Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42.392
Filtrar
1.
J Environ Sci (China) ; 148: 336-349, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095169

RESUMO

Catalytic destruction is an ascendant technology for the abatement of volatile organic compounds (VOCs) originating from solvent-based industrial processes. The varied composition tends to influence each VOC's catalytic behavior in the reaction mixture. We investigated the catalytic destruction of multi-component VOCs including dichloromethane (DCM) and ethyl acetate (EA), as representatives from pharmaceutical waste gases, over co-supported HxPO4-RuOx/CeO2 catalyst. A mutual inhibitory effect relating to concentrations because of competitive adsorption was verified in the binary VOCs oxidation and EA posed a more negative effect on DCM oxidation owing to EA's superior adsorption capacity. Preferential adsorption of EA on acidic sites (HxPO4/CeO2) promoted DCM activation on basic sites (O2-) and the dominating EA oxidation blocked DCM's access to oxidation centers (RuOx/CeO2), resulting in boosted monochloromethane yield and increased chlorine deposition for DCM oxidation. The impaired redox ability of Ru species owing to chlorine deposition in turn jeopardized deep oxidation of EA and its by-products, leading to increased gaseous by-products such as acetic acid originating from EA pyrolysis. Notably, DCM at low concentration slightly promoted EA conversion at low temperatures with or without water, consistent with the enhanced EA adsorption in co-adsorption analyses. This was mainly due to that DCM impeded the shielding effect of hydrolysate deposition from rapid EA hydrolysis depending on the decreased acidity. Moreover, water benefited EA hydrolysis but decreased CO2 selectivity while the generated water derived from EA was likely to affect DCM transformation. This work may provide theoretical guidance for the promotion of applied catalysts toward industrial applications.


Assuntos
Acetatos , Cério , Cloreto de Metileno , Acetatos/química , Catálise , Cloreto de Metileno/química , Cério/química , Compostos Orgânicos Voláteis/química , Adsorção , Oxirredução , Rutênio/química
2.
J Environ Sci (China) ; 148: 451-467, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095179

RESUMO

After the ultralow emission transformation of coal-fired power plants, cement production became China's leading industrial emission source of nitrogen oxides. Flue gas dust contents at the outlet of cement kiln preheaters were as high as 80-100 g/m3, and the calcium oxide content in the dust exceeded 60%. Commercial V2O5(-WO3)/TiO2 catalysts suitable for coal-fired flue gas suffer from alkaline earth metal Ca poisoning of cement kiln flue gas. Recent studies have also identified the poisoning of cement kiln selective catalytic reaction (SCR) catalysts by the heavy metals lead and thallium. Investigation of the poisoning process is the primary basis for analyzing the catalytic lifetime. This review summarizes and analyzes the SCR catalytic mechanism and chronicles the research progress concerning this poisoning mechanism. Based on the catalytic and toxification mechanisms, it can be inferred that improving the anti-poisoning performance of a catalyst enhances its acidity, surface redox performance-active catalytic sites, and shell layer protection. The data provide support in guiding engineering practice and reducing operating costs of SCR plants. Finally, future research directions for SCR denitrification catalysts in the cement industry are discussed. This study provides critical support for the development and optimization of poisoning-resistant SCR denitrification catalysts.


Assuntos
Materiais de Construção , Catálise , Poluentes Atmosféricos/química , Centrais Elétricas , China
3.
J Environ Sci (China) ; 148: 489-501, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095183

RESUMO

The chemistry of sulfur cycle contributes significantly to the atmospheric nucleation process, which is the first step of new particle formation (NPF). In the present study, cycloaddition reaction mechanism of sulfur trioxide (SO3) to hydrogen sulfide (H2S) which is a typical air pollutant and toxic gas detrimental to the environment were comprehensively investigate through theoretical calculations and Atmospheric Cluster Dynamic Code simulations. Gas-phase stability and nucleation potential of the product thiosulfuric acid (H2S2O3, TSA) were further analyzed to evaluate its atmospheric impact. Without any catalysts, the H2S + SO3 reaction is infeasible with a barrier of 24.2 kcal/mol. Atmospheric nucleation precursors formic acid (FA), sulfuric acid (SA), and water (H2O) could effectively lower the reaction barriers as catalysts, even to a barrierless reaction with the efficiency of cis-SA > trans-FA > trans-SA > H2O. Subsequently, the gas-phase stability of TSA was investigated. A hydrolysis reaction barrier of up to 61.4 kcal/mol alone with an endothermic isomerization reaction barrier of 5.1 kcal/mol under the catalytic effect of SA demonstrates the sufficient stability of TSA. Furthermore, topological and kinetic analysis were conducted to determine the nucleation potential of TSA. Atmospheric clusters formed by TSA and atmospheric nucleation precursors (SA, ammonia NH3, and dimethylamine DMA) were thermodynamically stable. Moreover, the gradually decreasing evaporation coefficients for TSA-base clusters, particularly for TSA-DMA, suggests that TSA may participate in NPF where the concentration of base molecules are relatively higher. The present new reaction mechanism may contributes to a better understanding of atmospheric sulfur cycle and NPF.


