclear. In this study, rats with unilateral dopaminergic lesion were injected with L-DOPA (12 mg/kg, i.p.) for seven days, while motor behavior was correlated with in vivo electrophysiology analyzing LFP and single-cell activity in both primary motor cortex and dorsolateral striatum. Our study showed that as LID established, high γ oscillation (hγ) predominated during LID, the number of unstable responses of SPN to dopamine increased, and the coherence between these patterns of oscillation and spiking activity also increased. We found that pretreatment of NMDA receptor antagonist, amantadine 60 mg/kg, i.p. (AMAN) significantly reduced abnormal involuntary movements (AIMs), in parallel with the reduction of hγ oscillation, and more markedly with a decrease in unstable responses of SPNs. In contrast, a mGluR2/3 agonist, LY354740 12 mg/kg, i.p. (LY) significantly shortened the duration of LID but merely exhibited a weak effect in diminishing the intensity of LID or reversing SPN responses. Together results indicate that AIMs in the rat model of PD are associated with abnormal corticostriatal signaling, which could be reversed by NMDAR antagonism more efficiently than mGluR2/3 agonism.


Assuntos
Amantadina/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Receptores de Glutamato Metabotrópico/agonistas , Animais , Antiparkinsonianos/farmacologia , Corpo Estriado , Eletrofisiologia , Levodopa/farmacologia , Masculino , Córtex Motor/efeitos dos fármacos , Oxidopamina/farmacologia , Doença de Parkinson , Ratos , Ratos Sprague-Dawley
9.
Front Aging Neurosci ; 11: 255, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632264

RESUMO

Background: Exercise therapy has been widely applied in clinical rehabilitation as an important practical and side effect-free adjuvant therapy, with a significant effect in alleviating motor dysfunction of patients with Parkinson's disease (PD) or animal PD models. This study focuses on the effect of exercise therapy in reducing the concentration of extracellular glutamate (Glu) in the striatum in a rat PD model by upregulating the expression of group II metabotropic Glu receptor (mGluR2/3), so as to alleviate motor dysfunction in the rat PD model. Methods: Neurotoxin 6-hydroxydopamine (6-OHDA) was injected into the right medial forebrain bundle (MFB) of the rats to establish the semi-lateral cerebral damage PD model. The sham-operated group was given an equal amount of normal saline at the same site and taken as the control group. The apomorphine (APO)-induced rotational behavior test combined with immunohistochemical staining with tyrosine hydroxylase (TH) in the substantia nigra (SNc) and striatum was performed to assess the reliability of the model. The exercise group was given treadmill exercise intervention for 4 weeks (11 m/min, 30 min/day, 5 days/week) 1 week after the operation. The open field test (OFT) was performed to assess the locomotor activity of the rats; the Western blot technique was used to detect SNc TH and striatal mGluR2/3 protein expressions; real-time polymerase chain reaction (RT-PCR) was applied to detect striatal mGluR2 and mGluR3 mRNA expressions; the microdialysis-high-performance liquid chromatography (HPLC) method was adopted to detect the concentration of extracellular Glu in striatal neurons. Results: Compared with the control group, the number of rotations of each model group at the first week was significantly increased (P < 0.01); compared with the PD group, the number of rotations of the PD + exercise group at the third week and the fifth week was significantly decreased (P < 0.05, P < 0.01). Compared with the control group, the total movement distance, the total movement time, and the mean velocity of each model group at the first week were significantly reduced (P < 0.05); compared with the PD group, the total movement distance, the total movement time, and the mean velocity of the PD + exercise group at the third week and the fifth week were significantly increased (P < 0.01). Compared with the control group, the count of immunopositive cells and protein expression of SNc TH, and the content of immunopositive fiber terminals in the striatal TH of each model group significantly declined (P < 0.01). Compared with the PD group, the striatal mGluR2/3 protein expression of the PD + exercise group significantly rose (P < 0.01). Compared with the control group, the concentration of extracellular Glu in striatal neurons of each model group at the first week significantly grew (P < 0.05); compared with the PD group, the concentration of extracellular Glu in striatal neurons of the PD + exercise group at the third week and the fifth week was significantly decreased (P < 0.01); compared with the PD + exercise group, the concentration of extracellular Glu in striatal neurons of the group injected with mGluR2/3 antagonist (RS)-1-amino-5-phosphonoindan-1-carboxylic acid (APICA) into the striatum at the third week and the fifth week was significantly increased (P < 0.05, P < 0.01). Compared with the control group, the striatal mGluR2/3 protein expression of the PD group was significantly downregulated (P < 0.01); compared with the PD group, the striatal mGluR2/3 protein expression of the PD + exercise group was significantly upregulated (P < 0.05); compared with the control group, the striatal mGluR3 mRNA expression of the PD group was significantly downregulated (P < 0.01); compared with the PD group, the striatal mGluR3 mRNA expression of the PD + exercise group was significantly upregulated (P < 0.01); 6-OHDA damage and exercise intervention had no significant effect on the striatal mGluR2 mRNA expression (P > 0.05). Compared with the PD + exercise group, the total movement distance, the total movement time, and the mean velocity of the PD + exercise + APICA group were significantly decreased (P < 0.05); compared with the PD group, the PD + exercise + APICA group had no significant change in the total movement distance, the total movement time, and the mean velocity (P > 0.05). Conclusion: These data collectively demonstrate that the mGluR2/3-mediated glutamatergic transmission in the striatum is sensitive to dopamine (DA) depletion and may serve as a target of exercise intervention for mediating the therapeutic effect of exercise intervention in a rat model of PD.

10.
Addict Biol ; 24(2): 206-217, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29363229

RESUMO

Methamphetamine (METH) increases metabolic neuronal activity in the mesolimbic dopamine (DA) system and mediates the reinforcing effect. To explore the underlying mechanism of acupuncture intervention in reducing METH-induced behaviors, we investigated the effect of acupuncture on locomotor activity, ultrasonic vocalizations, extracellular DA release in the nucleus accumbens (NAcs) using fast-scan cyclic voltammetry and alterations of brain temperature (an indicator of local brain metabolic activity) produced by METH administration. When acupuncture was applied to HT7, but not TE4, both locomotor activity and 50-kHz ultrasonic vocalizations were suppressed in METH-treated rats. Acupuncture at HT7 attenuated the enhancement of electrically stimulated DA release in the NAc of METH-treated rats. Systemic injection of METH produced a sustained increase in NAc temperature, which was reversed by the DA D1 receptor antagonist SCH 23390 or acupuncture at HT7. Acupuncture inhibition of METH-induced NAc temperature was prevented by pre-treatment with a group II metabotropic glutamate receptors (mGluR2/3) antagonist EGLU into the NAc or mimicked by injection of an mGluR2/3 agonist DCG-IV into the NAc. These results suggest that acupuncture reduces extracellular DA release and metabolic neuronal activity in the NAc through activation of mGluR2/3 and suppresses METH-induced affective states and locomotor behavior.


Assuntos
Terapia por Acupuntura , Estimulantes do Sistema Nervoso Central/farmacologia , Dopamina/metabolismo , Metanfetamina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Temperatura Corporal/efeitos dos fármacos , Ciclopropanos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glutamatos/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Vocalização Animal/efeitos dos fármacos
11.
J Mol Neurosci ; 67(1): 1-15, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30471010

RESUMO

Evidence demonstrated that the glutamatergic system is implicated in mediating relapse to several drugs of abuse, including methamphetamine (METH). Glutamate homeostasis is maintained by a number of glutamate transporters, such as glutamate transporter type 1 (GLT-1), cystine/glutamate transporter (xCT), and glutamate aspartate transporter (GLAST). In addition, group II metabotropic glutamate receptors (mGluR2/3) were found to be implicated in relapse-seeking behavior. Ample evidence showed that ß-lactam antibiotics are effective in upregulating GLT-1 and xCT expression, thus improving glutamate homeostasis and attenuating relapse to drugs of abuse. In this study, we investigated the reinstatement of METH using conditioned place preference (CPP) in male alcohol-preferring (P) rats exposed to home-cage free choice ethanol drinking. Here, we tested the effect of clavulanic acid (CA), a ß-lactam, on the reinstatement of METH-seeking and ethanol drinking. In addition, we examined the expression of GLT-1, xCT, and GLAST as well as metabotropic glutamate receptor (mGluR2/3) in the nucleus accumbens (NAc) shell, NAc core, and dorsomedial prefrontal cortex (dmPFC). A priming i.p. injection of METH reinstated preference in METH-paired chamber following extinction. Chronic exposure to ethanol decreased the expression of GLT-1 and xCT in the NAc shell, but not in the NAc core or dmPFC. CA treatment blocked the reinstatement of METH-seeking, decreased ethanol intake, and restored the expression of GLT-1 and xCT in the NAc shell. In addition, the expression of mGluR2/3 was increased by CA treatment in the NAc shell and dmPFC. These findings suggest that these glutamate transporters and mGluR2/3 might be potential therapeutic targets for the attenuation of reinstatement to METH-seeking.


Assuntos
Transtornos Induzidos por Álcool/tratamento farmacológico , Transtornos Relacionados ao Uso de Anfetaminas/tratamento farmacológico , Ácido Clavulânico/farmacologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transtornos Induzidos por Álcool/metabolismo , Transtornos Induzidos por Álcool/fisiopatologia , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Animais , Ácido Clavulânico/uso terapêutico , Comportamento de Procura de Droga , Etanol/toxicidade , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Masculino , Metanfetamina/toxicidade , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Ratos , Receptores de Glutamato Metabotrópico/genética , Recidiva , Priming de Repetição
12.
Toxicology ; 408: 39-45, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29935984

RESUMO

Toluene, a commonly used organic solvent, produces a variety of behavioral disturbances in both humans and animals comparable to noncompetitive N-methyl-D-aspartate receptor (NMDARs) antagonists, such as phencyclidine (PCP). N-acetylcysteine (NAC) is capable of reversing the psychotomimetic effects of PCP via activation of cystine-glutamate antiporters (xCT). The present study examined whether NAC is capable of attenuating the toluene-induced brain stimulation reward enhancement and behavioral manifestations. Male mice received various doses of NAC prior to toluene exposure for assessment of intracranial self-stimulation (ICSS) thresholds, rotarod test, novel object recognition task and social interaction test. NAC ameliorated the lowering of ICSS thresholds, motor incoordination, object recognition memory impairments and social withdrawal induced by toluene. Furthermore, the capacity of NAC to ameliorate acute toluene-induced deficits in object recognition and social interaction was blocked by the xCT inhibitor (S)-4-carboxyphenylglycine and the mGluR2/3 antagonist LY341495. These results indicate that NAC could prevent toluene-induced reward facilitation and behavioral disturbances and its beneficial effects, at least for cognitive function and social interaction, are associated with activation of the xCT and mGluR2/3. These findings show the potential promise for NAC to treat toluene dependence and to prevent toluene intoxication caused by unintentional or deliberate inhalation.


Assuntos
Acetilcisteína/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Fármacos Neuroprotetores/farmacologia , Recompensa , Solventes/toxicidade , Tolueno/toxicidade , Sistema y+ de Transporte de Aminoácidos/agonistas , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Comportamento Exploratório/efeitos dos fármacos , Relações Interpessoais , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos
13.
Neuropharmacology ; 137: 359-371, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29793154

RESUMO

Prodromal memory deficits represent an important marker for the development of schizophrenia (SZ), in which glutamatergic hypofunction occurs in the prefrontal cortex (PFC). The mGluR2/3 agonist LY379268 (LY37) attenuates excitatory N-methyl-D-aspartate receptor (NMDAR)-induced neurotoxicity, a central pathological characteristic of glutamatergic hypofunction. We therefore hypothesized that early treatment with LY37 would rescue cognitive deficits and confer benefits for SZ-like behaviors in adults. To test this, we assessed whether early intervention with LY37 would improve learning outcomes in the Morris Water Maze for rats prenatally exposed to methylazoxymethanol acetate (MAM), a neurodevelopmental SZ model. We found that a medium dose of LY37 prevents learning deficits in MAM rats. These effects were mediated through postsynaptic mGluR2/3 via improving GluN2B-NMDAR function by inhibiting glycogen synthase kinase-3ß (GSK3ß). Furthermore, dendritic spine loss and learning and memory deficits observed in adult MAM rats were restored by juvenile LY37 treatment, which did not change prefrontal neuronal excitability and glutamatergic synaptic transmission in adult normal rats. Our results provide a mechanism for mGluR2/3 agonists against NMDAR hypofunction, which may prove to be beneficial in the prophylactic treatment of SZ.


Assuntos
Aminoácidos/farmacologia , Antipsicóticos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Esquizofrenia/enzimologia , Esquizofrenia/prevenção & controle , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/enzimologia , Modelos Animais de Doenças , Feminino , Deficiências da Aprendizagem/tratamento farmacológico , Deficiências da Aprendizagem/enzimologia , Acetato de Metilazoximetanol , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/enzimologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Técnicas de Cultura de Tecidos
14.
eNeuro ; 5(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29387781

RESUMO

Battlefield blast exposure related to improvised explosive devices (IEDs) has become the most common cause of traumatic brain injury (TBI) in the recent conflicts in Iraq and Afghanistan. Mental health problems are common after TBI. A striking feature in the most recent veterans has been the frequency with which mild TBI (mTBI) and posttraumatic stress disorder (PTSD) have appeared together, in contrast to the classical situations in which the presence of mTBI has excluded the diagnosis of PTSD. However, treatment of PTSD-related symptoms that follow blast injury has become a significant problem. BCI-838 (MGS0210) is a Group II metabotropic glutamate receptor (mGluR2/3) antagonist prodrug, and its active metabolite BCI-632 (MGS0039) has proneurogenic, procognitive, and antidepressant activities in animal models. In humans, BCI-838 is currently in clinical trials for refractory depression and suicidality. The aim of the current study was to determine whether BCI-838 could modify the anxiety response and reverse PTSD-related behaviors in rats exposed to a series of low-level blast exposures designed to mimic a human mTBI or subclinical blast exposure. BCI-838 treatment reversed PTSD-related behavioral traits improving anxiety and fear-related behaviors as well as long-term recognition memory. Treatment with BCI-838 also increased neurogenesis in the dentate gyrus (DG) of blast-exposed rats. The safety profile of BCI-838 together with the therapeutic activities reported here, make BCI-838 a promising drug for the treatment of former battlefield Warfighters suffering from PTSD-related symptoms following blast-induced mTBI.


Assuntos
Traumatismos por Explosões/complicações , Concussão Encefálica/complicações , Compostos Bicíclicos com Pontes/farmacologia , Psicotrópicos/farmacologia , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/psicologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Traumatismos por Explosões/tratamento farmacológico , Traumatismos por Explosões/psicologia , Concussão Encefálica/tratamento farmacológico , Concussão Encefálica/psicologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Giro Denteado/patologia , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Medo/efeitos dos fármacos , Medo/fisiologia , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos Long-Evans , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/patologia
15.
Behav Brain Res ; 330: 46-55, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28487223

RESUMO

Contextual food conditioned behaviors require plasticity of glutamatergic neurotransmission in the reward system, involving changes in the expression of including a-amino-3-hydroxy-5-methylisoxazole 4-propionate receptors (AMPA), N-methyl-d-aspartic acid (NMDA) and metabotropic glutamate 2,3 (mGlur 2,3). However, the role of changes in glutamatergic synaptic markers on energy-dense palatable food preference during development has not been described. Here, we determine the effect of nutritional programing during gestation on fat food choices using a conditioned place preference (CPP) test and an operant training response and its effect on glutamatergic markers in the nucleus accumbens (Nac) shell and prefrontal cortex (PFC). Our data showed that rats displayed preference for palatable fat food and an increase in caloric intake when compared to a chow diet. Notably, 74% of rats showing a preference for fat food intake correlate with a positive HFD-paired score whereas 26% failed to get HFD-conditioned. Also, male rats trained under an operant training response schedule (FR1, FR5 and PR) showed high and low responder groups to work for food. Notably, hypercaloric nutritional programing of female rats leads to exacerbation for reinforcers in female offspring compared to offspring from chow diet. Finally, we found that an operant training response to palatable reinforcers correlates with upregulation of mGlur 2,3 in the NAc shell and PFC of male rats and female offspring. Also, we found selective Nr1 upregulation in NAc shell and the PFC of female offspring. Our data suggest that nutritional programing by hypercaloric intake leads to incentive motivation to work for food and synaptic plasticity alteration in the mesolimbic system.


Assuntos
Preferências Alimentares/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Comportamento Aditivo/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Condicionamento Operante/efeitos dos fármacos , Dieta , Dieta Hiperlipídica , Ingestão de Alimentos/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Alimentos , Preferências Alimentares/efeitos dos fármacos , Masculino , Motivação , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/dietoterapia , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/fisiologia , Recompensa
16.
Neurosci Biobehav Rev ; 77: 14-31, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28242339

RESUMO

Emerging evidence indicates that dysfunctional glutamate neurotransmission is critical in the initiation and development of alcohol and drug dependence. Alcohol consumption induced downregulation of glutamate transporter 1 (GLT-1) as reported in previous studies from our laboratory. Glutamate is the major excitatory neurotransmitter in the brain, which acts via interactions with several glutamate receptors. Alcohol consumption interferes with the glutamatergic signal transmission by altering the functions of these receptors. Among the glutamate receptors involved in alcohol-drinking behavior are the metabotropic receptors such as mGluR1/5, mGluR2/3, and mGluR7, as well as the ionotropic receptors, NMDA and AMPA. Preclinical studies using agonists and antagonists implicate these glutamatergic receptors in the development of alcohol use disorder (AUD). Therefore, the purpose of this review is to discuss the neurocircuitry involving glutamate transmission in animals exposed to alcohol and further outline the role of metabotropic and ionotropic receptors in the regulation of alcohol-drinking behavior. This review provides ample information about the potential therapeutic role of glutamatergic receptors for the treatment of AUD.


Assuntos
Alcoolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Álcoois , Animais , Ácido Glutâmico , Receptores de N-Metil-D-Aspartato , Transmissão Sináptica
17.
Neurobiol Learn Mem ; 140: 52-61, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28213064

RESUMO

Schizophrenia (SCZ) is a neurodevelopmental psychiatric disorder, in which cognitive function becomes disrupted at early stages of the disease. Although the mechanisms underlying cognitive impairments remain unclear, N-methyl-D-aspartate receptors (NMDAR) hypofunctioning in the prefrontal cortex (PFC) has been implicated. Moreover, cognitive symptoms in SCZ are usually unresponsive to treatment with current antipsychotics and by onset, disruption of the dopamine system, not NMDAR hypofunctioning, dominates the symptoms. Therefore, treating cognitive deficits at an early stage is a realistic approach. In this study, we tested whether an early treatment targeting mGluR2 would be effective in ameliorating cognitive impairments in the methylazoxymethanol acetate (MAM) model of SCZ. We investigated the effects of an mGluR2 agonist/mGluR3 antagonist, LY395756 (LY39), on the NMDAR expression and function in juveniles, as well as cognitive deficits in adult rats after juvenile treatment. We found that gestational MAM exposure induced a significant decrease in total protein levels of the NMDAR subunit, NR2B, and a significant increase of pNR2BTyr1472 in the juvenile rat PFC. Treatment with LY39 in juvenile MAM-exposed rats effectively recovered the disrupted NMDAR expression. Furthermore, a subchronic LY39 treatment in juvenile MAM-exposed rats also alleviated the learning deficits and cognitive flexibility impairments when tested with a cross-maze based set-shifting task in adults. Therefore, our study demonstrates that targeting dysfunctional NMDARs with an mGluR2 agonist during the early stage of SCZ could be an effective strategy in preventing the development and progression in addition to ameliorating cognitive impairments of SCZ.


Assuntos
Aminoácidos Dicarboxílicos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Cognição/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Esquizofrenia/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Acetato de Metilazoximetanol , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/induzido quimicamente
18.
Dis Model Mech ; 10(4): 451-461, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28167616

RESUMO

The research domain criteria (RDoC) matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT) gene (Slc6a3_N157K) to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3_N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Transtornos Mentais/diagnóstico , Transtornos Mentais/genética , Animais , Comportamento Animal , Modelos Animais de Doenças , Dopamina , Células HEK293 , Humanos , Mutação com Perda de Função , Masculino , Proteínas Mutantes/metabolismo , Fenótipo , Mutação Puntual , Psiquiatria , Ratos Endogâmicos F344
19.
Drug Alcohol Depend ; 166: 51-60, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27394931

RESUMO

BACKGROUND: The US Food and Drug Administration has not approved a treatment for cocaine addiction, possibly due in part to the fact that repeated cocaine use results in dysregulation of multiple neurotransmitter systems, including glutamate and dopamine, and an emergence of increased negative affective states and heightening motivation to take cocaine despite negative consequences. We used a combination therapy approach to assess whether modulation of both glutamate and dopamine transmission would reduce the motivation to self- administer cocaine compared to modulation of either system alone. METHODS: The metabotropic glutamate 2/3 receptor agonist, LY379268, and the monoamine releaser, phenmetrazine, were used to assess their individual and combined ability to decrease the reinforcing efficacy of cocaine because they modulate glutamate and dopamine levels, respectively. Cocaine breakpoints and cocaine intake was assessed, using a progressive ratio schedule, at baseline in three groups based on dose of cocaine (0.19, 0.38, 0.75mg/kg/infusion), and following LY379268 (0.03 or 0.30mg/kg; i.p.), phenmetrazine (25mg/kg/day; osmotic minipump), and a combination of the two drugs. RESULTS: LY379268 and phenmetrazine alone reduced breakpoints for all doses of cocaine. The combination of the two drugs showed a concerted effect in reducing breakpoints for all doses of cocaine, with the lowest dose of cocaine reduced by as much as 70%. CONCLUSIONS: These data support combination therapy of dopamine and glutamate systems as an effective means to reduce the motivation to take cocaine since a combination of drugs can address neurobiological dysfunction in multiple neurotransmitter systems compared to therapies using single drugs.


Assuntos
Aminoácidos/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Cocaína/administração & dosagem , Motivação/efeitos dos fármacos , Fenmetrazina/administração & dosagem , Receptores de Glutamato Metabotrópico/agonistas , Animais , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Transtornos Relacionados ao Uso de Cocaína/psicologia , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Masculino , Motivação/fisiologia , Ratos , Ratos Sprague-Dawley , Reforço Psicológico , Autoadministração
20.
Eur J Neurosci ; 44(2): 1896-905, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207718

RESUMO

Glutamate neurotransmission in the nucleus accumbens core (NAc) mediates ethanol consumption. Previous studies using non-contingent and voluntary alcohol administration in inbred rodents have reported increased basal extracellular glutamate levels in the NAc. Here, we assessed basal glutamate levels in the NAc following intermittent alcohol consumption in male Sprague-Dawley rats that had access to ethanol for 7 weeks on alternating days. We found increased basal NAc glutamate at 24 h withdrawal from ethanol and thus sought to identify the source of this glutamate. To do so, we employed a combination of microdialysis, slice electrophysiology and western blotting. Reverse dialysis of the voltage-gated sodium channel blocker tetrodotoxin did not affect glutamate levels in either group. Electrophysiological recordings in slices made after 24 h withdrawal revealed a decrease in spontaneous excitatory postsynaptic current (sEPSC) frequency relative to controls, with no change in sEPSC amplitude. No change in metabotropic glutamate receptor 2/3 (mGlu2/3) function was detected as bath application of the mGlu2/3 agonist LY379268 decreased spontaneous and miniature EPSC frequency in slices from both control and ethanol-consuming rats. The increase in basal glutamate was not associated with changes in the surface expression of GLT-1, however, a decrease in slope of the no-net-flux dialysis function was observed following ethanol consumption, indicating a potential decrease in glutamate reuptake. Taken together, these findings indicate that the increase in basal extracellular glutamate occurring after chronic ethanol consumption is not mediated by an increase in action potential-dependent glutamate release or a failure of mGlu2/3 autoreceptors to regulate such release.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Exocitose , Ácido Glutâmico/metabolismo , Núcleo Accumbens/metabolismo , Aminoácidos/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Potenciais Pós-Sinápticos Excitadores , Masculino , Potenciais Pós-Sinápticos em Miniatura , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA