Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 522
Filtrar
1.
Pest Manag Sci ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961685

RESUMO

BACKGROUND: Plant pathogens cause substantial crop losses annually, posing a grave threat to global food security. Fungicides have usually been used for their control, but the rapid development of pesticide resistance renders many ineffective, therefore the search for novel and efficient green pesticides to prevent and control plant diseases has become the top priority in crop planting. RESULTS: The results of bioassay studies indicated that most of the target compounds showed certain antimicrobial activity in vitro. In particular, compound X7 showed high inhibitory activity against Xanthomonas oryzae pv. oryzae (Xoo), with an EC50 value of 27.47 µg mL-1, surpassing conventional control agents such as thiazole zinc (41.55 µg mL-1) and thiodiazole copper (53.39 µg mL-1). Further studies on molecular docking showed that X7 had a strong binding affinity with 2FBW. The morphological change observed by scanning electron microscopy indicated that the surface of Xoo appears wrinkled and cracked under X7 treatment and a total of 2662 proteins were identified by label-free proteomic analysis. Three experiments have elucidated the mechanism whereby X7 induced considerable changes in the physiological and biochemical properties of Xoo, which in turn affected the reproduction and growth of bacteria. CONCLUSION: This work represents a pivotal advancement, offering important reference for the research and development therapeutics in combating plant pathogens. © 2024 Society of Chemical Industry.

2.
J Agric Food Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957133

RESUMO

Rice bacterial leaf blight and rice bacterial leaf streak have induced tremendous damage to production of rice worldwide. To discover an effective novel antibacterial agent, a series of novel trans-resveratrol (RSV) derivatives containing 1,3,4-oxadiazole and amide moieties were designed and synthesized for the first time. Most of them showed excellent antibacterial activities against Xanthomonas oryzae pv oryzicola and Xanthomonas oryzae pv oryzae. Especially, compound J12 had the best inhibitory with the half-maximal effective concentration values of 4.2 and 5.0 mg/L, respectively, which were better than that of RSV (63.7 and 75.4 mg/L), bismerthiazol (79.5 and 89.6 mg/L), and thiodiazole copper (105.4 and 112.8 mg/L). Furthermore, compound J12 had an excellent control effect against rice bacterial leaf streak and rice bacterial leaf blight, with protective activities of 46.2 and 42.1% and curative activities of 44.5 and 41.7%, respectively. Preliminary mechanisms indicated that compound J12 could not only remarkably decrease biofilm formation, extracellular polysaccharide production, and the synthesis of extracellular enzymes but also destroy bacterial cell surface morphology, thereby reducing the pathogenicity of bacteria. In addition, compound J12 could increase the activity of defense-related enzymes and affect the expression of multiple pathogenic-related genes including plant-pathogen interaction, the MAPK signaling pathway, and phenylpropanoid biosynthesis, and this could improve the defense of rice against rice bacterial leaf streak infection. The present work indicates that the RSV derivatives can be used as promising candidates for the development of antibacterial agents.

3.
Arch Pharm (Weinheim) ; : e2400438, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982307

RESUMO

Globally, breast cancer (BC) has the highest prevalence among malignant diseases. BC is also the primary cause of death among women. Notably, BC morbidity has been increasing continuously at an approximate growth rate of 2.2% per year. Persistent BC is a major public health issue worldwide. Consequently, novel chemotherapeutic agents to combat this lethal disease should be developed urgently. Coumarins with interesting structural and mechanistic variations exhibit promising activity in several forms of BC, including BCs with multidrug resistance. In particular, coumarin hybrids composed of coumarin and one or more anti-BC pharmacophores can target different biological components in BC cells simultaneously. Thus, coumarin hybrids are useful scaffolds that can help improve the anti-BC efficacy of coumarins, reduce side effects, improve pharmacokinetics, minimize drug-drug interactions, and circumvent drug resistance. This review, in which articles published from 2020 to the present day have been evaluated, highlights the landscape of coumarin hybrids that exhibit therapeutic effects against breast cancer. These findings can aid further investigations on novel antibreast-cancer therapeutics.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38984571

RESUMO

Inflammation is a complex biological response that plays a pivotal role in various pathological conditions, including inflammatory diseases. The search for effective therapeutic agents has led researchers to explore natural products due to their diverse chemical composition and potential therapeutic benefits. This review comprehensively examines the current state of research on natural products as potential therapeutic agents for inflammatory diseases. The article discusses the antiinflammatory properties of various natural compounds, their mechanisms of action, and their potential applications in managing inflammatory disorders. Additionally, formulation and delivery systems, challenges and future prospects in this field are also highlighted.

5.
Curr Drug Deliv ; 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38867527

RESUMO

Exosomes have emerged as critical mediators of intercellular communication and various physiological processes between cells and their environment. These nano-sized vesicles have been extensively investigated and confirmed to exhibit multifunctionality in animal systems. In particular, they participate in intercellular signaling, influence disease progression, and exhibit biological activity. However, Plant-Derived Exosomes (PDEs), especially therapeutic PDEs, have received relatively limited attention in the past few decades. Recent studies have demonstrated that PDEs are involved in signaling molecule transport in addition to intercellular communication, as they serve as functional molecules in the cellular microenvironment. This characteristic highlights the immense potential of PDEs for a wide array of applications, including antioxidation, anti-inflammation, tumour cell elimination, immune modulation, and tissue regeneration. In addition, PDEs hold substantial promise as efficient drug carriers, enhancing the stability and bioavailability of therapeutic agents and consequently enabling targeted delivery to specific cells or tissues. Therefore, PDEs may serve as effective tools for drug delivery and the treatment of various diseases. This comprehensive review provides an overview of recent studies on therapeutic PDEs, focusing on their extraction, isolation, characterization methods, biological activities, and application prospects. It summarises the research progress of exosome-like nanovesicles derived from medicinal plants, with a specific emphasis on traditional Chinese medicine, and highlights their importance in disease treatment and nanoparticle delivery. The main objective is to accelerate the clinical translation of these nanovesicles while providing novel approaches and methodologies for the research and development of innovative drugs.

6.
Front Immunol ; 15: 1277074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915405

RESUMO

Garlic (Allium sativum L.) is a widely abundant spice, known for its aroma and pungent flavor. It contains several bioactive compounds and offers a wide range of health benefits to humans, including those pertaining to nutrition, physiology, and medicine. Therefore, garlic is considered as one of the most effective disease-preventive diets. Many in vitro and in vivo studies have reported the sulfur-containing compounds, allicin and ajoene, for their effective anticancer, anti-diabetic, anti-inflammatory, antioxidant, antimicrobial, immune-boosting, and cardioprotective properties. As a rich natural source of bioactive compounds, including polysaccharides, saponins, tannins, linalool, geraniol, phellandrene, ß-phellandrene, ajoene, alliin, S-allyl-mercapto cysteine, and ß-phellandrene, garlic has many therapeutic applications and may play a role in drug development against various human diseases. In the current review, garlic and its major bioactive components along with their biological function and mechanisms of action for their role in disease prevention and therapy are discussed.


Assuntos
Alho , Alho/química , Humanos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia , Ácidos Sulfínicos/uso terapêutico , Ácidos Sulfínicos/farmacologia , Dissulfetos
7.
Nutrients ; 16(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892575

RESUMO

Liver cancer ranks third globally among causes of cancer-related deaths, posing a significant public health challenge. However, current treatments are inadequate, prompting a growing demand for novel, safe, and effective therapies. Natural products (NPs) have emerged as promising candidates in drug development due to their diverse biological activities, low toxicity, and minimal side effects. This paper begins by reviewing existing treatment methods and drugs for liver cancer. It then summarizes the therapeutic effects of NPs sourced from various origins on liver cancer. Finally, we analyze the potential mechanisms of NPs in treating liver cancer, including inhibition of angiogenesis, migration, and invasion; regulation of the cell cycle; induction of apoptosis, autophagy, pyroptosis, and ferroptosis; influence on tumor metabolism; immune regulation; regulation of intestinal function; and regulation of key signaling pathways. This systematic review aims to provide a comprehensive overview of NPs research in liver cancer treatment, offering a foundation for further development and application in pharmaceuticals and functional foods.


Assuntos
Produtos Biológicos , Neoplasias Hepáticas , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Autofagia/efeitos dos fármacos
8.
Pest Manag Sci ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899477

RESUMO

BACKGROUND: To discover more efficient agricultural antimicrobial agents, a series of new quinazoline derivatives containing both a piperazine linker and the N-acetyl moiety were prepared and assessed for their antibacterial and antifungal activities. RESULTS: All the target compounds were characterized by 1H and 13C NMR as well as high-resolution mass spectrometry (HRMS), and the chemical structure of the most potent compound E19 incorporating a 4-trifluoromethoxy substituent was clearly confirmed via single crystal X-ray diffraction measurements. The bioassay results indicated that some compounds possessed notable inhibitory effects in vitro against the bacterium Xanthomonas oryzae pv. oryzicola (Xoc). For example, compound E19 had an EC50 (effective concentration for 50% activity) value of 7.1 µg/mL towards this pathogen, approximately 15- and 10-fold more effective than the commercial bactericides thiodiazole copper and bismerthiazol (EC50 = 110.2 and 72.4 µg/mL, respectively). Subsequently, the mechanistic studies showed that compound E19 likely exerted its antibacterial efficacies by altering the cell morphology, increasing the permeability of bacterial cytoplasmic membrane, suppressing the production of bacterial extracellular polysaccharides and the extracellular enzyme activities (amylase and cellulase), and blocking the swimming motility of Xoc. Moreover, the proteomic analysis revealed that compound E19 could reduce the bacterial flagellar biosynthesis and decrease the flagellar motility by down-regulating the expression of the related differential proteins. CONCLUSION: Compound E19 exhibited good potential for further development as a bactericide candidate for control of Xoc. © 2024 Society of Chemical Industry.

9.
Regul Toxicol Pharmacol ; 151: 105662, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38866176

RESUMO

Read-across (RAx) and grouping of chemicals into categories are well-known concepts in toxicology. Recently, ECHA proposed a grouping approach for branched-chain carboxylic acids (BCAs) including more than 60 branched-chain saturated carboxylic acids for hazard identification. Grouping was based only on structural considerations. Due to developmental effects of two members, ECHA postulated that "all short carbon chain acids … are likely reproductive and developmental toxicants". This work analyzes available data for BCAs. The number of compounds in the group can be significantly reduced by eliminating metal and organic salts of BCAs, compounds of unknown or variable composition, and complex reaction products or biological materials (UVCB compounds). For the resulting reduced number of compounds, grouping is supported by similar physicochemical data and expected similar biotransformation. However, analysis of adverse effects for compounds in the group and mechanistic information show that BCAs, as a class, do not cause developmental effects in rats. Rather, developmental toxicity is limited to selected BCAs with specific structures that share a common mode of action (histone deacetylase inhibition). Thus, the proposed grouping is unreasonably wide and the more detailed analyses show that structural similarity alone is not sufficient for grouping branched-chain carboxylic acids for developmental toxicity.

10.
Front Oral Health ; 5: 1373885, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933119

RESUMO

Introduction: Silver(I)-diammine fluoride (SDF) and silver(I)-fluoride (SF) complexes have been successfully employed for the arrest of dental caries for many years. However, to date there are very few studies available reporting on the molecular structural compositional and solution status of these agents [typically applied as highly-concentrated 38% (w/v) solutions]. Here, we explored the solution status and chemical constitution of commercially-available SDF and SF products, and secondly investigated the multicomponent interplay of these products with biomolecules present in intact human whole-mouth salivary supernatants (WMSSs) in vitro. Methods: High-resolution 19F NMR analysis was employed to explore SDF and SF product solutions, and to determine WMSS fluoride (F-) concentrations, whereas ammonia (NH3) release form SDF was tracked by 1H NMR spectroscopy. SEM and thin-film FTIR-ATR analyses were employed to explore the atomic and molecular compositions of sequentially-generated AgCl deposits and chromophoric Ag/AgCl nanoparticles (CSNPs); the time-dependent generation of the latter was followed spectrophotometrically. Results: 19F NMR spectra of aqueous SF solutions contained a very broad F- signal (Δv1/2 70 Hz), demonstrating that much of its solvated F- content was rapidly exchanging with Ag(I) on the NMR timescale, but those of SDF had a much sharper resonance, similar to that of "free" F- (4 Hz). Moreover, further NMR results revealed that a popular SDF product contained high molar excesses of both F- and NH3. Treatment of WMSSs with SDF and SF generated an off-white precipitate, which slowly developed into CSNPs at 23°C; SEM demonstrated high contents of both silver and chloride in this material (ca.1:1 atomic content ratio). FTIR-ATR analysis found that the CSNPs formed contained a range of salivary biomolecules, which appear to encapsulate the Ag/AgCl core (significant thiocyanate contents were also found). In conclusion, NMR results acquired demonstrated that SF, but not SDF, product solutions feature rapidly-exchanging F - between its "free" and Ag(I)-bound forms, and that SDF contains large excesses of both F- and its NH3 ligands. Characterised AgCl deposits and CSNPs were sequentially produced from the interactions of these complexes with WMSS biomolecules. Discussion: In view of their well-known microbicidal and cariostatic properties, the observed autobioconstruction of CSNPs involving salivary catalysis is of much therapeutic significance.

11.
Front Pharmacol ; 15: 1303693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38738181

RESUMO

Traditional Chinese Medicine (TCM) has been used for thousands of years to treat human diseases. Recently, many databases have been devoted to studying TCM pharmacology. Most of these databases include information about the active ingredients of TCM herbs and their disease indications. These databases enable researchers to interrogate the mechanisms of action of TCM systematically. However, there is a need for comparative studies of these databases, as they are derived from various resources with different data processing methods. In this review, we provide a comprehensive analysis of the existing TCM databases. We found that the information complements each other by comparing herbs, ingredients, and herb-ingredient pairs in these databases. Therefore, data harmonization is vital to use all the available information fully. Moreover, different TCM databases may contain various annotation types for herbs or ingredients, notably for the chemical structure of ingredients, making it challenging to integrate data from them. We also highlight the latest TCM databases on symptoms or gene expressions, suggesting that using multi-omics data and advanced bioinformatics approaches may provide new insights for drug discovery in TCM. In summary, such a comparative study would help improve the understanding of data complexity that may ultimately motivate more efficient and more standardized strategies towards the digitalization of TCM.

12.
Implement Res Pract ; 5: 26334895241248851, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694167

RESUMO

Background: Implementation strategies are theorized to work well when carefully matched to implementation determinants and when factors-preconditions, moderators, etc.-that influence strategy effectiveness are prospectively identified and addressed. Existing methods for strategy selection are either imprecise or require significant technical expertise and resources, undermining their utility. This article outlines refinements to causal pathway diagrams (CPDs), a method for articulating the causal process through which implementation strategies work and offers illustrations of their use. Method: CPDs are a visualization tool to represent an implementation strategy, its mechanism(s) (i.e., the processes through which a strategy is thought to operate), determinants it is intended to address, factors that may impede or facilitate its effectiveness, and the series of outcomes that should be expected if the strategy is operating as intended. We offer principles for constructing CPDs and describe their key functions. Results: Applications of the CPD method by study teams from two National Institute of Health-funded Implementation Science Centers and a research grant are presented. These include the use of CPDs to (a) match implementation strategies to determinants, (b) understand the conditions under which an implementation strategy works, and (c) develop causal theories of implementation strategies. Conclusions: CPDs offer a novel method for implementers to select, understand, and improve the effectiveness of implementation strategies. They make explicit theoretical assumptions about strategy operation while supporting practical planning. Early applications have led to method refinements and guidance for the field.


Advances to the Causal Pathway Diagramming Method to Enhance Implementation Precision Plain Language Summary Implementation strategies often fail to produce meaningful improvements in the outcomes we hope to impact. Better tools for choosing, designing, and evaluating implementation strategies may improve their performance. We developed a tool, causal pathway diagrams (CPD), to visualize and describe how implementation strategies are expected to work. In this article, we describe refinements to the CPD tool and accompanying approach. We use real illustrations to show how CPDs can be used to improve how to match strategies to barriers, understand the conditions in which those strategies work best, and develop generalizable theories describing how implementation strategies work. CPDs can serve as both a practical and scientific tool to improve the planning, deployment, and evaluation of implementation strategies. We demonstrate the range of ways that CPDs are being used, from a highly practical tool to improve implementation practice to a scientific approach to advance testing and theorizing about implementation strategies.

13.
Heliyon ; 10(9): e30393, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38711668

RESUMO

Hydroxychloroquine (HCQ) has gained significant attention as a therapeutic option for systemic lupus erythematosus (SLE) because of its multifaceted mechanism of action. It is a lipophilic, lysosomotropic drug, that easily traverses cell membranes and accumulates in lysosomes. Once accumulated, HCQ alkalizes lysosomes within the cytoplasm, thereby disrupting their function and interfering with processes like antigen presentation. Additionally, HCQ has shown potential in modulating T-cell responses, inhibiting cytokine production, and influencing Toll-like receptor signaling. Its immunomodulatory effects have generated interest in its application for autoimmune disorders. Despite its established efficacy, uncertainties persist regarding the optimal therapeutic concentrations and their correlation with adverse effects such as retinal toxicity. Therefore, standardized dosing and monitoring guidelines are crucial. In this study, we provide a comprehensive review of the mechanisms, efficacy, dosing variations, and retinal toxicity profiles of HCQ, which are essential to optimize SLE treatment protocols and ensure patient safety.

14.
Soc Sci Med ; 352: 117023, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38820694

RESUMO

RATIONALE: Testing mechanisms of action (MoAs) hypothesized to underlie behavior change can enhance intervention effectiveness. Rigorous measurement of putative mechanisms is critical to this effort, but measures are rarely validated with respect to target MoAs. OBJECTIVE: This study aimed to elucidate challenges of linking measures to putative MoAs and to identify priorities for future research. METHOD: This study was a systematic exploration of written comments by experts in behavioral intervention research and theories of behavior change (N = 20) capturing their opinions about a task querying whether self-report measures from the Science Of Behavior Change (SOBC) Measures Repository were related to a set of MoAs identified by the Human Behaviour Change Project (HBCP). RESULTS: Six themes were identified: 1) Study Value, 2) Measure Properties, 3) Mechanism Properties, 4) Miscellaneous Measure Concerns, 5) Conceptual Challenges, and 6) Approaches to Developing Measure-Mechanism Links. Experts noted challenges such as lack of measure validation, poor measure properties (e.g., double-barreled items), overly broad MoA definitions that limited their utility, lack of clarity around the term "related," and more. Nonetheless, experts expressed the importance of the exercise. Suggestions included developing and refining measures that are validate for assessing MoAs, clarifying and elaborating MoA definitions, and conducting further, more granular research. CONCLUSION: This systematic examination of expert comments highlights issues that need further investigation to advance behavioral science, specifically pertaining to identifying valid measures of MoAs in behavioral and process research. This study highlights the challenges and opportunities for future research on linking measures and MoA in behavioral science and subsequently enhancing the efficacy of behavioral interventions.

15.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612893

RESUMO

Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Neoplasias , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Proliferação de Células , Quimioterapia Adjuvante , Hiperplasia , Neoplasias/tratamento farmacológico
16.
Front Pharmacol ; 15: 1337633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650630

RESUMO

Globally, alcohol-associated liver disease (ALD) has become an increased burden for society. Disulfirams, Benzodiazepines (BZDs), and corticosteroids are commonly used to treat ALD. However, the occurrence of side effects such as hepatotoxicity and dependence, impedes the achievement of desirable and optimal therapeutic efficacy. Therefore, there is an urgent need for more effective and safer treatments. Hovenia dulcis is an herbal medicine promoting alcohol removal clearance, lipid-lowering, anti-inflammatory, and hepatoprotective properties. Hovenia dulcis has a variety of chemical components such as dihydromyricetin, quercetin and beta-sitosterol, which can affect ALD through multiple pathways, including ethanol metabolism, immune response, hepatic fibrosis, oxidative stress, autophagy, lipid metabolism, and intestinal barrier, suggesting its promising role in the treatment of ALD. Thus, this work aims to comprehensively review the chemical composition of Hovenia dulcis and the molecular mechanisms involved in the process of ALD treatment.

17.
Sci Rep ; 14(1): 9369, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653774

RESUMO

Human pharmaceuticals represent a major challenge in natural environment. A better knowledge on their mechanisms of action and adverse effects on cellular pathways is fundamental to predict long-term consequences for marine wildlife. The FTIRI Imaging (FTIRI) spectroscopy represents a vibrational technique allowing to map specific areas of non-homogeneous biological samples, providing a unique biochemical and ultrastructural fingerprint of the tissue. In this study, FTIRI technique has been applied, for the first time, to characterize (i) the chemical building blocks of digestive glands of Mytilus galloprovincialis, (ii) alterations and (iii) resilience of macromolecular composition, after a 14-days exposure to 0.5 µg/L of carbamazepine (CBZ), valsartan (VAL) and their mixture, followed by a 14-days recovery period. Spectral features of mussels digestive glands provided insights on composition and topographical distribution of main groups of biological macromolecules, such as proteins, lipids, and glycosylated compounds. Pharmaceuticals caused an increase in the total amount of protein and a significant decrease of lipids levels. Changes in macromolecular features reflected the modulation of specific molecular and biochemical pathways thus supporting our knowledge on mechanisms of action of such emerging pollutants. Overall, the applied approach could represent an added value within integrated strategies for the effects-based evaluation of environmental contaminants.


Assuntos
Sistema Digestório , Mytilus , Poluentes Químicos da Água , Animais , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Poluentes Químicos da Água/toxicidade , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/metabolismo , Substâncias Macromoleculares , Carbamazepina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Bivalves/efeitos dos fármacos , Bivalves/química
18.
Mar Drugs ; 22(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667785

RESUMO

Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and retinopathy. Diabetes therapy now focuses on controlling blood glucose levels through lifestyle changes, oral medicines, and insulin injections. However, these therapies have limits and may not successfully prevent or treat diabetic problems. Several marine-derived chemicals have previously demonstrated promising findings as possible antidiabetic medicines in preclinical investigations. Peptides, polyphenols, and polysaccharides extracted from seaweeds, sponges, and other marine species are among them. As a result, marine natural products have the potential to be a rich source of innovative multitargeted medications for diabetes prevention and treatment, as well as associated complications. Future research should focus on the chemical variety of marine creatures as well as the mechanisms of action of marine-derived chemicals in order to find new antidiabetic medicines and maximize their therapeutic potential. Based on preclinical investigations, this review focuses on the next step for seaweed applications as potential multitargeted medicines for diabetes, highlighting the bioactivities of seaweeds in the prevention and treatment of this illness.


Assuntos
Diabetes Mellitus , Suplementos Nutricionais , Hipoglicemiantes , Alga Marinha , Alga Marinha/química , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Organismos Aquáticos
19.
Future Med Chem ; 16(9): 905-924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38624011

RESUMO

Cancer as a devastating malignancy, seriously threatens human life and health, but most chemotherapeutics have long been criticized for unsatisfactory therapeutic efficacy due to drug resistance and severe off-target toxicity. Pyrimidines, including fused pyrimidines, are privileged scaffolds for various biological cancer targets and are the most important class of metalloenzyme carbonic anhydrase inhibitors. Pyrimidine-sulfonamide hybrids can act on different targets in cancer cells simultaneously and possess potent activity against various cancers, revealing that hybridization of pyrimidine with sulfonamide is a promising approach to generate novel effective anticancer candidates. This review aims to summarize the recent progress of pyrimidine-sulfonamide hybrids with anticancer potential, covering papers published from 2020 to present, to facilitate further rational design of more effective candidates.


[Box: see text].


Assuntos
Antineoplásicos , Neoplasias , Pirimidinas , Sulfonamidas , Humanos , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Estrutura Molecular , Animais
20.
Food Sci Nutr ; 12(3): 1380-1398, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455221

RESUMO

Diet is a modifiable risk factor in the prevention and management of obesity, and various foods have the potential to aid in obesity management by modulating different pathways involved in the disease's pathology. We performed a systematic review of literature, using CINAHL, PubMed, and Google Scholar, focusing on the antiobesity potential of foods crops and functional food products, and their mechanisms of action and clinical evidence. Sixty-four articles were identified, of which 41 investigated food crops, while 23 investigated functional products. Food crops, such as cereals, vegetables, fruits, mushrooms, seaweeds, legumes, herbs, spices, and cocoa seeds, have antiobesity effects through mechanisms such as altering the metabolism of glucolipids by inhibiting enzymes like α-amylase and α-glucosidase, stimulating the bioenergetics of thermogenic fat, modulating gut microbiota, and inhibiting lipogenesis and storage. In addition, developed functional teas, beverages, and yoghurt have antiobesity effects through similar or different mechanisms, such as enhancing energy expenditure and satiety, suppressing adipogenesis and lipolysis, improving glucose and lipid metabolism, and altering hormonal secretion. This review reemphasized the significance of food in the control of obesity, and highlights the distinct methods these explored foods exert their antiobesity effects. In conclusion, foods are safe and effective means of combating obesity without the side effects of conventional drugs, which can help inform dietary choices, assist professionals in providing more accurate advice, and also lead to better understanding of food and its effect on overall health of the public. This approach will eradicate global diseases, especially if more underutilized and indigenous food crops are extensively researched.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...