Assuntos
Poluentes Atmosféricos , Sulfeto de Hidrogênio , Modelos Químicos , Sulfeto de Hidrogênio/química , Poluentes Atmosféricos/química , Reação de Cicloadição , Atmosfera/química , Óxidos de Enxofre/química , Cinética , Enxofre/química
4.
J Environ Sci (China) ; 149: 149-163, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181630

RESUMO

Developing heterojunction photocatalyst with well-matched interfaces and multiple charge transfer paths is vital to boost carrier separation efficiency for photocatalytic antibiotics removal, but still remains a great challenge. In present work, a new strategy of chloride anion intercalation in Bi2O3 via one-pot hydrothermal process is proposed. The as-prepared Ta-BiOCl/Bi24O31Cl10 (TBB) heterojunctions are featured with Ta-Bi24O31Cl10 and Ta-BiOCl lined shoulder-by-shouleder via semi-coherent interfaces. In this TBB heterojunctions, the well-matched semi-coherent interfaces and shoulder-by-shoulder structures provide fast electron transfer and multiple transfer paths, respectively, leading to enhanced visible light response and improved photogenerated charge separation. Meanwhile, a type-II heterojunction for photocharge separation has been obtained, in which photogenerated electrons are drove from the CB (conduction band) of Ta-Bi24O31Cl10 to the both of bilateral empty CB of Ta-BiOCl and gathered on the CB of Ta-BiOCl, while the photogenerated holes are left on the VB (valence band) of Ta-Bi24O31Cl10, effectively hindering the recombination of photogenerated electron-hole pairs. Furthermore, the separated electrons can effectively activate dissolved oxygen for the generation of reactive oxygen species (·O2-). Such TBB heterojunctions exhibit remarkably superior photocatalytic degradation activity for tetracycline hydrochloride (TCH) solution to Bi2O3, Ta-BiOCl and Ta-Bi24O31Cl10. This work not only proposes a Ta-BiOCl/Bi24O31Cl10 shoulder-by-shoulder micro-ribbon architectures with semi-coherent interfaces and successive type-II heterojunction for highly efficient photocatalytic activity, but offers a new insight into the design of highly efficient heterojunction through phase-structure synergistic transformation strategy.


Assuntos
Antibacterianos , Bismuto , Poluentes Químicos da Água , Bismuto/química , Antibacterianos/química , Poluentes Químicos da Água/química , Catálise , Processos Fotoquímicos
5.
J Environ Sci (China) ; 149: 21-34, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181636

RESUMO

During the water treatment process, chlorination and ultraviolet (UV) sterilization can modify microplastics (MPs) and alter their physicochemical properties, causing various changes between MPs and other pollutants. In this study, the impact of chlorination and UV modification on the physicochemical properties of polystyrene (PS) and polyvinyl chloride (PVC) were investigated, and the adsorption behavior of pefloxacin (PEF) before and after modification was examined. The effect of pH, ionic strength, dissolved organic matter, heavy metal ions and other water environmental conditions on adsorption behavior was revealed. The results showed that PS had a higher adsorption capacity of PEF than PVC, and the modification increased the presence of O-containing functional groups in the MPs, thereby enhancing the adsorption capacity of both materials. Chlorination had a more significant impact on the physicochemical properties of MPs compared to UV irradiation within the same time period, leading to better adsorption performance of chlorination. The optimal pH for adsorption was found to be 6, and NaCl, sodium alginate and Cu2+ would inhibit adsorption to varying degrees, among which the inhibition caused by pH was the strongest. Chlorination and UV modification would weaken the inhibitory effect of environmental factors on the adsorption of PEF by MPs. The main mechanisms of adsorption involved electrostatic interaction and hydrogen bonding. The study clarified the effects of modification on the physicochemical properties of MPs, providing reference for subsequent biotoxicity analysis and environmental protection studies.


Assuntos
Halogenação , Pefloxacina , Poliestirenos , Cloreto de Polivinila , Raios Ultravioleta , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cloreto de Polivinila/química , Poluentes Químicos da Água/química , Poliestirenos/química , Purificação da Água/métodos , Pefloxacina/química , Concentração de Íons de Hidrogênio
6.
J Environ Sci (China) ; 149: 476-487, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181660

RESUMO

Herein, three supported catalysts, CuO/Al2O3, CeO2/Al2O3, and CuO-CeO2/Al2O3, were synthesized by the convenient impregnation method to reveal the effect of CeO2 addition on catalytic performance and reaction mechanism for toluene oxidation. Compared with CuO/Al2O3, the T50 and T90 (the temperatures at 50% and 90% toluene conversion, respectively) of CuO-CeO2/Al2O3 were reduced by 33 and 39 °C, respectively. N2 adsorption-desorption experiment, XRD, SEM, EDS mapping, Raman, EPR, H2-TPR, O2-TPD, XPS, NH3-TPD, Toluene-TPD, and in-situ DRIFTS were conducted to characterize these catalysts. The excellent catalytic performance of CuO-CeO2/Al2O3 could be attributed to its strong copper-cerium interaction and high oxygen vacancies concentration. Moreover, in-situ DRIFTS proved that CuO-CeO2/Al2O3 promoted the conversion of toluene to benzoate and accelerated the deep degradation path of toluene. This work provided valuable insights into the development of efficient and economical catalysts for volatile organic compounds.


Assuntos
Cério , Cobre , Oxirredução , Tolueno , Tolueno/química , Catálise , Cobre/química , Cério/química , Modelos Químicos , Poluentes Atmosféricos/química
7.
J Environ Sci (China) ; 149: 242-253, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181639

RESUMO

Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.


Assuntos
Proteínas Fúngicas , Lipase , Poliésteres , Lipase/metabolismo , Lipase/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Poliésteres/química , Poliésteres/metabolismo , Biodegradação Ambiental , Simulação de Dinâmica Molecular , Hidrólise , Modelos Químicos
8.
Biomaterials ; 312: 122712, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39098305

RESUMO

Immunosuppressive tumor microenvironment (ITM) severely limited the efficacy of immunotherapy against triple-negative breast cancer (TNBC). Herein, Apt-LPR, a light-activatable photodynamic therapy (PDT)/RNAi immune synergy-enhancer was constructed by co-loading miR-34a and photosensitizers in cationic liposomes (in phase III clinical trial). Interestingly, the introduction of tumor-specific aptamers creates a special "Liposome-Aptamer-Target" interface, where the aptamers are initially in a "lying down" state but transform to "standing up" after target binding. The interfacing mechanism was elaborately revealed by computational and practical experiments. This unique interface endowed Apt-LPR with neutralized surface potential of cationic liposomes to reduce non-specific cytotoxicity, enhanced DNase resistance to protect aptamers, and preserved target-binding ability for selective drug delivery. Upon near-infrared irradiation, the generated reactive oxygen species would oxidize unsaturated phospholipids to destabilize both liposomes and lysosomes, realizing stepwise lysosomal escape of miR-34a for tumor cell apoptosis and downregulation of PD-L1 to suppress immune escape. Together, tumor-associated antigens released from PDT-damaged mitochondria and endoplasmic reticulum could activate the suppressive immune cells to establish an "immune hot" milieu. The collaborative immune-enhancing strategy effectively aroused systemic antitumor immunity and inhibited primary and distal tumor progression as well as lung metastasis in 4T1 xenografted mouse models. The photo-controlled drug release and specific tumor-targeting capabilities of Apt-LPR were also visualized in MDA-MB-231 xenografted zebrafish models. Therefore, this photoswitchable PDT/RNAi immune stimulator offered a powerful approach to reprogramming ITM and reinforcing cancer immunotherapy efficacy.


Assuntos
Lipossomos , MicroRNAs , Fotoquimioterapia , Fármacos Fotossensibilizantes , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Animais , Humanos , Lipossomos/química , MicroRNAs/genética , MicroRNAs/metabolismo , Fotoquimioterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Feminino , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Camundongos , Aptâmeros de Nucleotídeos/química , Preparações de Ação Retardada/química , Interferência de RNA , Peixe-Zebra
9.
Heliyon ; 10(16): e35560, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39224243

RESUMO

As a common cardiovascular disease (CVD), Arrhythmia refers to any abnormality in the origin, frequency, rhythm, conduction velocity, timing, pathway, sequence, or other aspect of cardiac impulses, and it is one of the common cardiovascular diseases in clinical practice. At present, various ion channel blockers are used for treatment of arrhythmia that include Na+ ion channel blockers, K+ ion channel blockers and Ca2+ ion channel blockers. While these drugs offer benefits, they have led to a gradual increase in drug-related adverse reactions across various systems. As a result, the quest for safe and effective antiarrhythmic drugs is pressing. Recent years have seen some advancements in the treatment of ventricular arrhythmias using traditional Chinese medicine(TCM). The theory of Luobing in TCM has proposed a new drug intervention strategy of "fast and slow treatment, integrated regulation" leading to a shift in mindset from "antiarrhythmic" to "rhythm-regulating". Guided by this theory, the development of Shen Song Yang Xin Capsules (SSYX) has involved various Chinese medicinal ingredients that comprehensively regulate the myocardial electrophysiological mechanism, exerting antiarrhythmic effects on multiple ion channels and non-ion channels. Similarly, in clinical studies, evidence-based research has confirmed that SSYX combined with conventional antiarrhythmic drugs can more effectively reduce the occurrence of arrhythmias. Therefore, this article provides a comprehensive review of the composition and mechanisms of action, pharmacological components, network pharmacology analysis, and clinical applications of SSYX guided by the theory of Luobing, aiming to offer valuable insights for improved clinical management of arrhythmias and related research.

10.
Heliyon ; 10(16): e35964, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39224303

RESUMO

Micro-expression is extensively studied due to their ability to fully reflect individuals' genuine emotions. However, accurate micro-expression recognition is a challenging task due to the subtle motion of facial muscle. Therefore, this paper introduces a Graph Attention Mechanism-based Motion Magnification Guided Micro-Expression Recognition Network (GAM-MM-MER) to amplify delicate muscle motions and focus on key facial landmarks. First, we propose a Swin Transformer-based network for micro-expression motion magnification (ST-MEMM) to enhance the subtle motions in micro-expression videos, thereby unveiling imperceptible facial muscle movements. Then, we propose a graph attention mechanism-based network for micro-expression recognition (GAM-MER), which optimizes facial key area maps and prioritizes adjacent nodes crucial for mitigating the influence of noisy neighbors, while attending to key feature information. Finally, experimental evaluations conducted on the CASME II and SAMM datasets demonstrate the high accuracy and effectiveness of the proposed network compared to state-of-the-art approaches. The results of our network exhibit significant superiority over existing methods. Furthermore, ablation studies provide compelling evidence of the robustness of our proposed network, substantiating its efficacy in micro-expression recognition.

11.
Heliyon ; 10(16): e35654, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39224358

RESUMO

Gastric cancer (GC) is a malignant cancer with the highest global rates of morbidity and death. Dietary factors have a close relationship with the occurrence of GC. Circular RNAs (circRNAs) and N6-methyladenine (m6A) are important factors in the onset and progression of GC and other malignancies. However, little is known about the role of circRNA m6A modifications in the occurrence and development of GC. Initially, a transformed malignant cell model generated by the chemical carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was established in this investigation. Furthermore, following exposure to MNNG, circ0049271 is substantially expressed in gastric epithelial cells (GES-1). Subsequent research revealed that the knockdown of circ0049271 prevented the epithelial-mesenchymal transition (EMT) as well as the migration, invasion, and proliferation of gastric epithelial cells induced by long-term exposure to MNNG. The opposite effects were observed when circ0049271 was overexpressed. Mechanistically, circ0049271 activates the TGFß/SMAD signaling pathway and has m6A modifications mediated by WTAP. Our findings indicate that circ0049271 promotes the occurrence of GC by regulating the TGFß/SMAD pathway, and WTAP may mediate the methylation of circ0049271 m6A. This study provides new insights into the regulation of circRNA-mediated m6A modifications and the discovery of early GC induced by dietary factors such as nitrite.

12.
Heliyon ; 10(16): e36119, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39224363

RESUMO

Currently, surgery remains the primary treatment for craniocerebral tumors. Before doctors perform surgeries, they need to determine the surgical plan according to the shape, location, and size of the tumor; however, various conditions of different patients make the tumor segmentation task challenging. To improve the accuracy of determining tumor shape and realizing edge segmentation, a U-shaped network combining a residual pyramid module and a dual feature attention module is proposed. The residual pyramid module can enlarge the receptive field, extract multiscale features, and fuse original information, which solves the problem caused by the feature pyramid pooling where the local information is not related to the remote information. In addition, the dual feature attention module is proposed to replace the skip connection in the original U-Net network, enrich the features, and improve the attention of the model to space and channel features with large amounts of information to be used for more accurate brain tumor segmentation. To evaluate the performance of the proposed model, experiments were conducted on the public datasets Kaggle_3M and BraTS2021. Because the model proposed in this study is applicable to two-dimensional image segmentation, it is necessary to obtain the crosscutting images of fair class in the BraTS2021 dataset in advance. Results show that the model accuracy, Jaccard similarity coefficient, Dice similarity coefficient, and false negative rate (FNR) on the Kaggle_3M dataset are 0.9395, 0.8812, 0.8958, and 0.007, respectively. The model accuracy, Jaccard similarity coefficient, Dice similarity coefficient, and FNR on the BraTS2021 dataset were 0.9375, 0.9072, 0.8981, and 0.0087, respectively. Compared with existing algorithms, all the indicators of the proposed algorithm have been improved, but the proposed model still has certain limitations and has not been applied to actual clinical trials. For specific datasets, the generalization ability of the model needs to be further improved. In the future work, the model will be further improved to address the aforementioned limitations.

13.
Glob Med Genet ; 11(4): 278-284, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39224463

RESUMO

Mesenchymal stem cells (MSCs), as a stem cell type with multiple differentiation potentials and immune regulatory abilities, have shown broad prospects in the treatment of ischemic stroke in recent years. The main characteristics of MSCs include their self-renewal ability, differentiation potential for different types of cells, and the ability to secrete various bioactive factors such as cytokines, chemokines, and growth factors, which play a key role in tissue repair and regeneration. In the treatment of ischemic stroke, MSCs exert therapeutic effects through various mechanisms, including promoting vascular regeneration of damaged brain tissue, reducing inflammatory responses, and protecting neurons from damage caused by apoptosis. Research have shown that MSCs can promote the repair of ischemic areas by releasing neurotrophic factors and angiogenic factors, while inhibiting immune responses triggered by ischemia, thereby improving neurological function. With the in-depth study of its biological mechanism, MSCs have gradually shown good safety and effectiveness in clinical applications. Therefore, fully exploring and utilizing the potential of MSCs in the treatment of ischemic stroke may provide new ideas and solutions for future neural repair and regenerative medicine.

14.
Proc Natl Acad Sci U S A ; 121(37): e2405236121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226362

RESUMO

Electrochemical ammonia (NH3) synthesis from nitrate reduction (NITRR) offers an appealing solution for addressing environmental concerns and the energy crisis. However, most of the developed electrocatalysts reduce NO3- to NH3 via a hydrogen (H*)-mediated reduction mechanism, which suffers from undesired H*-H* dimerization to H2, resulting in unsatisfactory NH3 yields. Herein, we demonstrate that reversed I1Cu4 single-atom sites, prepared by anchoring iodine single atoms on the Cu surface, realized superior NITRR with a superior ammonia yield rate of 4.36 mg h-1 cm-2 and a Faradaic efficiency of 98.5% under neutral conditions via a proton-coupled electron transfer (PCET) mechanism, far beyond those of traditional Cu sites (NH3 yield rate of 0.082 mg h-1 cm-2 and Faradaic efficiency of 36.5%) and most of H*-mediated NITRR electrocatalysts. Theoretical calculations revealed that I single atoms can regulate the local electronic structures of adjacent Cu sites in favor of stronger O-end-bidentate NO3- adsorption with dual electron transfer channels and suppress the H* formation from the H2O dissociation, thus switching the NITRR mechanism from H*-mediated reduction to PCET. By integrating the monolithic I1Cu4 single-atom electrode into a flow-through device for continuous NITRR and in situ ammonia recovery, an industrial-level current density of 1 A cm-2 was achieved along with a NH3 yield rate of 69.4 mg h-1 cm-2. This study offers reversed single-atom sites for electrochemical ammonia synthesis with nitrate wastewater and sheds light on the importance of switching catalytic mechanisms in improving the performance of electrochemical reactions.

15.
J Colloid Interface Sci ; 678(Pt A): 987-1000, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39226839

RESUMO

Photocatalytic wastewater purification is essential for environmental remediation, but rapid carrier recombination and limited oxidative capacity hinder progress. This study proposes an innovative strategy by integrating homogeneous and heterogeneous electron acceptors into a g-C3N4-based photocatalytic system, significantly enhancing the multipath utilization of photogenerated electrons. A novel Fe3O4@P-C3N4 was developed to activate an advanced peroxymonosulfate-assisted photocatalysis (PAP) system, achieving complete degradation and significant mineralization of tetracycline (TC) in real water environments, outperforming others reported in the last five years. Phytic acid, as a key precursor, modifies the hollow tubular morphology and introduces phosphorus (P) heteroatoms as electronic trapping centers, enhancing the visible light response and carrier separation, thereby promoting the Fe2+/Fe3+ cycle and the formation of reactive species. Density functional theory (DFT) calculations pinpointed TC's vulnerable sites and synergically identified reactive species, revealing almost non-toxic degradation processes. Moreover, the recyclable magnetic Fe3O4@P-C3N4/PAP system demonstrates practical application potential and leaching stability in cyclic and continuous testing. This study offers unique insights into the strategic design of photocatalysts and catalytic environments, potentially advancing practical wastewater remediation.

16.
Colloids Surf B Biointerfaces ; 244: 114192, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39226847

RESUMO

Medin amyloid, prevalent in the vessel walls of 97 % of individuals over 50, contributes to arterial stiffening and cerebrovascular dysfunction, yet our understanding of its aggregation mechanism remains limited. Dividing the full-length 50-amino-acid medin peptide into five 10-residue segments, we conducted individual investigations on each segment's self-assembly dynamics via microsecond-timescale atomistic discrete molecular dynamics (DMD) simulations. Our findings showed that medin1-10 and medin11-20 segments predominantly existed as isolated unstructured monomers, unable to form stable oligomers. Medin31-40 exhibited moderate aggregation, forming dynamic ß-sheet oligomers with frequent association and dissociation. Conversely, medin21-30 and medin41-50 segments demonstrated significant self-assembly capability, readily forming stable ß-sheet-rich oligomers. Residue pairwise contact frequency analysis highlighted the critical roles of residues 22-26 and 43-49 in driving the self-assembly of medin21-30 and medin41-50, acting as the ß-sheet core and facilitating ß-strand formation in other regions within medin monomers, expecting to extend to oligomers and fibrils. Regions containing residues 22-26 and 43-49, with substantial self-assembly abilities and assistance in ß-sheet formation, represent crucial targets for amyloid inhibitor drug design against aortic medial amyloidosis (AMA). In summary, our study not only offers deep insights into the mechanism of medin amyloid formation but also provides crucial theoretical and practical guidance for future treatments of AMA.

18.
Enzymes ; 55: 121-142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39222989

RESUMO

Recent research has identified a novel class of carbonic anhydrases (CAs), designated ι-CA, predominantly found in marine diatoms, eukaryotic algae, cyanobacteria, bacteria, and archaea genomes. This class has garnered attention owing to its unique biochemical properties and evolutionary significance. Through bioinformatic analyses, LCIP63, a protein initially annotated with an unknown function, was identified as a potential ι-CA in the marine diatom Thalassiosira pseudonana. Subsequent biochemical characterization revealed that LCIP63 has CA activity and its preference for manganese ions over zinc, indicative of evolutionary adaptation to marine environments. Further exploration of bacterial ι-CAs, exemplified by Burkholderia territorii ι-CA (BteCAι), demonstrated catalytic efficiency and sensitivity to sulfonamide and inorganic anion inhibitors, the classical CA inhibitors (CAIs). The classification of ι-CAs into two variant types based on their sequences, distinguished by the COG4875 and COG4337 domains, marks a significant advancement in our understanding of these enzymes. Structural analyses of COG4337 ι-CAs from eukaryotic microalgae and cyanobacteria thereafter revealed a distinctive structural arrangement and a novel catalytic mechanism involving specific residues facilitating CO2 hydration in the absence of metal ion cofactors, deviating from canonical CA behavior. These findings underscore the biochemical diversity within the ι-CA class and highlight its potential as a target for novel antimicrobial agents. Overall, the elucidation of ι-CA properties and mechanisms advances our knowledge of carbon metabolism in diverse organisms and underscores the complexity of CA evolution and function.


Assuntos
Anidrases Carbônicas , Anidrases Carbônicas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bactérias/efeitos dos fármacos , Burkholderia , Diatomáceas , Cianobactérias , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química
19.
Enzymes ; 55: 65-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39222999

RESUMO

ß-Carbonic anhydrases (ß-CA; EC 4.2.1.1) are widespread zinc metalloenzymes which catalyze the interconversion of carbon dioxide and bicarbonate. They have been isolated in many pathogenic and non-pathogenic bacteria where they are involved in multiple roles, often related to their growth and survival. ß-CAs are structurally distant from the CAs of other classes. In the active site, located at the interface of a fundamental dimer, the zinc ion is coordinated to two cysteines and one histidine. ß-CAs have been divided in two subgroups depending on the nature of the fourth ligand on the zinc ion: class I have a zinc open configuration with a hydroxide ion completing the metal coordination, which is the catalytically active species in the mechanism proposed for the ß-CAs similar to the well-known of α-CAs, while in class II an Asp residue substitute the hydroxide. This latter active site configuration has been showed to be typical of an inactive form at pH below 8. An Asp-Arg dyad is thought to play a key role in the pH-induced catalytic switch regulating the opening and closing of the active site in class II ß-CAs, by displacing the zinc-bound solvent molecule. An allosteric site well-suited for bicarbonate stabilizes the inactive form. This bicarbonate binding site is composed by a triad of well conserved residues, strictly connected to the coordination state of the zinc ion. Moreover, the escort site is a promiscuous site for a variety of ligands, including bicarbonate, at the dimer interface, which may be the route for bicarbonate to the allosteric site.


Assuntos
Anidrases Carbônicas , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/química , Domínio Catalítico , Bactérias/enzimologia , Zinco/química , Zinco/metabolismo , Bicarbonatos/metabolismo , Bicarbonatos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares
20.
J Food Sci ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223764

RESUMO

In this study, garlic extract (GE) was assessed as a potential additive in chitosan/starch (Ch/De) coatings, focusing on phenolic and flavonoid content analyses and antibacterial properties. Using response surface methodology approach, an optimization method was employed to achieve the optimal antibacterial formulation, with Ch, De, and GE identified as key variables in the Design of Experiment. Fourier transform infrared spectroscopy and X-ray diffraction analyses elucidated interactions among these primary components within the films, while thermogravimetric analysis confirmed the enhanced thermal stability of GE-coated film formulations (Ch/De/GE). The Ch/De/GE exhibited antibacterial efficacy against Escherichia coli (ATCC 25922) with an inhibition zone of 7.2 mm at optimized concentrations of 2% w/v Ch, 1.5% w/v starch, and 0.5% v/v GE. In silico molecular docking studies provided insights into GE's inhibitory role as an antibacterial agent. Evaluation of green and yellow bell peppers (Capsicum annuum) over 18 days showed that coated peppers maintained better visual appearance and mass stability, with a weight loss decrease of 40.54%-48.96%, compared to uncoated ones. Additionally, the Ch/De/GE coating effectively inhibited bacterial growth, reducing it by 1-1.23 log CFU, during the storage period. In conclusion, the Ch/De/GE coating effectively extends the shelf-life of bell peppers and maintains their quality, demonstrating its potential for use in food packaging to preserve perishable items. PRACTICAL APPLICATION: The optimized chitosan/starch/garlic extract (Ch/De/GE) film developed in this study shows promising potential for application in the food packaging industry, particularly in extending the shelf life of perishable items like bell peppers. Its enhanced antibacterial properties, along with its ability to maintain visual appearance and reduce weight loss, make it an effective natural preservative that could replace synthetic additives in food packaging. By incorporating this biodegradable film into packaging solutions, producers can offer safer, more sustainable products that meet consumer demand for natural and environmentally friendly options.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA