Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.393
Filtrar
1.
Sci Rep ; 14(1): 15693, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977834

RESUMO

To mitigate the decrease in mechanical performance of Sn58Bi/Cu solder joints resulting from electromigration-induced damage. The CeO2 nanoparticles were incorporated into Sn58Bi solder by a melt-casting method, and their effects on the microstructure and properties of Sn58Bi/Cu solder joints under electromigration were investigated. The study results demonstrate that the addition of 0.125 ~ 0.5 wt% CeO2 nanoparticles refines the eutectic microstructure of Sn58Bi solder alloy. At an addition amount of 0.5 wt%, the composite solder alloy exhibits the maximum tensile strength of 68.9 MPa, which is 37% higher than that of the base solder. CeO2 nanoparticle-reinforced Sn58Bi solder can achieve excellent solderbility with Cu substrates and the joints can significantly inhibit the growth of the anodic Bi-rich layer, which is responsible for electromigration. With the extension of current stressing time, Bi-rich and Sn-rich layer are respectively formed on the anode and cathode in the joints. The intermetallic compound (IMC) layer grows asymmetrically, transitioning from a fan-shaped morphology to a flattened structure at the anode and to a thickened mountain-like morphology at the cathode. Adding the CeO2 nanoparticles helps to mitigate the decrease in mechanical performance caused by electromigration damage during current application to some extent. Over the current stressing period of 288 ~ 480 h, the fracture position shifts from the anodic IMC/Bi-rich interface to the cathodic Sn-rich/IMC interface. The fracture mechanism transitions from a brittle fracture characterized by plate-like cleavage to a ductile-brittle mixed fracture with fine dimples and cleavage.

2.
J Colloid Interface Sci ; 672: 465-476, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852349

RESUMO

Enhancing the flame retardancy of epoxy (EP) resins typically entailed a trade-off with other physical properties. Herein, hyperbranched poly(amidoamine) (HPAA) and phytic acid (PA) were used to functionalize graphene oxide (GO) via electrostatic self-assembly in water to prepare a phosphorus-nitrogen functionalized graphene oxide nanosheet (PN-GOs), which could be utilized as high efficient flame-retardant additive of epoxy resin without sacrificing other properties. The PN-GOs demonstrated improved dispersion and compatibility within the EP matrix, which resulted in significant concurrent enhancements in both the mechanical performance and flame-retardant properties of the PN-GOs/EP nanocomposites over virgin EP. Notably, the incorporation of just 1.0 wt% PN-GOs yielded a 20.4, 6.4 and 42.7 % increases in flexural strength, flexural modulus and impact strength for the PN-GOs/EP nanocomposites, respectively. Furthermore, simultaneous reductions were achieved in the peak heat release rate (pHRR) by 60.0 %, total smoke production (TSP) by 43.0 %, peak CO production rate (pCOP) by 57.9 %, and peak CO2 production rate (pCO2P) by 63.9 %. This study presented a facile method for the design of GO-based nano flame retardants, expanding their application potential in polymer-matrix composites.

3.
Polymers (Basel) ; 16(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38931996

RESUMO

Chitosan/modified cassava starch/curcumin (CS/S/Cur) films with a crosslinker were developed via the solvent casting technique for the application of food packaging. The effects of citric acid (CA) as a natural crosslinker were assessed at different concentrations (0-10.0%, w/w, on a dry base on CS and S content). To measure the most favorable film, chemical structure and physical, mechanical, and thermal properties were investigated. Successful crosslinking between CS and S was seen clearly in the Fourier Transform Infrared (FTIR) spectra. The properties of the water resistance of the CS/S/Cur films crosslinked with CA were enhanced when compared to those without CA. Furthermore, it was found that the addition of CA crosslinking would improve the mechanical properties of composite films to some extent. It had been reported that the CA crosslinking level of 7.5 wt% of CS/S/Cur film demonstrated high performance in terms of physical properties. The tensile strength of the crosslinked film increased from 8 ± 1 MPa to 12 ± 1 MPa with the increasing content of CA, while water vapor permeability (WVP), swelling degree (SD), and water solubility (WS) decreased. An effective antioxidant scavenging activity of the CS/S/Cur film decreased with an increase in CA concentrations. This study provides an effective pathway for the development of active films based on polysaccharide-based film for food packaging applications.

4.
Materials (Basel) ; 17(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930400

RESUMO

This study reveals the relationship between the Cu precipitates and mechanical properties of a Cu-baring ultra-low carbon steel after two-phase zone quenching and tempering at 923 K for 0.5-2.5 h. The tensile and microstructural properties were investigated as a function of heat treatment time. The contribution of the precipitation-strengthening mechanism to yield strength was calculated. The size, morphology, and distribution of the precipitated particles were observed using TEM. As the heat treatment time increased, the strength gradually decreased and then remained stable, and the elongation gradually increased and then remained stable. Additionally, the contributions of each strengthening mechanism to the yield strength under different heat treatments were 117, 107, 102, and 89 MPa, respectively. The size and quantity of the precipitates increased with the increase in heat treatment time. After tempering for more than 2 h, the precipitates continued to coarsen, but their quantity decreased. The precipitated Cu had a 3R structure with a length of approximately 17.1 nm and a width of approximately 9.7 nm, with no twinning inside. The stacking order was ABC/ABC. The stable Cu precipitation structure was FCC, maintaining a K-S orientation relationship 11¯1FCC Cu //(0 1 1) α, 1¯10FCC Cu//[11¯1] α.

5.
ACS Nano ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941540

RESUMO

Three-dimensional (3D) bioprinting has advantages for constructing artificial skin tissues in replicating the structures and functions of native skin. Although many studies have presented improved effect of printing skin substitutes in wound healing, using hydrogel inks to fabricate 3D bioprinting architectures with complicated structures, mimicking mechanical properties, and appropriate cellular environments is still challenging. Inspired by collagen nanofibers withstanding stress and regulating cell behavior, a patterned nanofibrous film was introduced to the printed hydrogel scaffold to fabricate a composite artificial skin substitute (CASS). The artificial dermis was printed using gelatin-hyaluronan hybrid hydrogels containing human dermal fibroblasts with gradient porosity and integrated with patterned nanofibrous films simultaneously, while the artificial epidermis was formed by seeding human keratinocytes upon the dermis. The collagen-mimicking nanofibrous film effectively improved the tensile strength and fracture resistance of the CASS, making it sewable for firm implantation into skin defects. Meanwhile, the patterned nanofibrous film also provided the biological cues to guide cell behavior. Consequently, CASS could effectively accelerate the regeneration of large-area skin defects in mouse and pig models by promoting re-epithelialization and collagen deposition. This research developed an effective strategy to prepare composite bioprinting architectures for enhancing mechanical property and regulating cell behavior, and CASS could be a promising skin substitute for treating large-area skin defects.

6.
Bioact Mater ; 40: 34-46, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38910967

RESUMO

For gastrointestinal anastomosis, metallic biodegradable staples have a broad application potential. However, both magnesium and zinc alloys have relatively low strength to withstand the repeated peristalsis of the gastrointestinal tract. In this study, we developed a novel kind of biodegradable high-nitrogen iron (HN-Fe) alloy wires (0.23 mm), which were fabricated into the staples. The tensile results showed that the ultimate tensile strength and elongation of HN-Fe wires were 1023.2 MPa and 51.0 %, respectively, which was much higher than those of other biodegradable wires. The degradation rate in vitro of HN-Fe wires was slightly higher than that of pure Fe wires. After 28 days of immersion, the tensile strength of HN-Fe wires remained not less than 240 MPa, meeting the clinical requirements. Furthermore, sixteen rabbits were enrolled to conduct a comparison experiment using HN-Fe and clinical Ti staples for gastroanastomosis. After 6 months of implantation, a homogeneous degradation product layer on HN-Fe staples was observed and no fracture occurred. The degradation rate of HN-Fe staples in vivo was significantly higher than that in vitro, and they were expected to be completely degraded in 2 years. Meanwhile, both benign cutting and closure performance of HN-Fe staples ensured that all the animals did not experience hemorrhage and anastomotic fistula during the observation. The anastomosis site healed without histopathological change, inflammatory reaction and abnormal blood routine and biochemistry, demonstrating good biocompatibility of HN-Fe staples. Thereby, the favorable performance makes the HN-Fe staples developed in this work a promising candidate for gastrointestinal anastomosis.

7.
ACS Appl Mater Interfaces ; 16(25): 32762-32772, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38867400

RESUMO

Currently, the development of hydrogels with excellent mechanical properties (elasticity, fatigue resistance, etc.) and conductive properties can better meet their needs in the field of flexible sensor device applications. Generally, hydrogels with a denser cross-linking density tend to have better mechanical properties, but the improvement in mechanical properties comes at the expense of reduced electrical conductivity. Directly generating CaCO3 in the hydrogel prepolymer can not only increase the cross-linking density of its network but also introduce additional ions to enhance its internal ionic strength, which is beneficial to improving the conductivity of the hydrogel. It is still a big challenge to directly generate CaCO3 in the static prepolymer solution and ensure its uniform dispersion in the hydrogel. Herein, we adopted an improved preparation method to ensure that the directly generated CaCO3 particles can be evenly dispersed in the static prepolymer solution until the polymerization is completed. Finally, a PAM/PVA/CaCO3 hydrogel with supertensile, compressive, toughness, and fatigue resistance properties was prepared. In addition, the presence of free Na+ and Cl- gives the hydrogel excellent conductivity and sensing performance to monitor daily human activities. On the basis of the application of hydrogels in information communication, we have further deepened this application by combining the characteristics of hydrogels themselves. Combined with ASCII code, the hydrogel can also be applied in information exchange and information encryption and decryption, achieving the antitheft function in smart locks. A variety of excellent performance integrated PAM/PVA/CaCO3 hydrogels have broad application prospects for flexible sensors, highlighting great potential in human-computer interaction and intelligent information protection.

8.
J Funct Biomater ; 15(6)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38921538

RESUMO

Resin-based dental composites, commonly used in dentistry, offer several advantages including minimally invasive application, esthetically pleasing appearance, and good physical and mechanical properties. However, these dental composites can be susceptible to microcracks due to various factors in the complex oral environment. These microcracks can potentially lead to clinical restoration failure. Conventional materials and methods are inadequate for detecting and repairing these microcracks in situ. Consequently, incorporating self-healing properties into dental composites has become a necessity. Recent years have witnessed rapid advancements in self-healing polymer materials, drawing inspiration from biological bionics. Microcapsule-based self-healing dental composites (SHDCs) represent some of the most prevalent types of self-healing materials utilized in this domain. In this article, we undertake a comprehensive review of the most recent literature, highlighting key insights and findings related to microcapsule-based SHDCs. Our discussion centers particularly on the preparation techniques, application methods, and the promising future of self-healing microcapsules in the field of dentistry.

9.
Ann Biomed Eng ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880816

RESUMO

Porous nickel-titanium (NiTi) manufactured using metal injection molding (MIM) has emerged as an innovative generation of drug-loaded stent materials. However, an increase in NiTi porosity may compromise its mechanical properties and cytocompatibility. This study aims to explore the potential of porous NiTi as a vascular drug delivery material and evaluate the impact of porosity on its drug loading and release, mechanical properties, and cytocompatibility. MIM, combined with the powder space-holder method, was used to fabricate porous NiTi alloys with three porosity levels. The mechanical properties of porous NiTi were assessed, as well as the surface cell growth capability. Furthermore, by loading rapamycin nanoparticles onto the surface and within the pores of porous NiTi, we evaluated the in vitro drug release behavior, inhibitory effect on cell proliferation, and inhibition of neointimal hyperplasia in vivo. The results demonstrated that an increase in porosity led to a decrease in the mechanical properties of porous NiTi, including hardness, tensile strength, and elastic modulus, and a decrease in the surface cell growth capability, affecting both cell proliferation and morphology. Concurrently, the loading capacity and release duration of rapamycin were extended with increasing porosity, resulting in enhanced inhibitory effects on cell proliferation in vitro and inhibition of neointimal hyperplasia in vivo. In conclusion, porous NiTi holds promise as a desirable vascular drug delivery material, but a balanced consideration of the influence of porosity on both mechanical properties and cytocompatibility is necessary to achieve an optimal balance among drug-loading and release performance, mechanical properties, and cytocompatibility.

10.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893573

RESUMO

Graphene oxide (GO) has attracted huge attention in biomedical sciences due to its outstanding properties and potential applications. In this study, we synthesized GO using our recently developed 1-pyrenebutyric acid-assisted method and assessed how the GO as a filler influences the mechanical properties of GO-gelatine nanocomposite dry films as well as the cytotoxicity of HEK-293 cells grown on the GO-gelatine substrates. We show that the addition of GO (0-2%) improves the mechanical properties of gelatine in a concentration-dependent manner. The presence of 2 wt% GO increased the tensile strength, elasticity, ductility, and toughness of the gelatine films by about 3.1-, 2.5-, 2-, and 8-fold, respectively. Cell viability, apoptosis, and necrosis analyses showed no cytotoxicity from GO. Furthermore, we performed circular dichroism, X-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses to decipher the interactions between GO and gelatine. The results show, for the first time, that GO enhances the mechanical properties of gelatine by forming non-covalent intermolecular interactions with gelatine at its amorphous or disordered regions. We believe that our findings will provide new insight and help pave the way for potential and wide applications of GO in tissue engineering and regenerative biomedicine.


Assuntos
Gelatina , Grafite , Grafite/química , Gelatina/química , Humanos , Células HEK293 , Resistência à Tração , Sobrevivência Celular/efeitos dos fármacos , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Nanocompostos/química
11.
Materials (Basel) ; 17(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893751

RESUMO

Lightweight and high-strength insulation materials have important application prospects in the aerospace, metallurgical, and nuclear industries. In this study, a highly porous silica fiber reinforced phenolic resin matrix composite was prepared by vacuum impregnation and atmospheric drying using quartz fiber needled felt as reinforcement and anhydrous ethanol as a pore-making agent. The effects of curing agent content on the structure, composition, density, and thermal conductivity of the composite were studied. The mechanical properties of the composite in the xy direction and z direction were analyzed. The results showed that this process can also produce porous phenolic resin (PR) with a density as low as 0.291 g/cm3, where spherical phenolic resin particles are interconnected to form a porous network structure with a particle size of about 5.43 µm. The fiber-reinforced porous PR had low density (0.372~0.397 g/cm3) and low thermal conductivity (0.085~0.095 W/m·K). The spherical phenolic resin particles inside the composite were well combined with the fiber at the interface and uniformly distributed in the fiber lap network. The composite possessed enhanced mechanical properties with compressive strength of 3.5-5.1 MPa in the xy direction and appeared as gradual compaction rather than destruction as the strain reached 30% in the z direction. This research provides a lightweight and high-strength insulation material with a simple preparation process and excellent performance.

12.
Materials (Basel) ; 17(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893769

RESUMO

Alumina ceramic is an ideal candidate for armor protection, but it is limited by the difficult molding or machining process. Three-dimensional printing imparts a superior geometric flexibility and shows good potential in the preparation of ceramics for armor protection. In this work, alumina ceramics were manufactured via 3D printing, and the effects of different monomers on the photosensitive slurry and sintered ceramics were investigated. The photosensitive slurries using dipropylene glycol diacrylate (DPGDA) as a monomer displayed the optimal curing performance, with a low viscosity, small volume shrinkage and low critical exposure energy, and each of the above properties was conducive to a good curing performance in 3D printing, making it a suitable formula for 3D-printed ceramic materials. In the 3D-printed ceramics with DPGDA as a monomer, a dense and uniform microstructure was exhibited after sintering. In comparison, the sample with trimethylolpropane triacrylate (TMPTA) showed an anisotropic microstructure with interlayer gaps and a porosity of about 9.8%. Attributed to the dense uniform microstructure, the sample with DPGDA exhibited superior properties, including a relative density of 97.5 ± 0.5%, a Vickers hardness of 19.4 ± 0.8 GPa, a fracture toughness of 2.6 ± 0.27 MPa·m1/2, a bending strength of 690 ± 54 MPa, and a dynamic strength of 3.7 ± 0.6 GPa at a strain rate of 1200 s-1.

13.
Materials (Basel) ; 17(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893783

RESUMO

Graphene has attracted much interest in many scientific fields because of its high specific surface area, Young's modulus, fracture strength, carrier mobility and thermal conductivity. In particular, the graphene oxide (GO) prepared by chemical exfoliation of graphite has achieved low-cost and large-scale production and is one of the most promising for Cu matrix composites. Here, we prepared a high strength, high electrical conductivity and high thermal conductivity reduced graphene oxide (RGO)/Cu composite by directly heating the GO/copper formate. The oxygen-containing functional groups and defects of RGO are significantly reduced compared with those of GO. The tensile yield strength and thermal conductivity of RGO/Cu composite with RGO volume fraction of 0.49 vol.% are as high as 553 MPa and 364 W/(m·K) at room temperature, respectively. The theoretical value of the tensile yield strength of the composite is calculated according to the strengthening mechanism, and the result shows that it agrees with the experimental value. After hot-rolling treatment, the ductility and conductivity of the composite materials have been greatly improved, and the ductility of the RGO/Cu composite with RGO volume fraction of 0.49 vol.% has been increased to four times the original. This work provides a highly efficient way to fabricate a high-performance RGO-reinforced Cu composite for commercial application.

14.
Materials (Basel) ; 17(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38893817

RESUMO

Due to its lightweight, high strength, good machinability, and low cost, aluminum alloy has been widely used in fields such as aerospace, automotive, electronics, and construction. Traditional manufacturing processes for aluminum alloys often suffer from low material utilization, complex procedures, and long manufacturing cycles. Therefore, more and more scholars are turning their attention to the laser powder bed fusion (LPBF) process for aluminum alloys, which has the advantages of high material utilization, good formability for complex structures, and short manufacturing cycles. However, the widespread promotion and application of LPBF aluminum alloys still face challenges. The excellent printable ability, favorable mechanical performance, and low manufacturing cost are the main factors affecting the applicability of the LPBF process for aluminum alloys. This paper reviews the research status of traditional aluminum alloy processing and LPBF aluminum alloy and makes a comparison from various aspects such as microstructures, mechanical properties, application scenarios, and manufacturing costs. At present, the LPBF manufacturing cost for aluminum alloys is 2-120 times higher than that of traditional manufacturing methods, with the discrepancy depending on the complexity of the part. Therefore, it is necessary to promote the further development and application of aluminum alloy 3D printing technology from three aspects: the development of aluminum matrix composite materials reinforced with nanoceramic particles, the development of micro-alloyed aluminum alloy powders specially designed for LPBF, and the development of new technologies and equipment to reduce the manufacturing cost of LPBF aluminum alloy.

15.
Polymers (Basel) ; 16(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38891528

RESUMO

The construction of lunar bases represents a fundamental challenge for deep space exploration, lunar research, and the exploitation of lunar resources. In-situ resource utilization (ISRU) technology constitutes a pivotal tool for constructing lunar bases. Using lunar regolith to create geopolymers as construction materials offers multiple advantages as an ISRU technique. This paper discusses the principle of geopolymer for lunar regolith, focusing on the reaction principle of geopolymer. It also analyzes the applicability of geopolymer under the effects of the lunar surface environment and the differences between the highland and mare lunar regolith. This paper summarizes the characteristics of existing lunar regolith simulants and the research on the mechanical properties of lunar regolith geopolymers using lunar regolith simulants. Highland lunar regolith samples contain approximately 36% amorphous substances, the content of silicon is approximately 28%, and the ratios of Si/Al and Si/Ca are approximately 1.5 and 2.6, respectively. They are more suitable as precursor materials for geopolymers than mare samples. The compressive strength of lunar regolith geopolymer is mainly in the range of 18~30 MPa. Sodium silicate is the most commonly utilized activator for lunar regolith geopolymers; alkalinity in the range of 7% to 10% and modulus in the range of 0.8 to 2.0 are suitable. A vacuum environment and multiple temperature cycles reduce the mechanical properties of geopolymers by 8% to 70%. Future research should be concentrated on the precision control of the lunar regolith's chemical properties and the alkali activation efficacy of geopolymers in the lunar environment.

16.
Small Methods ; : e2400252, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845080

RESUMO

Small carbon materials, such as graphene, offer excellent mechanical strength. Micro/nano carbon materials are often dispersed into a metal matrix to form bulk composites with mechanical enhancement. Despite technical progress, such composites intrinsically suffer from a trade-off condition between strength and ductility because the load transfer path forms between mechanically strong yet chemically inert micro/nano carbon materials or between the carbon-metal interfaces. In other words, conventional carbon and metal composites become stronger with increasing carbon contents, but the weak interfaces also increase, leading to premature failure. In this regard, crucial advances are presented toward breaking the strength-ductility trade-off condition by utilizing Axially bi-Continuous Graphene-Nickel (ACGN) wires. This innovative ACGN achieves excellent combined strength and ductility-the highest among the current Ni-, Al-, and Cu-based carbon-enhanced metal matrix composites. For example, the ultimate strength and failure strain of 25-µm-diameter ACGN wires are improved by 71.76% and 58.24%, compared to their counterparts. The experimental and theoretical analyses indicate that the graphene-nickel interplay via their axially bi-continuous structure is the main underlying mechanism for the superb mechanical behavior. In specific, the continuous graphene, in addition to effective load-sharing, passivates the free surface of fine wire, forming dislocation pileups along the graphene-nickel interface and, therefore, hindering localized necking.

17.
Int J Biol Macromol ; 272(Pt 2): 132690, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825270

RESUMO

A rising quantity of drugs has been discharged into the aquatic environment, posing a substantial hazard to public health. In the current work, a novel hydrogel (i.Carr@Bent@PTC), comprised of iota-carrageenan, bentonite, and 4-phenyl-3-thiosemicarbazide, was successfully prepared. The introduction of 4-phenyl-3-thiosemicarbazide and bentonite in iota-carrageenan significantly increased the mechanical strength of iota-carrageenan hydrogel and improved its degree of swelling, which can be attributed to the hydrophilic properties of PTC and Bent. The recorded contact angle was 70.8°, 59.1°, 53.9°, and 34.6° for pristine i.Carr, i.Carr@Bent, and i.Carr@Bent@PTC, respectively. The low contact angle measurement of the Bent and PTC loaded-i.Carr hydrogel was attributed to the hydrophilic Bent and PTC. The ternary i.Carr@Bent@PTC hydrogel demonstrated broad pH adaptability and excellent adsorption capacities for sulfamethoxazole (SMX) and losartan potassium (LP), i.e., 467.61 mg. g-1 and 274.43 mg. g-1 at 298.15 K, respectively. The pseudo-first-order (PSO) model provided a better fit for the adsorption kinetics. The adsorption of SMX and LP can be better explained by employing the Sips and Langmuir isotherm models. As revealed by XPS and FTIR investigations, π-π stacking, complexation, electrostatic interaction, and hydrogen bonding were primarily involved in the adsorption mechanisms.


Assuntos
Bentonita , Carragenina , Hidrogéis , Losartan , Semicarbazidas , Sulfametoxazol , Poluentes Químicos da Água , Carragenina/química , Adsorção , Semicarbazidas/química , Losartan/química , Hidrogéis/química , Bentonita/química , Poluentes Químicos da Água/química , Sulfametoxazol/química , Concentração de Íons de Hidrogênio , Cinética , Purificação da Água/métodos , Interações Hidrofóbicas e Hidrofílicas
18.
Heliyon ; 10(10): e31661, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826723

RESUMO

The fast economic growth, urbanization, and industrialization of Ethiopia led to the requirement for the establishment of various infrastructures and many residential building constructions consuming different types of materials. Reinforced steel bar is one of the most consumed construction materials in Ethiopia. The demand for reinforced steel bars in Ethiopia is satisfied by the local production and international market. However, most people lack trust to the use local products without justified reasons. This investigation work was done to evaluate the performance of the locally produced rebar concerning the Compulsory Ethiopian Standard (CES) to develop trust in contractors and consultants of different projects. A Compulsory Ethiopian Standard (CES) is an Ethiopian standard that has been prepared under the direction of the Technical Committee for Concrete and Concrete Products and published by the Ethiopian Standards Agency (ESA). Experimental works were done on rebar of grades B400BWR and B500BWR with different diameters collected from four different factories. The collected samples were investigated based on their yield strength, ultimate tensile strength, elongation, hardness, chemical composition, and microstructure formation of the product. The yield strength, ultimate tensile strength, and elongation of the rebar were analyzed based on the tension test results obtained from the 2000 KN Universal Testing Machine (UTM), and the chemical composition analysis was done using the Spark Emission Spectrometer Analyzer. The micro-hardness test was done using the Vickers Hardness Tester with 3kgf and 15-s dwell time at a 0.5 mm gap along the cross-section of the rebar. Microstructure analysis is done using EDX scanning electron microscope (SEM) and optical microscopy with different magnifications and resolutions on the cross-section of the rebar. From the tested samples one sample failed from B400BWR to achieve the minimum required yield strength of 400 MPa stated by CES 101, 2017. Samples of B500BWR satisfy all the requirements stated by the standard even if there is an increment up to 41 % beyond the minimum requirement.

19.
Sci Rep ; 14(1): 13402, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862575

RESUMO

In practical engineering, the development of surface cracks is one of the most important reasons for the destruction of the rock mass, and the development of complex morphology fractures on the rock mass surface significantly influences rock mass mechanics. This paper addresses the freeze-thaw damage issue in rock mass containing surface fractures in cold regions. Tuffs and a control group are selected as research samples, with the control group being prefabricated surface jointed specimens with an inclination angle of 70° and a fracture depth ratio d (crack depth) /t (sample width) of 0.26. The study analyzes the mass, wave velocity loss, macro-microcosmic fracture damage morphology, and mechanical properties of the two specimen groups through laboratory freeze-thaw cycle tests, uniaxial compression tests, and scanning electron microscopy examinations. The results show an overall decrease in mass, wave velocity, and uniaxial compressive strength as the cycle number increases, with the prefabricated jointed group samples showing more significant changes. However, the two specimen groups exhibit different macroscopic failure fracture states. In addition, scanning electron microscopy images illustrate that after freeze-thaw cycles, the large rock mass particles break into smaller fragments, resulting in looser particle arrangements and a transition from initial surface cementation to point contact., which weakens the compressive strength of the rock mass. The paper also explains the mechanism of the diminishing impact of freeze-thaw cycles on the strength of the rock mass after a certain number of cycles. The research outcomes hold significant reference value for engineering construction in cold regions.

20.
Nanotechnology ; 35(35)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38838645

RESUMO

Subsurface detection capability of bimodal atomic force microscopy (AFM) was investigated using the buried microcavity as a reference sample, prepared by partially covering a piece of highly oriented pyrolytic graphite (HOPG) flake with different thickness on a piece of a cleaned CD-R disk substrate. This capability can be manifested as the image contrast between the locations with and without the buried microcavities. The theoretical and experimental results demonstrated that the image contrast is significantly affected by the critical parameters, including the second eigenmode amplitude and frequency as well as local structural and mechanical properties of the sample itself. Specifically, improper parameter settings generally lead to incorrect identification of the buried microcavity due to the contrast reduction, contrast reversal and even disappearance. For accurate detection, the second eigenmode amplitude should be as small as possible on the premise of satisfying the signal-to-noise ratio and second eigenmode frequency should be close to the resonance frequency of the cantilever. In addition, the detectable depth is closely related to microcavity dimension (thickness and width) of the HOPG flake and local stiffness of the sample. These results would be helpful for further understanding of the detection mechanism of bimodal AFM and facilitating its application in nano-characterization of subsurface structures, such as the micro-/nano- channels to direct the flow of liquids in lab-on-a-chip devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...