Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Carbohydr Polym ; 292: 119647, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725204

RESUMO

This study proposes the incorporation of mangosteen peel extract in chitosan and collagen gels and scaffolds, at different ratios, for fabricating materials with potential wound dressing applications. The extract addition increases the thermal stability of the collagen while decreasing to about one-fifth the swelling capability of its scaffolds. Oppositely, it enables chitosan and its blends to withstand high swelling percentages. Release studies showed an extract delivery of 30%, indicating that the formulation does not affect this property. Additionally, the models of Weibull and the Korsmeyer-Peppas adequately fitted the release curves, in which the last one suggested a faster release regarding extract concentration. In contrast, rheology profiling demonstrated distinct behavior associated with the formulations. Even though all the samples exhibit a shear-thinning characteristic, changes in the blend ratio increased the extension of the Newtonian plateau range. The applied Cross mathematical model showed an increase in interactions between the components.


Assuntos
Quitosana , Garcinia mangostana , Colágeno , Géis , Reologia
2.
Molecules ; 26(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068232

RESUMO

In this study, a potential hard tissue substitute was mimicked using collagen/mangosteen porous scaffolds. Collagen was extracted from Tilapia fish skin and mangosteen from the waste peel of the respective fruit. Sodium trimetaphosphate was used for the phosphorylation of these scaffolds to improve the nucleation sites for the mineralization process. Phosphate groups were incorporated in the collagen structure as confirmed by their attenuated total reflection Fourier transform infrared (ATR-FTIR) bands. The phosphorylation and mangosteen addition increased the thermal stability of the collagen triple helix structure, as demonstrated by differential scanning calorimetry (DSC) and thermogravimetry (TGA) characterizations. Mineralization was successfully achieved, and the presence of calcium phosphate was visualized by scanning electron microscopy (SEM). Nevertheless, the porous structure was maintained, which is an essential characteristic for the desired application. The deposited mineral was amorphous calcium phosphate, as confirmed by energy dispersive X-ray spectroscopy (EDX) results.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/fisiologia , Calcificação Fisiológica , Colágeno/farmacologia , Garcinia mangostana/química , Pele/química , Alicerces Teciduais/química , Animais , Osso e Ossos/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Fosfatos de Cálcio/química , Varredura Diferencial de Calorimetria , Peixes , Fosforilação/efeitos dos fármacos , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria
3.
Rev. bras. farmacogn ; 29(3): 333-338, May-June 2019. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1020586

RESUMO

ABSTRACT Stingless bees (Apoidea) are widely distributed and commercially cultivated in artificial hives in fruit gardens. Their propolis are commonly used in traditional medicine to treat various diseases (e.g., abscesses, inflammations, and toothaches) and as a constituent of numerous health products. Thus, this study aimed to (i) develop and validate a high-performance thin layer chromatography method for the quantitation of major active constituents (α- and γ-mangostins) in propolis produced by five stingless bee species (Tetragonula fuscobalteata Cameron, T. laeviceps Smith, T. pagdeni Schwarz, Lepidotrigona terminata Smith, and L. ventralis Smith) cultivated in Thai mangosteen orchards and (ii) determine an optimal extraction solvent. Separation was performed on a silica gel 60 F254 plate using toluene/ethyl acetate/formic acid (8:2:0.1, v/v/v) as a mobile phase, and the developed method was validated to assure its linearity, precision, accuracy, and limits of detection/quantitation. Propolis extract from T. fuscobalteata exhibited the highest mangostin content, and acetone was shown to be more a more effective extraction solvent than dichloromethane, ethanol, or methanol. Thus, the simplicity and reliability of the developed method make it well suited for the routine analysis (e.g., for quality control) of commercial products containing stingless bee propolis.

4.
Dental press j. orthod. (Impr.) ; 23(5): 58-64, Sept.-Oct. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-975022

RESUMO

Abstract Introduction: The number of patients who seek orthodontic treatment that may have a history of tooth bleaching is increasing over the time. Bleaching may influence the decrease of the bond strength of orthodontic brackets. Objective: To determine and prove the effect of mangosteen peel (MP) extract to reverse the reduced shear bond strength (SBS) of orthodontic brackets after bleaching. Methods: A total of 150 maxillary first premolar teeth were randomly divided into 6 experimental groups as follow (n=25): negative-control (N: no bleaching), positive-control (P: bleaching + no treatment), and the treatment groups (bleaching + 10% sodium ascorbate (SA), 10% (MP-10), 20% (MP-20) and 40% (MP-40) MP extract gel). After treatment, the brackets were bonded with the resin-modified glass ionomer cement, SBS testing was performed using universal testing machine, and the adhesive remnant index (ARI) was examined using stereoscopic microscope after debonding. The SBS data were analyzed by analysis of variance (Anova) and the Tukey test. For the ARI, the Kruskal-Wallis test was performed. Result: There was significant SBS difference (p< 0.001) between various groups. The group without bleaching showed significantly higher SBS (8.19 ± 2.26 MPa) compared to others, while SBS in the group treated with 40% MP gel was significantly higher (7.93 ± 1.92 MPa) than other groups treated with antioxidants. The failure of orthodontic brackets bonded after bleaching and treatment using MP extract occurred at the enamel-adhesive interface. Conclusion: The application of MP extract as an antioxidant after bleaching was effective in reversing the reduced shear bond strength of orthodontic brackets after bleaching.


Resumo Introdução: o número de pacientes que procuram o tratamento ortodôntico e têm histórico de clareamento dentário tem aumentado. O clareamento pode levar à diminuição da resistência adesiva dos braquetes ortodônticos. Objetivos: comprovar a efetividade do extrato de casca de mangostão (CM) em reverter a diminuição da resistência ao cisalhamento de braquetes ortodônticos colados após o clareamento. Métodos: 150 primeiros pré-molares superiores foram aleatoriamente divididos em seis grupos experimentais (n= 25): controle negativo (grupo N, sem clareamento), controle positivo (grupo P, clareamento + sem tratamento) e os grupos com tratamento (clareamento + ascorbato de sódio a 10% [grupo AS], gel de extrato de CM a 10% [grupo CM-10], a 20% [grupo CM-20] e a 40% [grupo CM-40]). Após o tratamento, os braquetes foram colados com cimento de ionômero de vidro modificado por resina e, depois, fez-se o teste de resistência ao cisalhamento (SBS) em uma máquina universal de ensaios. Após a descolagem dos braquetes, verificou-se o índice de adesivo remanescente (ARI), com o uso de um microscópio estereoscópico. Os dados da SBS foram submetidos a uma análise de variância (ANOVA) e ao teste de Tukey. Para o ARI, foi utilizado o teste de Kruskal-Wallis. Resultados: houve diferença significativa na SBS (p< 0,001) entre os diferentes grupos. O grupo sem clareamento mostrou resistência ao cisalhamento significativamente maior (8,19 ± 2,26 MPa) do que os outros grupos, enquanto a resistência ao cisalhamento do grupo tratado com o gel de extrato de CM a 40% foi significativamente maior (7,93 ± 1,92 MPa) do que nos outros grupos tratados com antioxidantes. A falha na colagem dos braquetes ortodônticos após o clareamento e tratamento com o extrato de CM ocorreu na interface adesivo/esmalte. Conclusão: a aplicação do extrato de CM como agente antioxidante foi efetiva em reverter a diminuição, que ocorre após o clareamento dentário, na resistência ao cisalhamento da colagem de braquetes ortodônticos.


Assuntos
Humanos , Clareamento Dental/efeitos adversos , Extratos Vegetais/efeitos adversos , Braquetes Ortodônticos , Garcinia mangostana/efeitos adversos , Resistência ao Cisalhamento/efeitos dos fármacos , Frutas/efeitos adversos , Antioxidantes/efeitos adversos , Colagem Dentária , Análise do Estresse Dentário , Cimentos de Ionômeros de Vidro/uso terapêutico
5.
Food Chem Toxicol ; 109(Pt 1): 102-122, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28842267

RESUMO

Garcinia mangostana L. (Clusiaceae) is a tropical tree native to Southeast Asia known as mangosteen which fruits possess a distinctive and pleasant taste that has granted them the epithet of "queen of the fruits". The seeds and pericarps of the fruit have a long history of use in the traditional medicinal practices of the region, and beverages containing mangosteen pulp and pericarps are sold worldwide as nutritional supplements. The main phytochemicals present in the species are isoprenylated xanthones, a class of secondary metabolites with multiple reports of biological effects, such as antioxidant, pro-apoptotic, anti-proliferative, antinociceptive, anti-inflammatory, neuroprotective, hypoglycemic and anti-obesity. The diversity of actions displayed by mangosteen xanthones shows that these compounds target multiple signaling pathways involved in different pathologies, and place them as valuable sources for developing new drugs to treat chronic and degenerative diseases. This review article presents a comprehensive update of the toxicological findings on animal models, and the preclinical anticancer, analgesic, neuroprotective, antidiabetic and hypolipidemic effects of G. mangostana L. extracts and its main isolates. Pharmacokinetics, drug delivery systems and reports on dose-finding human trials are also examined.


Assuntos
Garcinia mangostana/química , Extratos Vegetais/farmacologia , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Frutas/química , Humanos , Extratos Vegetais/química , Xantonas/química , Xantonas/farmacologia
6.
Rev. bras. farmacogn ; 25(5): 445-450, Sept.-Oct. 2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-765065

RESUMO

ABSTRACTThe chemical component and biological activity of propolis depend on flora area of bee collection and bee species. In the study, the propolis from three stingless bee species, Lepidotrigona ventralis Smith, Lepidotrigona terminata Smith, and Tetragonula pagdeni Schwarz, was collected in the same region of mangosteen garden from Thailand. Total phenolic content, alpha glucosidase inhibitory effect, and free-radical scavenging activity using FRAP, ABTS, DPPH assays were determined. The most potent activity of propolis extract was investigated for bioactive compounds and their quantity. The ethanol extract of T. pagdeni propolis had the highest total phenolic content 12.83 ± 0.72 g of gallic acid equivalents in 100 g of the extract, and the strongest alpha glucosidase inhibitory effect with the IC50 of 70.79 ± 6.44 µg/ml. The free-radical scavenging activity evaluated by FRAP, ABTS, DPPH assays showed the FRAP value of 279.70 ± 20.55 µmol FeSO4 equivalent/g extract and the IC50 of 59.52 ± 10.76 and 122.71 ± 11.76 µg/ml, respectively. Gamma- and alpha-mangostin from T. pagdeni propolis extract were isolated and determined for the biological activity. Gamma-mangostin exhibited the strongest activity for both alpha glucosidase inhibitory effect and free-radical scavenging activity. Using HPLC quantitative analysis method, the content of gamma- and alpha-mangostin in the extract was found to be 0.94 ± 0.01 and 2.77 ± 0.08% (w/w), respectively. These findings suggested that T. pagdeni propolis may be used as a more suitable raw material for nutraceutical and pharmaceutical products and these mangostin derivatives as markers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA