Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Int J Environ Health Res ; : 1-4, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572838

RESUMO

Colistin resistance is a global health concern, with antibiotics being the last treatment for Gram-negative bacteria infections. We aimed to identify colistin-resistant enterobacteria on environmental surfaces of a long-term care facility (LTCF) for the elderly in southern Brazil. Samples were collected and screened on MacConkey agar plus colistin, followed by API20E identification and PCR. Two isolates were founded and identified as Klebsiella pneumoniae and Providencia stuartii harboring mcr-1 gene with MICs > 128 µg mL-1 for colistin. This is the first isolation of microorganisms resistant to colistin in the environment of a LTCF for the elderly in south Brazil, urging monitoring programs to reduce environmental contamination by multiresistant microorganisms.

2.
Microbiol Immunol ; 68(1): 1-5, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37859304

RESUMO

Over the last decade, New Delhi metallo-beta-lactamase (NDM) carbapenemase has silently spread in Brazil. In this study, we analyzed a large collection of Enterobacterales other than Klebsiella spp. received in our reference laboratory between 2013 and 2022. A total of 32 clinical isolates displaying different pulsed-field gel electrophoresis profiles, and represented by 11 species in the families Enterobacteriaceae (Citrobacter freundii, Citrobacter portucalensis, Enterobacter hormaechei, and Escherichia coli), Morganellaceae (Morganella morganii, Proteus mirabilis, Proteus vulgaris, Providencia rettgeri, Providencia stuartii, and Raoultella ornithinolytica), and Yersiniaceae (Serratia marcescens) had their whole genomes sequenced and further analyzed. Antimicrobial susceptibility was determined by disk diffusion, except for polymyxin B, assessed by broth microdilution. The blaNDM-1 allele was predominant (n = 29), but blaNDM-5 was identified in an E. coli specimen with a novel ST, and the blaNDM-7 allele was found in E. hormaechei ST45 and E. coli ST1049. Polymyxin was active against all but one Enterobacteriaceae isolate: an mcr-1-producing E. coli presenting minimal inhibitory concentration (4 mg/L). Isolates producing extended-spectrum ß-lactamases were common: cefotaximase from Munich (CTX-M)-15 (n = 10), CTX-M-2 (n = 4), and CTX-M-8 (n = 3) were detected, and the mcr-1-producing E. coli was found to co-produce both CTX-M-8 and CTX-M-55 ß-lactamases. The mcr-9 gene was found in 5/8 E. hormaechei isolates, distributed in four different sequence types, all of them presenting susceptibility to polymyxin. This study showed that NDM-producing Enterobacterales other than Klebsiella are already spread in Brazil, in diversified species, and cocarrying important resistance genes. Prompt detection and effective implementation of measures to prevent further spread are mandatory for mitigating the dissemination of NDM carbapenemase in hospital settings and preserving the already limited antimicrobial therapy options.


Assuntos
Infecções por Enterobacteriaceae , Escherichia coli , Humanos , Klebsiella/genética , Brasil/epidemiologia , Antibacterianos/farmacologia , beta-Lactamases/genética , Infecções por Enterobacteriaceae/epidemiologia , Genômica , Testes de Sensibilidade Microbiana , Polimixinas/farmacologia
3.
Int Microbiol ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37995017

RESUMO

This study aimed to analyze Escherichia coli from marketed meat samples in Peru. Sixty-six E. coli isolates were recovered from 21 meat samples (14 chicken, 7 beef), and antimicrobial resistance levels and the presence of mechanisms of antibiotic resistance, as well as clonal relationships and phylogeny of colistin-resistant isolates, were established. High levels of antimicrobial resistance were detected, with 93.9% of isolates being multi-drug resistant (MDR) and 76.2% of samples possessing colistin-resistant E. coli; of these, 6 samples from 6 chicken samples presenting mcr-1-producer E. coli. Colistin-resistant isolates were classified into 22 clonal groups, while phylogroup A (15 isolates) was the most common. Extended-spectrum ß-lactamase- and pAmpC-producing E. coli were found in 18 and 8 samples respectively, with blaCTX-M-55 (28 isolates; 16 samples) and blaCIT (8 isolates; 7 samples) being the most common of each type. Additionally, blaCTX-M-15, blaCTX-M-65, blaSHV-27, blaOXA-5/10-like, blaDHA, blaEBC and narrow-spectrum blaTEM were detected. In addition, 5 blaCTX-M remained unidentified, and no sought ESBL-encoding gene was detected in other 6 ESBL-producer isolates. The tetA, tetE and tetX genes were found in tigecycline-resistant isolates. This study highlights the presence of MDR E. coli in Peruvian food-chain. The high relevance of CTX-M-55, the dissemination through the food-chain of pAmpC, as well as the high frequency of unrelated colistin-resistant isolates is reported.

4.
Microorganisms ; 11(8)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37630556

RESUMO

The aim of this study was to determine the prevalence of plasmid-mediated colistin resistance mcr-1 to mcr-5 genes among colistin and multi-drug-resistant Gram-negative bacilli strains isolated from patients in a tertiary hospital in Toluca, Mexico. The presence of mcr genes among the 241 strains collected was assessed by PCR. In the case of mcr-carrying E. coli, further PCR tests were performed to determine the presence of blaCTX-M and whether the strains belonged to the O25b-ST131 clone. Conjugation experiments were also carried out to assess the horizontal transmission of colistin resistance. A total of twelve strains (5.0%), of which four were E. coli; four were P. aeruginosa; three were K. pneumoniae, and one E. cloacae, were found to be resistant to colistin. Of these strains, two E. coli isolates were found to carry mcr-1, and Southern blot hybridization demonstrated its presence on an approximately 60 kb plasmid. Both mcr-1-carrying E. coli strains were found to co-express blaCTX-M, belong to the O25b-ST131 clone, and horizontally transmit their colistin resistance. The results of this study confirm the presence of plasmid-mediated colistin resistance in hospitalized patients in Mexico and demonstrated that the multi-drug-resistant O25b-ST131 E. coli clone can acquire mcr genes and transmit such resistance traits to other bacteria.

5.
Comp Immunol Microbiol Infect Dis ; 99: 102019, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37473695

RESUMO

Antibiotic resistance is a current problem that significantly impacts overall health. The dissemination of antibiotic resistance genes (ARGs) to urban areas primarily occurs through ARG-carrying bacteria present in the gut microbiota of animals raised in intensive farming settings, such as pig production. Hence, this study aimed to isolate and analyzed 87 Escherichia coli strains from pig fecal samples obtained from intensive farms in Lima Department. The isolates were subjected to Kirby-Bauer-Disk Diffusion Test and PCR for mcr-1 gene identification. Disk-diffusion assay revealed a high level of resistance among these isolates to oxytetracycline, ampicillin, cephalothin, chloramphenicol, ciprofloxacin, and doxycycline. PCR analysis identified the mcr-1 gene in 8% (7/87) E. coli isolates. Further, whole genome sequencing was conducted on 17 isolates, including multidrug resistance (MDR) E. coli and/or mcr-1 gene carriers. This analysis unveiled a diverse array of ARGs. Alongside the mcr-1 gene, the blaCTX-M55 gene was particularly noteworthy as it confers resistance to third generation cephalosporins, including ceftriaxone. MDR E. coli genomes exhibited other ARGs encoding resistance to fosfomycin (fosA3), quinolones (qnrB19, qnrS1, qnrE1), tetracyclines (tetA, tetB, tetD, tetM), sulfonamides (sul1, sul2, sul3), amphenicols (cmlA1, floR), lincosamides (inuE), as well as various aminoglycoside resistance genes. Additionally, Multi Locus Sequence Typing (MLST) revealed a high diversity of E. coli strains, including ST10, a pandemic clone. This information provides evidence of the dissemination of highly significant ARGs in public health. Therefore, it is imperative to implement measures aimed at mitigating and preventing the transmission of MDR bacteria carrying ARGs to urban environments.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Doenças dos Suínos , Animais , Suínos , Escherichia coli/genética , Tipagem de Sequências Multilocus/veterinária , Proteínas de Escherichia coli/genética , Peru , Antibacterianos/farmacologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Genômica , Plasmídeos/genética , Testes de Sensibilidade Microbiana/veterinária , beta-Lactamases/genética , Doenças dos Suínos/epidemiologia
6.
Future Microbiol ; 18: 481-488, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37256324

RESUMO

Background: The dissemination of polymyxin resistance represents a significant threat to public health. Materials & methods: Sequence-based typing was performed by 53 mcr-1 Escherichia coli isolates using fumC/fimH (CH) genes to characterize clones spreading from pig farming. Furthermore, 12 isolates had their whole genome sequenced for phylogenetic study. Results: The isolates were classified into 22 distinct CH types, and two novel CH types (CH41-1578 and CH4-1579) and one sequence type (ST12652) was also described. According to phylogenetic study, both multilocus sequence typing and CH methods grouped the isolates similarly. Conclusion: Our findings suggest that the dissemination of the mcr-1 gene in pig farming has occurred mainly by horizontal gene transfer, and CH typing proved to be a good tool to characterize E. coli clones.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Suínos , Escherichia coli , Fazendas , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/genética , Alelos , Filogenia , Proteínas de Escherichia coli/genética , Tipagem de Sequências Multilocus , Antibacterianos/farmacologia , Colistina/farmacologia , Testes de Sensibilidade Microbiana , Adesinas de Escherichia coli/genética , Proteínas de Fímbrias/genética
7.
Antibiotics (Basel) ; 12(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37237759

RESUMO

Few studies have addressed drug resistance of Enterobacterales in rural communities in developing countries. This study aimed to determine the coexistence of extended-spectrum ß-lactamase (ESBL) and carbapenemase genes in Escherichia coli and Klebsiella pneumoniae strains carrying the mcr-1 gene in rural communities in Ecuador from healthy humans and their backyard animals. Sixty-two strains, thirty E. coli and thirty-two K. pneumoniae strains carrying the mcr-1 gene were selected from a previous study. PCR were performed for the presence of ESBLs and carbapenemase genes. The strains were further characterized, and the genetic relationship was studied with multi-locus sequencing typing (MLST) of seven housekeeping genes. Fifty-nine of the sixty-two mcr-1 isolates (95%) harbored at least on ß-lactam resistance gene. The most prevalent ESBL genes were the blaTEM genes (present in in 80% of the E. coli strains) and the blaSHV gene (present in 84% of the K. pneumoniae strains). MSLT analysis revealed 28 different sequence types (ST); 15 for E. coli and 12 for K. pneumoniae, with most ST never described in humans and animals. The coexistence of mcr-1 and ß-lactams resistant genes in E. coli and K. pneumoniae strains is alarming and threatens the efficacy of last-resort antibiotics. Our findings highlight backyard animals as a reservoir of mcr-1/ß-lactams resistant genes.

8.
Antibiotics (Basel) ; 12(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36978355

RESUMO

We report the presence of the mcr-1 gene among 880 Escherichia coli clinical isolates collected in 13 hospitals from 12 Colombian cities between 2016 and 2019. Seven (0.8%) isolates were colistin resistant (MIC ≥ 4 µg/mL). These colistin-resistant isolates were screened for the presence of the mcr-1 gene; five carried the gene. These five isolates were subjected to whole genome sequencing (WGS) to identify additional resistomes and their ST. In addition, antimicrobial susceptibility testing revealed that all E. coli isolates carrying mcr-1 were susceptible to third generation-cephalosporin and carbapenems, except one, which carried an extended-spectrum ß-lactamase (CTX-M-55), along with the fosfomycin resistance encoding gene, fosA. WGS indicated that these isolates belonged to four distinct sequence types (ST58, ST46, ST393, and a newly described ST14315) and to phylogroups B1, A, and D. In this geographic region, the spread of mcr-1 in E. coli is low and has not been inserted into high-risk clones such as ST131, which has been present in the country longer.

9.
Microbiol Immunol, in press, out. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5146

RESUMO

Over the last decade, New Delhi metallo-beta-lactamase (NDM) carbapenemase has silently spread in Brazil. In this study, we analyzed a large collection of Enterobacterales other than Klebsiella spp. received in our reference laboratory between 2013 and 2022. A total of 32 clinical isolates displaying different pulsed-field gel electrophoresis profiles, and represented by 11 species in the families Enterobacteriaceae (Citrobacter freundii, Citrobacter portucalensis, Enterobacter hormaechei, and Escherichia coli), Morganellaceae (Morganella morganii, Proteus mirabilis, Proteus vulgaris, Providencia rettgeri, Providencia stuartii, and Raoultella ornithinolytica), and Yersiniaceae (Serratia marcescens) had their whole genomes sequenced and further analyzed. Antimicrobial susceptibility was determined by disk diffusion, except for polymyxin B, assessed by broth microdilution. The blaNDM-1 allele was predominant (n = 29), but blaNDM-5 was identified in an E. coli specimen with a novel ST, and the blaNDM-7 allele was found in E. hormaechei ST45 and E. coli ST1049. Polymyxin was active against all but one Enterobacteriaceae isolate: an mcr-1–producing E. coli presenting minimal inhibitory concentration (4 mg/L). Isolates producing extended-spectrum β-lactamases were common: cefotaximase from Munich (CTX-M)-15 (n = 10), CTX-M-2 (n = 4), and CTX-M-8 (n = 3) were detected, and the mcr-1–producing E. coli was found to co-produce both CTX-M-8 and CTX-M-55 β-lactamases. The mcr-9 gene was found in 5/8 E. hormaechei isolates, distributed in four different sequence types, all of them presenting susceptibility to polymyxin. This study showed that NDM-producing Enterobacterales other than Klebsiella are already spread in Brazil, in diversified species, and cocarrying important resistance genes. Prompt detection and effective implementation of measures to prevent further spread are mandatory for mitigating the dissemination of NDM carbapenemase in hospital settings and preserving the already limited antimicrobial therapy options.

10.
Antibiotics (Basel) ; 11(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36551438

RESUMO

Resistance to colistin generated by the mcr-1 gene in Enterobacteriaceae is of great concern due to its efficient worldwide spread. Despite the fact that the Lima region has a third of the Peruvian population and more than half of the national pig and poultry production, there are no reports of the occurrence of the mcr-1 gene in Escherichia coli isolated from livestock. In the present work, we studied the occurrence of E. coli carrying the mcr-1 gene in chicken and pig farms in Lima between 2019 and 2020 and described the genomic context of the mcr-1 gene. We collected fecal samples from 15 farms in 4 provinces of Lima including the capital Lima Metropolitana and recovered 341 E. coli isolates. We found that 21.3% (42/197) and 12.5% (18/144) of the chicken and pig strains were mcr-1-positive by PCR, respectively. The whole genome sequencing of 14 mcr-1-positive isolates revealed diverse sequence types (e.g., ST48 and ST602) and the presence of other 38 genes that confer resistance to 10 different classes of antibiotics, including beta-lactamase blaCTX-M-55. The mcr-1 gene was located on diverse plasmids belonging to the IncI2 and IncHI1A:IncHI1B replicon types. A comparative analysis of the plasmids showed that they contained the mcr-1 gene within varied structures (mikB-mcr1-pap2, ISApl1-mcr1-pap2, and Tn6330). To the best of our knowledge, this is the first attempt to study the prevalence of the mcr-1 gene in livestock in Peru, revealing its high occurrence in pig and chicken farms. The genetic diversity of mcr-1-positive strains suggests a complex local epidemiology calling for a coordinated surveillance under the One-Health approach that includes animals, retail meat, farmers, hospitals and the environment to effectively detect and limit the spread of colistin-resistant bacteria.

11.
Antibiotics (Basel) ; 11(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35203760

RESUMO

The use of colistin in food-producing animals favors the emergence and spread of colistin-resistant strains. Here, we investigated the occurrence and molecular mechanisms of colistin resistance among E. coli isolates from a Mexican piglet farm. A collection of 175 cephalosporin-resistant colonies from swine fecal samples were recovered. The colistin resistance phenotype was identified by rapid polymyxin test and the mcr-type genes were screened by PCR. We assessed the colistin-resistant strains by antimicrobial susceptibility test, pulse-field gel electrophoresis, plasmid profile, and mating experiments. Whole-Genome Sequencing data was used to explore the resistome, virulome, and mobilome of colistin-resistant strains. A total of four colistin-resistant E. coli were identified from the cefotaxime-resistant colonies. All harbored the plasmid-borne mcr-1 gene, which was located on conjugative 170-kb IncHI-2 plasmid co-carrying ESBLs genes. Thus, high antimicrobial resistance rates were observed for several antibiotic families. In the RC2-007 strain, the mcr-1 gene was located as part of a prophage carried on non-conjugative 100-kb-plasmid, which upon being transformed into K. variicola strain increased the polymyxin resistance 2-fold. The genomic analysis showed a broad resistome and virulome. Our findings suggest that colistin resistance followed independent acquisition pathways as clonal and non-genetically related mcr-1-harboring strains were identified. These E. coli isolates represent a reservoir of antibiotic resistance and virulence genes in animals for human consumption which could be potentially propagated into other interfaces.

12.
Front Microbiol ; 13: 1032753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726572

RESUMO

The importance of the One Health concept in attempting to deal with the increasing levels of multidrug-resistant bacteria in both human and animal health is a challenge for the scientific community, policymakers, and the industry. The discovery of the plasmid-borne mobile colistin resistance (mcr) in 2015 poses a significant threat because of the ability of these plasmids to move between different bacterial species through horizontal gene transfer. In light of these findings, the World Health Organization (WHO) recommends that countries implement surveillance strategies to detect the presence of plasmid-mediated colistin-resistant microorganisms and take suitable measures to control and prevent their dissemination. Seven years later, ten different variants of the mcr gene (mcr-1 to mcr-10) have been detected worldwide in bacteria isolated from humans, animals, foods, the environment, and farms. However, the possible transmission mechanisms of the mcr gene among isolates from different geographical origins and sources are largely unknown. This article presents an analysis of whole-genome sequences of Escherichia coli that harbor mcr-1 gene from different origins (human, animal, food, or environment) and geographical location, to identify specific patterns related to virulence genes, plasmid content and antibiotic resistance genes, as well as their phylogeny and their distribution with their origin. In general, E. coli isolates that harbor mcr-1 showed a wide plethora of ARGs. Regarding the plasmid content, the highest concentration of plasmids was found in animal samples. In turn, Asia was the continent that led with the largest diversity and occurrence of these plasmids. Finally, about virulence genes, terC, gad, and traT represent the most frequent virulence genes detected. These findings highlight the relevance of analyzing the environmental settings as an integrative part of the surveillance programs to understand the origins and dissemination of antimicrobial resistance.

13.
J Appl Microbiol ; 132(2): 872-889, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34480840

RESUMO

This systematic review focuses on obtaining the most relevant information from multiple studies that detected a mobilized colistin resistance mcr gene in Salmonella for a better comprehension of its global distribution. A group of strategic and systematic keywords were combined to retrieve research data on the detection frequency of the mcr gene globally from four database platforms (Google Scholar, Science Direct, PubMed and Scielo). Forty-eight studies attended all the eligibility criteria and were selected. China was the country with the highest frequency of Salmonella strains with the mcr gene, and Europe exhibited a wide diversity of countries with positive mcr strains. In addition, animals and humans carried the highest frequency of positive strains for the mcr gene. Salmonella Typhimurium was the most frequent serovar carrying the mcr gene. Apparently, colistin overuse in animal husbandry has increased the selective pressure of antimicrobial resistance, resulting in the emergence of a plasmid-mediated colistin resistance mcr gene in China. The mcr-positive Salmonella strains are recently predominant worldwide, which is probably due to the capacity of this gene to be swiftly horizontally transmissible. The transmission ability of mcr-positive Salmonella strains to humans through the consumption of contaminated animal-based food is a public health concern.


Assuntos
Colistina , Farmacorresistência Bacteriana , Animais , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Salmonella typhimurium/genética
14.
Microb Drug Resist ; 28(2): 171-179, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34698586

RESUMO

The increasing prevalence and dissemination of carbapenemase-producing Enterobacterales represent a serious concern for public health. We studied the genetic features of a multidrug-resistant isolate of high-risk clone ST147 Klebsiella pneumoniae coharboring mcr-1 and blaNDM-1 recovered from a human clinical urine sample in 2017 in Peru. Whole-genome sequencing and conjugation assays identified mcr-1 and blaNDM-1 genes on two different conjugative plasmids, which belong to IncI2 and IncFIB/HI1B incompatibility groups, respectively. The presence of blaCTX-M-15 (in the studied isolate, located on the chromosome) and mutations in GyrA S83I and ParC S80I were detected, as expected for ST147. In addition, other ß-lactamases (blaTEM-26 and blaOXA-1) and PMQR (qnrE2 and aac(6')-Ib-cr) among several resistance determinants were identified. The coexistence not previously described of these genes in the same high-risk clone is a cause for serious concern that supports the need for implementation of genomic surveillance studies.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Peru , Sequenciamento Completo do Genoma , beta-Lactamases/genética
15.
Sci Total Environ ; 806(Pt 2): 150566, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582864

RESUMO

Although anthropogenic activities contribute to the selection and spread of antibiotic resistance in aquatic environments, limited information is available from countries with absent or incomplete sewage treatment systems and the impact of their discharges onto water bodies. This study therefore aimed to characterize the genetic structure of colistin resistance (mcr) genes among Escherichia coli isolates recovered from surface waters and sediments in Ecuador. Out of 459 isolates, four Escherichia coli showed multidrug-resistant phenotypes, which harbored the mcr-1 gene and ß-lactamases, such as blaTEM, blaCTX-M-15, blaCTX-M-55, or blaCTX-M-65 genes. Three E. coli isolates (U20, U30 and U144) shared a similar genetic environment surrounding the mcr-1 gene, which was located on plasmids. Only one E. coli isolate (U175) showed that the mcr-1 gene was chromosomally located. Moreover, the core genome multilocus sequence typing (cgMLST) analysis revealed that these isolates belong to different lineages. This study represents the first detection of the mcr-1 gene in multidrug-resistant E. coli isolates from environmental samples in Ecuador.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Antibacterianos , Equador , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Plasmídeos
16.
Infect Genet Evol ; 97: 105196, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954103

RESUMO

Polymyxin resistance is an emerging health issue aggravated by mcr dissemination among Enterobacterales recovered from various sources. Commensal Escherichia coli plays a key role in the spread of antimicrobial resistance in community settings and is likely to spread silently. It may transfer resistance genes to pathogenic bacteria in the gastrointestinal tract and the environment, and may cause difficult-to-treat infections, especially in immunocompromised patients. Unraveling actors disseminating resistance to last-resort antimicrobials might support the future development of control measures. Here we report the occurrence of a commensal ST683/CC155 colistin-resistant mcr-1.1-harboring E. coli (JP24) obtained from touristic coastal water. JP24's genome was sequenced and comparatively analyzed with other genomes from ST683/CC155 isolated worldwide and with mcr-carrying isolates recovered from various sources in Brazil. Besides mcr-1, JP24 carried blaCTX-M-8, tet(A), tet(34), dfrA12, sul2, sul3, aph(3')-Ia, aph(3')-IIa, aadA1, aadA2, cmlA1, Inu(G), mef(B) and mdf(a). mcr-1 and blaCTX-M-8 were transferable by IncX4 and IncI1/Iγ plasmids, respectively. Tree-based phylogeny of the ST683/CC155 isolates core genome revealed two larger clades. E. coli JP24 was grouped into a subclade together with an isolate from Thailand (ERR4221036), both carrying mcr-1. The core genome-based tree of the isolates carrying mcr-1 from Brazil revealed proximity with E. coli ECEST9 recovered from a mangrove also located in Northeastern Brazil. Accessory genome-based tree clustered most environmental isolates apart from the clinical ones and remained JP24 closer to ECEST9. High sequence conservation was observed between mcr-1-harboring plasmids detected in different species and reservoirs in Brazil and other countries. In addition to recreational coastal waters being potential sources for community exposure to antimicrobial-resistant bacteria, our findings reinforce a more prominent role of horizontal gene transfer, other than clonal expansion, in mcr dissemination in the community.


Assuntos
Farmacorresistência Bacteriana , Proteínas de Escherichia coli/genética , Escherichia coli/isolamento & purificação , Genoma Bacteriano , Brasil , Colistina/farmacologia , Escherichia coli/genética , Genômica , Testes de Sensibilidade Microbiana , Filogenia , Água do Mar/microbiologia
17.
Sci Total Environ ; 810: 152045, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883172

RESUMO

Extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-E. coli) have been reported in wildlife worldwide. Whether wildlife is a transient host of ESBL-E. coli or comprises an independently maintained reservoir is unknown. We investigated this question by longitudinally monitoring ESBL-E. coli in common vampire bats and nearby livestock in Peru. Among 388 bats from five vampire bat colonies collected over three years, ESBL-E. coli were detected at a low prevalence (10% in 2015, 4% in 2017 and 2018) compared to a high prevalence (48%) from 134 livestock sampled in 2017. All ESBL-E. coli were multidrug-resistant, and whole genome sequencing of 33 randomly selected ESBL-E. coli isolates (18 recovered from bats) detected 46 genes conferring resistance to antibiotics including third-generation cephalosporins (e.g., blaCTX-M-55, blaCTX-M-15, blaCTX-M-65, blaCTX-M-3, blaCTX-M-14), aminoglycosides, fluoroquinolones, and colistin (mcr-1). The mcr-1 gene is reported for the first time on a wild bat in Latin America. ESBL-E. coli also carried 31 plasmid replicon types and 16 virulence genes. Twenty-three E. coli sequence types (STs) were detected, including STs involved in clinical infections worldwide (e.g., ST 167, ST 117, ST 10, ST 156 and ST 648). ESBL-E. coli with identical cgMLST (ST 167) were detected in the same bat roost in 2015 and 2017, and several ESBL-E. coli from different bat roosts clustered together in the cgMLST reconstruction, suggesting long-term maintenance of ESBL-E. coli within bats. Most antibiotic resistance and virulence genes were detected in E. coli from both host populations, while ESBL-E. coli ST 744 was found in a bat and a pig from the same locality, suggesting possible cross-species exchanges of genetic material and/or bacteria between bats and livestock. This study suggests that wild mammals can maintain multidrug-resistant bacteria and share them with livestock.


Assuntos
Quirópteros , Proteínas de Escherichia coli , Animais , Antibacterianos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Gado , Peru/epidemiologia , Plasmídeos , Suínos , beta-Lactamases/genética
18.
Infect Genet Evol ; 96: 105156, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34823029

RESUMO

The rapid dissemination of colistin resistance mcr-type genes and extended-spectrum ß-lactamase-encoding genes at the human-animal-environment interface has raised concerns worldwide. In this study, we performed a genomic investigation of a multidrug (MDR)- and colistin-resistant Escherichia coli strain recovered from an urban stream strongly affected by pollution and used for recreational purposes in Brazil. E. coli strain EW827 was resistant to clinically significant antimicrobials, including polymyxins, extended-spectrum cephalosporins, and fluoroquinolones. Whole-genome sequencing analysis revealed that EW827 strain belonged to ST1775 and carried the fimH137 allele, clinically relevant antimicrobial resistance genes (e.g., mcr-1.1, blaCTX-M-2, and blaCMY-2), tolerance genes to metals, and biocide resistance genes. Moreover, IncX4 and IncI1-ST12 replicon types were identified carrying mcr-1.1 and blaCMY-2, respectively. A novel genetic environment of the mcr-1.1 gene, in which a 258-bp ∆IS5-like was inserted in the opposite orientation upstream of the mcr-1.1-pap2 element, was also detected. Additionally, the blaCTX-M-2 gene was harbored by a Tn21-like element on the chromosome. The occurrence of MDR E. coli co-harboring mcr-1.1, blaCTX-M-2, and blaCMY-2 in urban water represents a potential risk to humans, animals, and environmental safety. Therefore, epidemiological studies are required to monitoring multidrug-resistant bacteria and their antimicrobial resistance genes in aquatic ecosystems to determine possible routes and fates of these genes.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Rios/microbiologia , Brasil , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo
19.
Braz J Microbiol ; 52(3): 1597-1609, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34114111

RESUMO

BACKGROUND: A plasmid-mediated mechanism of bacterial resistance to polymyxin is a serious threat to public health worldwide. The present study aimed to determine the occurrence of plasmid-mediated colistin resistance genes and to conduct the molecular characterization of mcr-positive Escherichia coli strains isolated from Polish poultry. METHODS: In this study, 318 E. coli strains were characterized by the prevalence of mcr1-mcr5 genes, antimicrobial susceptibility testing by minimal inhibitory concentration method, the presence of antimicrobial resistance genes was screened by PCR, and the biofilm formation ability was tested using the crystal violet staining method. Genetic relatedness of mcr-1-positive E. coli strains was evaluated by multilocus sequence typing method. RESULTS: Among the 318 E. coli isolates, 17 (5.35%) harbored the mcr-1 gene. High antimicrobial resistance rates were observed for ampicillin (100%), tetracycline (88.24%), and chloramphenicol (82.35%). All mcr-1-positive E. coli strains were multidrug-resistant, and as many as 88.24% of the isolates contained the blaTEM gene, tetracycline (tetA and tetB), and sulfonamide (sul1, sul2, and sul3) resistance genes. Additionally, 41.18% of multidrug-resistant, mcr-1-positive E. coli isolates were moderate biofilm producers, while the rest of the strains showed weak biofilm production. Nine different sequence types were identified, and the dominant ST was ST93 (29.41%), followed by ST117 (17.65%), ST156 (11.76%), ST 8979 (11.76%), ST744 (5.88%), and ST10 (5.88%). Moreover, the new ST was identified in this study. CONCLUSIONS: Our results showed a low occurrence of mcr-1-positive E. coli strains isolated from Polish poultry; however, all the isolated strains were resistant to multiple antimicrobial agents and were able to form biofilms at low or medium level.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Aves Domésticas/microbiologia , Animais , Antibacterianos/farmacologia , Colistina , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Plasmídeos , Polônia , Tetraciclina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA