Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Foods ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38890874

RESUMO

Anthocyanin-based smart packaging has been widely used for food freshness monitoring, but it cannot meet the requirements of smart films with antibacterial properties. This study aimed to enhance the antibacterial properties of intelligent films by incorporating Amomum tsao-ko essential oil (AEO) for mantis shrimp spoilage tracking and keeping the product fresh. A smart film was designed by introducing AEO and purple potato anthocyanin (PPA) to a polyvinyl alcohol/cellulose nanocrystal (PVA/CNC) polymer matrix. Our findings revealed that APP and AEO imparted the smart film with a favorable oxygen barrier, UV protection, mechanical properties, and antioxidant and pH/NH3-sensitive functions. Interestingly, the PVA/CNC-AEO-PPA film achieved 45.41% and 48.25% bactericidal efficacy against S. putrefaciens and V. parahaemolyticus, respectively. Furthermore, a visual observation confirmed that the target film (PVA/CNC-AEO-PPA) changed color significantly during mantis shrimp spoilage: rose red-light red-pink-light gray-dark gray. Meanwhile, the PVA/CNC-AEO-PPA film retarded the quality deterioration of the mantis shrimp effectively. The PVA/CNC-AEO-PPA film shows great application potential in mantis shrimp preservation and freshness monitoring; it is expected to become a rapid sensor for detecting seafood quality non-destructively and a multifunctional film for better preservation of product quality.

2.
Ear Nose Throat J ; : 1455613241249043, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642030

RESUMO

Esophageal foreign bodies (FBs) are one of the common emergencies in otolaryngology, usually involving objects accidentally swallowed, and generally do not result in severe respiratory distress. This article presents an extremely rare case of an esophageal FB, where a 44-year-old man accidentally ingested an entire mantis shrimp while sucking its flavored tail, and was sent to the emergency department for severe throat pain and difficulty breathing. We immediately performed a laryngoscopy that revealed the FB that obstructs the entrance of the esophagus, obstructing the glottis due to the long shape of the shrimp. The mantis shrimp had barbs on its shell and trying to remove it intact would cause significant damage to the pharyngeal mucosa. Therefore, we extracted the mantis shrimp in segments under general anesthesia and applied electrocoagulation to stop bleeding from the damaged and bleeding posterior pharyngeal mucosa. As an esophagography was performed the following day, there were no signs of esophageal perforation. Through the detailed description and analysis of this case, our aim is to raise clinical awareness among physicians of such rare occurrences. Most important, appropriate examination and procedures of FBs should be performed based on the type, shape, and location of the FB.

3.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475226

RESUMO

The remarkable light perception abilities of the mantis shrimp, which span a broad spectrum ranging from 300 nm to 720 nm and include the detection of polarized light, serve as the inspiration for our exploration. Drawing insights from the mantis shrimp's unique visual system, we propose the design of a multifunctional imaging sensor capable of concurrently detecting spectrum and polarization across a wide waveband. This sensor is able to show spectral imaging capability through the utilization of a 16-channel multi-waveband Fabry-Pérot (FP) resonator filter array. The design incorporates a composite thin film structure comprising metal and dielectric layers as the reflector of the resonant cavity. The resulting metal-dielectric composite film FP resonator extends the operating bandwidth to cover both visible and infrared regions, specifically spanning a broader range from 450 nm to 900 nm. Furthermore, within this operational bandwidth, the metal-dielectric composite film FP resonator demonstrates an average peak transmittance exceeding 60%, representing a notable improvement over the metallic resonator. Additionally, aluminum-based metallic grating arrays are incorporated beneath the FP filter array to capture polarization information. This innovative approach enables the simultaneous acquisition of spectrum and polarization information using a single sensor device. The outcomes of this research hold promise for advancing the development of high-performance, multifunctional optical sensors, thereby unlocking new possibilities in the field of optical information acquisition.

4.
Int J Biol Macromol ; 259(Pt 1): 129053, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38161015

RESUMO

The special rhabdom structure of the mid-band ommatidium in compound eye contributes to the mantis shrimp being the only animal species known to science that can recognize circularly polarized light (CPL). Although the number of mid-band ommatidium of Oratosquilla oratoria is reduced, the mid-band ommatidium still has orthogonal geometric interleaved rhabdom and short oval distal rhabdom, which may mean that the O. oratoria has weakened circular polarized light vision (CPLV). Here we explored the molecular mechanisms of how O. oratoria response to the polarization of light. Based on the specific expression patterns of vision-related functional genes and proteins, we suggest that the order of light response by O. oratoria compound eye was first natural light, then left-circularly polarized light (LCPL), linearly polarized light, right-circularly polarized light (RCPL) and dark. Meanwhile, we found that the expression levels of vision-related functional genes and proteins in O. oratoria compound eye under RCPL were not significantly different from those in DL, which may imply that O. oratoria cannot respond to RCPL. Furthermore, the response of LCPL is likely facilitated by the differential expression of opsin and microvilli - related functional genes and proteins (arrestin and sodium-coupled neutral amino acid transporter). In conclusion, this study systematically illustrated for the first time how O. oratoria compound eye response to the polarization of light at the genetic level, and it can improve the visual ecological theory behind polarized light vision evolution.


Assuntos
Crustáceos , Visão Ocular , Animais , Visão Ocular/genética , Crustáceos/genética
5.
Genetica ; 151(6): 339-348, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831421

RESUMO

The light-dark cycle significantly impacts the growth and development of animals. Mantis shrimps (Oratosquilla oratoria) receive light through their complex photoreceptors. To reveal the adaptive expression mechanism of the mantis shrimp induced in a dark environment, we performed comparative transcriptome analysis with O. oratoria cultured in a light environment (Oo-L) as the control group and O. oratoria cultured in a dark environment (Oo-D) as the experimental group. In the screening of differentially expressed genes (DEGs) between the Oo-L and Oo-D groups, a total of 88 DEGs with |log2FC| > 1 and FDR < 0.05 were identified, of which 78 were upregulated and 10 were downregulated. Then, FBP1 and Pepck were downregulated in the gluconeogenesis pathway, and MKNK2 was upregulated in the MAPK classical pathway, which promoted cell proliferation and differentiation, indicating that the activity of mantis shrimp was slowed and the metabolic rate decreases in the dark environment. As a result, the energy was saved for its growth and development. At the same time, we performed gene set enrichment analysis (GSEA) on all DEGs. In the KEGG pathway analysis, each metabolic pathway in the dark environment showed a slowing trend. GO was enriched in biological processes such as eye development, sensory perception and sensory organ development. The study showed that mantis shrimp slowed down metabolism in the dark, while the role of sensory organs prominent. It provides important information for further understanding the energy metabolism and has great significance to study the physiology of mantis shrimp in dark environment.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Crustáceos/genética , Crustáceos/metabolismo
6.
Acta Biomater ; 170: 479-495, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659728

RESUMO

The stomatopod Odontodactylus scyllarus uses weaponized club-like appendages to attack its prey. These clubs are made of apatite, chitin, amorphous calcium carbonate, and amorphous calcium phosphate organized in a highly hierarchical structure with multiple regions and layers. We follow the development of the biomineralized club as a function of time using clubs harvested at specific times since molting. The clubs are investigated using a broad suite of techniques to unravel the biomineralization history of the clubs. Nano focus synchrotron x-ray diffraction and x-ray fluorescence experiments reveal that the club structure is more organized with more sub-regions than previously thought. The recently discovered impact surface has crystallites in a different size and orientation than those in the impact region. The crystal unit cell parameters vary to a large degree across individual samples, which indicates a spatial variation in the degree of chemical substitution. Energy dispersive spectroscopy and Raman spectroscopy show that this variation cannot be explained by carbonation and fluoridation of the lattice alone. X-ray fluorescence and mass spectroscopy show that the impact surface is coated with a thin membrane rich in bromine that forms at very initial stages of club formation. Proteomic studies show that a fraction of the club mineralization protein-1 has brominated tyrosine suggesting that bromination of club proteins at the club surface is an integral component of the club design. Taken together, the data unravel the spatio-temporal changes in biomineral structure during club formation. STATEMENT OF SIGNIFICANCE: Mantis shrimp hunt using club-like appendages that contain apatite, chitin, amorphous calcium carbonate, and amorphous calcium phosphate ordered in a highly hierarchical structure. To understand the formation process of the club we analyze clubs harvested at specific times since molting thereby constructing a club formation map. By combining several methods ranging from position resolved synchrotron X-ray diffraction to proteomics, we reveal that clubs form from an organic membrane with brominated protein and that crystalline apatite phases are present from the very onset of club formation and grow in relative importance over time. This reveals a complex biomineralization process leading to these fascinating biomineralized tools.


Assuntos
Apatitas , Biomineralização , Animais , Apatitas/química , Muda , Proteômica , Crustáceos , Carbonato de Cálcio , Quitina , Difração de Raios X
7.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-997021

RESUMO

ObjectiveTo understand the concentration of heavy metal cadmium and cadmium in portunus and mantis shrimp, and to timely identify food safety problems and potential hazards. MethodsPortunus and mantis shrimp samples from different provinces were collected and categorized based on different regions and locations, and some samples were made from tissue parts. Graphite furnace atomic absorption spectrometry was used to detect cadmium items, the cadmium exposure of portunus and mantis shrimp was evaluated simultaneously ResultsThe detection rate of cadmium in 124 batches of portunus sold in Shanghai was 100% (124/124), the detection rate of cadmium in 63 batches of mantis shrimp sold in the market was also 100% (63/63). The cadmium content varied in different tissue parts, and the cadmium enrichment in hepatopancreas was the highest in the edible parts of portunus and mantis shrimp. The average detection value, 50th percentile value, 95th percentile value of cadmium in the hepatopancreas of portunus accounted for 52.64%, 49.28% and 98.65% of the PTMI, respectively. The average detection value, 50th percentile value and 95th percentile value of cadmium in the hepatopancreas of mantis shrimp accounted for 30.76%, 32.04% and 46.16% of the PTMI, respectively. ConclusionThe average residual levels of heavy metal cadmium in portunus and mantis shrimp are within the safe range.

8.
Rev. biol. trop ; 70(1)dic. 2022.
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1423037

RESUMO

Introduction: Mantis shrimps are ecologically and economically important organisms in marine ecosystems. However, there is still a lack of information about their habitat, in particular, their burrows. Objective: To analyze how dense and sparse mantis shrimp burrows differ in abundance, size, sediment grain size, and water quality. Methods: We counted burrows in 10 x 10 m2 random plots in sparse and dense seagrass (ten plots per density), around Barrang Lompo Island, South Sulawesi, Indonesia. Sampling took place at spring low tide from August to September 2017. Results: Two mantis shrimp species were observed: Lysiosquillina maculate and L. sulcata. Dense and sparse seagrass burrows did not differ in wall grain size or water parameters, both inside and outside of the burrows (P > 0.05). Similarly, there was no correlation between burrow depth and diameter in either dense (P > 0.05; r= 0.27) or sparse (P > 0.05; r= 0.33) seagrass. However, larger burrows tend to occur in denser beds, but there were more burrows in denser seagrass (t-test, P < 0.05). Conclusions: There seems to be a preference for dense seagrass beds, especially by larger mantis shrimps. The correlation between shrimp burrow abundance and seagrass density highlights the importance of conserving the quality as well as the extent of seagrass habitat.


Introducción: Los camarones mantis son organismos ecológica y económicamente importantes en los ecosistemas marinos. Sin embargo, aún falta información sobre su hábitat, en particular sobre sus madrigueras. Objetivo: Analizar cómo difieren las madrigueras de los camarones mantis en su abundancia, tamaño, tamaño de grano de los sedimentos y calidad del agua. Métodos: Contamos las madrigueras en parcelas de 10 x 10 m2 al azar (diez parcelas por densidad) en pastos marinos densos y poco densos, alrededor de la isla de Barrang Lompo, Sulawesi del Sur, Indonesia. Resultados: Se observaron dos especies de camarones mantis: Lysiosquillina maculata y L. sulcata. El tamaño de grano de las paredes de las madrigueras y los parámetros de agua, tanto dentro y fuera de la madriguera no variaron (P > 0.05). Tampoco hubo correlación entre la profundidad y el diámetro de las madrigueras, tanto en praderas densas (P > 0.05; r= 0.27), como no densas (P > 0.05; r= 0.33). Sin embargo, las madrigueras más grandes tienden a aparecer en las praderas densas, además había más madrigueras en pastos densos (t-test, P < 0.05). Conclusiones: Parece haber una preferencia por las praderas marinas densas, especialmente en los camarones mantis de mayor tamaño. La correlación entre la abundancia de madrigueras de camarones y la densidad de pastos marinos pone de manifiesto la importancia de conservar la calidad del hábitat de los pastos, así como su extensión.


Assuntos
Animais , Ambiente Marinho , Penaeidae/crescimento & desenvolvimento , Indonésia
9.
Zool Stud ; 61: e12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330032

RESUMO

The mantis shrimp family Lysiosquillidae includes the largest known stomatopods and presently includes three genera: Lysiosquilla Dana, 1852, Lysiosquillina Manning, 1995, and Lysiosquilloides Manning, 1977. Since 1995, new species assigned to all three lysiosquilloid genera have been recognised: Lysiosquilla manningi Boyko, 2000, Lysiosquillina lisa Ahyong & Randall, 2001, Lysiosquilla colemani Ahyong, 2001, Lysiosquilla suthersi Ahyong, 2001, and Lysiosquilloides mapia Erdmann & Boyer, 2003, and Lysiosquilla isos Ahyong, 2004. Lysiosquillina lisa, Lysiosquilla campechiensis Manning, 1962 and Lysiosquilla suthersi, however, proved problematical to assign to genera owing to the possession of characters intermediate between Lysiosquilla sensu stricto and Lysiosquillina sensu stricto. In particular, species that are transitional between Lysiosquilla and Lysiosquillina challenge the validity of the latter genus. Here, we reassess the status and composition of the lysiosquillid genera by cladistic analysis of all known species in the family. Lysiosquillina is synonymized with Lysiosquilla and a new species of Lysiosquilloides is described from Taiwan. A key to the species of Lysiosquilloides is provided.

10.
Polymers (Basel) ; 14(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36235935

RESUMO

Mantis shrimp (Oratosquilla nepa) exoskeleton, a leftover generated after processing, was used as a starting material for chitosan (CS) production. CS was extracted with different deacetylation times (2, 3 and 4 h), termed CS−2, CS−3 and CS−4, respectively, and their characteristics and antimicrobial and film properties with agarose (AG) were investigated. Prolonged deacetylation time increased the degree of deacetylation (DDA: 73.56 ± 0.09−75.56 ± 0.09%), while extraction yield (15.79 ± 0.19−14.13 ± 0.09%), intrinsic viscosity (η: 3.58 ± 0.09−2.97 ± 0.16 dL/g) and average molecular weight (Mν: 1.4 ± 0.05−1.12 ± 0.08 (×106 Da)) decreased (p < 0.05). FTIR spectra of extracted CS were similar to that of commercial CS. Among all the CS samples prepared, CS−3 had the best yield, DDA, Mν and antimicrobial activity. Therefore, it was chosen for the development of composite films with AG at different ratios (CS−3/AG; 100/0, 75/25, 50/50, 25/75 and 0/100). As the proportion of AG increased, the tensile strength (29.96 ± 1.80−89.70 ± 5.08 MPa) of the composite films increased, while thickness (0.056 ± 0.012−0.024 ± 0.001 mm), elongation at break (36.52 ± 1.12−25.32 ± 1.23%) and water vapor permeability (3.56 ± 0.10−1.55 ± 0.02 (×10−7 g m m−2 s−1 Pa−1)) decreased (p < 0.05). Moreover, lightness of the films increased and yellowness decreased. CS−3/AG (50/50) composite film exhibited high mechanical and barrier properties and excellent compatibility according to FTIR and SEM analyses. According to these finding, mantis shrimp exoskeleton could be used to produce CS. The developed bio-composite film based on an appropriate ratio (50/50) of CS−3 and AG has potential for being used as food packaging material.

11.
J Food Sci Technol ; 59(5): 1812-1822, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35531420

RESUMO

Changes in physicochemical, textural, microbial, and sensory quality of harpiosquillid mantis shrimp (Harpiosquilla raphidea) (HMS) during 10 days of iced storage were studied. Weight and cooking losses were increased during storage (p < 0.05). Drastic decrease in myosin heavy chain was found after 2 days of storage. Increases in total volatile basic nitrogen, trimethylamine, peroxide value, and thiobarbituric acid reactive substances with coincidentally augmented pH were found during the storage (p < 0.05). For microbiological analyses, total viable counts exceeded the limit at day 6. Melanosis score increased with a decreased L* value as storage time increased. Rapid decreases in hardness, springiness, cohesiveness, gumminess, and chewiness were associated with pasty and softened texture, which was supported by looser arrangement of muscle fiber along with gapping. This was reconfirmed by lowered shear force. Based on the quality evaluation, HMS could maintain the freshness and quality for not longer than 2 days in ice.

12.
Int J Biol Macromol ; 198: 204-213, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34995666

RESUMO

Mantis shrimp waste (Oratosquilla oratoria) is a good source of chitin. The applicability of microwave-assisted organic acids and proteases for extracting chitin from mantis shrimp shell waste was evaluated, and the extracted-chitin was characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Moreover, the effects of nanochitin on the growth of pak choi (Brassica campestris L.ssp.) were also investigated. The results indicated that alkaline protease (4000 U/g, microwave heating at 60 °C, 10 min) and malic acid (5%, 320 W, 5 min) exhibited excellent potential for deproteinizing and demineralizing shells. The deproteinization and demineralization yields were 92.78% and 94.11%, respectively, and the chitin yield was 15.6%. The extracted-chitin had a highly porous structure and exhibited excellent crystallinity and thermostability compared with chitin prepared by traditional chemical methods. Furthermore, 0.003% nanochitin significantly enhanced photosynthesis, which improved the pak choi fresh weight by 22.94%, and improved the accumulation of isothiocyanates in its leaves. This study provides an alternative approach for the high-value utilization of mantis shrimp waste, and reveals the potential of chitin for application in agricultural production.


Assuntos
Quitina
13.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389671

RESUMO

Efficient and effective generation of high-acceleration movement in biology requires a process to control energy flow and amplify mechanical power from power density-limited muscle. Until recently, this ability was exclusive to ultrafast, small organisms, and this process was largely ascribed to the high mechanical power density of small elastic recoil mechanisms. In several ultrafast organisms, linkages suddenly initiate rotation when they overcenter and reverse torque; this process mediates the release of stored elastic energy and enhances the mechanical power output of extremely fast, spring-actuated systems. Here we report the discovery of linkage dynamics and geometric latching that reveals how organisms and synthetic systems generate extremely high-acceleration, short-duration movements. Through synergistic analyses of mantis shrimp strikes, a synthetic mantis shrimp robot, and a dynamic mathematical model, we discover that linkages can exhibit distinct dynamic phases that control energy transfer from stored elastic energy to ultrafast movement. These design principles are embodied in a 1.5-g mantis shrimp scale mechanism capable of striking velocities over 26 m [Formula: see text] in air and 5 m [Formula: see text] in water. The physical, mathematical, and biological datasets establish latching mechanics with four temporal phases and identify a nondimensional performance metric to analyze potential energy transfer. These temporal phases enable control of an extreme cascade of mechanical power amplification. Linkage dynamics and temporal phase characteristics are easily adjusted through linkage design in robotic and mathematical systems and provide a framework to understand the function of linkages and latches in biological systems.


Assuntos
Crustáceos/fisiologia , Transferência de Energia , Atividade Motora/fisiologia , Animais , Fenômenos Biomecânicos , Humanos , Modelos Biológicos , Robótica
14.
Bioinspir Biomim ; 16(5)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34111856

RESUMO

Engineering design has drawn inspiration from naturally occurring structures to advance manufacturing processes and products, termed biomimetics. For example, the mantis shrimp, orderStomatopoda, is capable of producing one of the fastest appendage strikes in the world with marginal musculoskeletal displacement. The extreme speed of the mantis shrimp's raptorial appendage is due to the non-Euclidean hyperbolic paraboloid (i.e. saddle) shape within the dorsal region of the merus, which allows substantial energy storage through compression in the sagittal plane. Here, investigation of 3D printed synthetic geometries inspired by the mantis shrimp saddle geometry has revealed insights for elastic energy storage (i.e. spring-like) applications. Saddles composed of either astiffor aflexibleresin were investigated for spring response to explore the geometric effects. By modulating the saddle geometry and testing the spring response, it was found that, for thestiffresin, the spring constant was improved as the curvature of the contact and orthogonal faces were maximized and minimized, respectively. For theflexibleresin, it was found that the spring constant increased by less than 250 N mm-1as the saddle geometry changed, substantiating that the flexible component of mantis saddles does not contribute to energy storage capabilities. The geometries of two saddles from the mantis shrimp speciesO. scyllaruswere estimated and exhibited similar trends to manufactured saddles, suggesting that modulating saddle geometry can be used for tailored energy storage moduli in spatially constrained engineering applications.


Assuntos
Biomimética , Mantódeos , Animais , Crustáceos , Extremidades , Impressão Tridimensional
15.
Microsc Res Tech ; 84(9): 2075-2081, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34050589

RESUMO

The microstructure and dissimilar materials connection patterns of mantis shrimp saddle were investigated. The outer layer with layered helical structure and inner layer with slablike laminae structure constructed the microstructure characteristics of saddle. The merus and membrane were characterized by layered structure. The lamina of saddle connected the corresponding lamina in merus and membrane, building the continuous and smooth coupling connection patterns. The entitative "hard-hard" and "hard-soft" transitions of dissimilar materials at micro level enhanced the steady transmit of driven force. The saddle exhibited high mechanical strength. With the increase of in-situ tensile displacement, the number of fractured fragments on saddle outer layer surface increased, which subjected to tensile load and defused the damage in the form of mineralized surface fragmentation. In the inner part of saddle, the fracture of mineralized laminae and crack deflection mechanisms bore the tensile load influence. The combination of microstructure with high mechanical strength and continues micro lamina connection endowed the concise dissimilar materials connection and efficient elastic energy storage property of saddle, which can be treated as the bionic models for design and preparation of fiber reinforced resin composite, hyperelastic material and so on.


Assuntos
Resinas Compostas , Fenômenos Mecânicos , Teste de Materiais , Resistência à Tração
16.
J Exp Biol ; 224(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33914038

RESUMO

Latch-mediated spring actuation (LaMSA) is used by small organisms to produce high acceleration movements. Mathematical models predict that acceleration increases as LaMSA systems decrease in size. Adult mantis shrimp use a LaMSA mechanism in their raptorial appendages to produce extremely fast strikes. Until now, however, it was unclear whether mantis shrimp at earlier life-history stages also strike using elastic recoil and latch mediation. We tested whether larval mantis shrimp (Gonodactylaceus falcatus) use LaMSA and, because of their smaller size, achieve higher strike accelerations than adults of other mantis shrimp species. Based on microscopy and kinematic analyses, we discovered that larval G. falcatus possess the components of, and actively use, LaMSA during their fourth larval stage, which is the stage of development when larvae begin feeding. Larvae performed strikes at high acceleration and speed (mean: 4.133×105 rad s-2, 292.7 rad s-1; 12 individuals, 25 strikes), which are of the same order of magnitude as for adults - even though adult appendages are up to two orders of magnitude longer. Larval strike speed (mean: 0.385 m s-1) exceeded the maximum swimming speed of similarly sized organisms from other species by several orders of magnitude. These findings establish the developmental timing and scaling of the mantis shrimp LaMSA mechanism and provide insights into the kinematic consequences of scaling limits in tiny elastic mechanisms.


Assuntos
Crustáceos , Mantódeos , Animais , Fenômenos Biomecânicos , Larva , Movimento
17.
Microsc Res Tech ; 84(3): 415-421, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32937000

RESUMO

Effects of microstructure and phase component on mechanical property of spearer propodus of mantis shrimp were investigated. The spearer propodus consisted of three layers including epicuticle (outer layer), exocuticle (middle layer), and endocuticle (inner layer). The outer layer was composed of fluorapatite, which was treated as permeability barrier to environment. The compact middle layer and inner layer were constituted of chitin-protein fibers, which exhibited the layered spiral structure. Under the in-situ tensile test environment, spearer propodus owned high mechanical strength, which bore maximum tensile fore of 320 N. In the in-situ tensile process, cracks extended along with zigzag lines on spearer propodus surface. The middle layer and inner layer resisted the damage of force via the fracture and pulling of fibers. The crack deflection and delamination phenomena were the mechanical property mechanisms of spearer propodus of mantis shrimp. The investigations provided typical bionic models for the design and preparation of bionic structure materials, bionic anti-impact materials, and bionic soft materials in engineering fields.


Assuntos
Crustáceos , Fenômenos Mecânicos , Animais , Resistência à Tração
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119223, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33262077

RESUMO

The mineralized cuticle of the mantis shrimps Squilla Mantis which serve as natural hammers, spears and armors, have attracted research attention from various fields due to its amazing mechanical properties which were studied from evolutionary and ecological points of view. Here we aimed to valorize the astonishing mantis shrimp shell waste resulted from fishery and seafood industry as valuable biogenic composite derived from nature, potentially re-usable for novel, smart materials or added-value by-products, aspect which was not deeply considered before. Employing multi-laser Raman spectroscopy and imaging, supported by x-ray diffraction and high-resolution electron microscopy, we discover that the peripheral segments anatomically known as claws and telson, featured completely different composition and morphology, suggesting different applicability. The claw presents a bulk Mg-CaCO3 structure reinforced with fluorapatite coating, while the carotenoid-rich telson presents a porous and anisotropic structure of an amorphous mixture of CaCO3 and CaPO4 in gradient deposition on the chitin-protein scaffold. Resonance Raman spectroscopy showed concentrated pools of astaxanthin carotenoid within the bright red spots visible on telson, Based on our findings, we discuss this material's potential for selective applicability, as a natural source of phosphate-carbonate minerals, antioxidants, biofertilizer, pollutant adsorbent, valuable material for regenerative medicine or even as a cell culture substrate. Knowledge-based approach on this bio-template is the basis for smart recycling of such fishery waste for sustainable development, by opening channels for blue bioeconomy avenue.


Assuntos
Quitina , Crustáceos , Animais , Alimentos Marinhos , Análise Espectral Raman , Difração de Raios X
19.
Mar Pollut Bull ; 162: 111815, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33168143

RESUMO

This study provided the primary data of selected trace elements and rare earth elements from 120 samples of mantis shrimp Oratosquilla oratoria (O. oratoria) caught from three sites in the Shandong Province, China and evaluated the potential health risk of shrimp consumption from this region. The calculation of estimated daily intake (EDI), target hazard quotient (THQ) and total target hazard quotient (TTHQ) showed that the contents of all target TREs were below respective permitted limits recommended by China, with the exceptions of Cd and iAs levels. In addition to pollution, results indicated that TREs concentrations in O. oratoria were also impacted by characteristics of O. oratoria. The distribution patterns of REEs in O. oratoria did not differ from those in the sediment and other marine organisms, following the abundance rule. Consumption of O. oratoria from Shandong Province is potentially harmful to human health due to high levels of Cd and iAs.


Assuntos
Metais Pesados , Metais Terras Raras , Oligoelementos , Animais , China , Crustáceos , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Alimentos Marinhos , Oligoelementos/análise
20.
PeerJ ; 8: e10270, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194430

RESUMO

The interplay between historical and contemporary processes can produce complex patterns of genetic differentiation in the marine realm. Recent mitochondrial and nuclear sequence analyses revealed cryptic speciation in the Japanese mantis shrimp Oratosquilla oratoria. Herein, we applied nuclear microsatellite markers to examine patterns and causes of genetic differentiation in this morphotaxon. Population structure analyses revealed two genetically divergent and geographically structured clades in O. oratoria, one dominating the temperate zone of the Northwestern (NW) Pacific and the other occurring in the subtropical and tropical waters where are influenced by the Kuroshio Current. Two sympatric zones, one around the Changjiang Estuary in China coast and the other in the northern Japan Sea, were demonstrated to be hybrid zones where introgressive hybridization occurred asymmetrically. The interaction between historical climate shifts and contemporary factors (e.g., freshwater discharge, temperature gradient and isolation by distance) may contribute to the present-day genetic architecture in the Japanese mantis shrimp. Range shift induced by climate changes and oceanographic factors may promote hybridization and gene flow between the O. oratoria complex. Our results provide insights into the interacting mechanisms that give rise to diversification and speciation of coastal species in the NW Pacific.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...