Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.737
Filtrar
1.
Cancer Cell Int ; 24(1): 313, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261823

RESUMO

The failure of intracellular zinc accumulation is a key process in prostate carcinogenesis. Although prostate cancer cells can accumulate zinc after long-term exposure, chronic zinc oversupply may accelerate prostate carcinogenesis or chemoresistance. Because cancer progression is associated with energetically demanding cytoskeletal rearrangements, we investigated the effect of long-term zinc presence on biophysical parameters, ATP production, and EMT characteristics of two prostate cancer cell lines (PC-3, 22Rv1). Prolonged exposure to zinc increased ATP production, spare respiratory capacity, and induced a response in PC-3 cells, characterized by remodeling of vimentin and a shift of cell dry mass density and caveolin-1 to the perinuclear region. This zinc-induced remodeling correlated with a greater tendency to maintain actin architecture despite inhibition of actin polymerization by cytochalasin. Zinc partially restored epithelial characteristics in PC-3 cells by decreasing vimentin expression and increasing E-cadherin. Nevertheless, the expression of E-cadherin remained lower than that observed in predominantly oxidative, low-invasive 22Rv1 cells. Following long-term zinc exposure, we observed an increase in cell stiffness associated with an increased refractive index in the perinuclear region and an increased mitochondrial content. The findings of the computational simulations indicate that the mechanical response cannot be attributed exclusively to alterations in cytoskeletal composition. This observation suggests the potential involvement of an additional, as yet unidentified, mechanical contributor. These findings indicate that long-term zinc exposure alters a group of cellular parameters towards an invasive phenotype, including an increase in mitochondrial number, ATP production, and cytochalasin resistance. Ultimately, these alterations are manifested in the biomechanical properties of the cells.

2.
Elife ; 132024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255003

RESUMO

Large vesicle extrusion from neurons may contribute to spreading pathogenic protein aggregates and promoting inflammatory responses, two mechanisms leading to neurodegenerative disease. Factors that regulate the extrusion of large vesicles, such as exophers produced by proteostressed C. elegans touch neurons, are poorly understood. Here, we document that mechanical force can significantly potentiate exopher extrusion from proteostressed neurons. Exopher production from the C. elegans ALMR neuron peaks at adult day 2 or 3, coinciding with the C. elegans reproductive peak. Genetic disruption of C. elegans germline, sperm, oocytes, or egg/early embryo production can strongly suppress exopher extrusion from the ALMR neurons during the peak period. Conversely, restoring egg production at the late reproductive phase through mating with males or inducing egg retention via genetic interventions that block egg-laying can strongly increase ALMR exopher production. Overall, genetic interventions that promote ALMR exopher production are associated with expanded uterus lengths and genetic interventions that suppress ALMR exopher production are associated with shorter uterus lengths. In addition to the impact of fertilized eggs, ALMR exopher production can be enhanced by filling the uterus with oocytes, dead eggs, or even fluid, supporting that distention consequences, rather than the presence of fertilized eggs, constitute the exopher-inducing stimulus. We conclude that the mechanical force of uterine occupation potentiates exopher extrusion from proximal proteostressed maternal neurons. Our observations draw attention to the potential importance of mechanical signaling in extracellular vesicle production and in aggregate spreading mechanisms, making a case for enhanced attention to mechanobiology in neurodegenerative disease.


Neurons are specialized cells in the brain and nervous system that transmit signals between the brain and the rest of the body, enabling humans and animals to react to internal and external stimuli. For this communication system to function effectively, neurons must remain healthy. Neurons maintain their function in a variety of ways, including by removing excess or damaged cellular components (such as organelles and protein aggregates) that could compromise neuron function. One way to do this is by extruding organelles and aggregates. During 'extrusion events', the material to be removed is gathered within a budding portion of the plasma membrane, which forms a vesicle that ejects the material from the neuron. However, the factors driving the extrusion process remained unknown. To investigate, Wang, Guasp, Salam et al. conducted experiments in the roundworm Caenorhabditis elegans, finding that the number of extrusion events in a certain type of neuron increases at the peak of reproduction. More specifically, a greater number of extrusion events were associated with the presence of fertilized eggs, which accumulate in the uterus before they are laid. Disrupting eggs, sperm or the fertilization process suppressed the increase in extrusion events, suggesting the presence of fertilized eggs is responsible. To determine how the eggs might trigger extrusion events, Wang et al. stretched the uterus using dead eggs, unfertilized eggs or by injecting fluid, finding that each of these approaches increased the number of extrusion events. Further analysis suggests that this mechanical stretching of the uterus signals to the neurons that reproduction has started, encouraging the neurons to remove old components and optimize their function. Wang et al. hypothesize that this stretch response could support neuronal behaviors that aid in successful reproduction, such as sensing food and selecting where to lay eggs. The findings increase our understanding of the factors that trigger vesicle extrusion in living organisms. These observations could have implications for human neurodegenerative diseases such as Alzheimer's disease, in which protein aggregates accumulate in neurons. It is possible that mechanical signals generated by factors associated with Alzheimer's disease, such as high blood pressure, could influence neuronal extrusion and contribute to some of the mechanisms underlying aggregate transfer in neurodegenerative diseases.


Assuntos
Caenorhabditis elegans , Neurônios , Animais , Caenorhabditis elegans/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Feminino , Útero/metabolismo , Útero/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Masculino
3.
Small Struct ; 5(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39220563

RESUMO

Quantitative and volumetric assessment of filamentous actin fibers (F-actin) remains challenging due to their interconnected nature, leading researchers to utilize threshold based or qualitative measurement methods with poor reproducibility. Here we introduce a novel machine learning based methodology for accurate quantification and reconstruction of nuclei-associated F-actin. Utilizing a Convolutional Neural Network (CNN), we segment actin filaments and nuclei from 3D confocal microscopy images and then reconstruct each fiber by connecting intersecting contours on cross-sectional slices. This allowed measurement of the total number of actin filaments and individual actin filament length and volume in a reproducible fashion. Focusing on the role of F-actin in supporting nucleocytoskeletal connectivity, we quantified apical F-actin, basal F-actin, and nuclear architecture in mesenchymal stem cells (MSCs) following the disruption of the Linker of Nucleoskeleton and Cytoskeleton (LINC) Complexes. Disabling LINC in mesenchymal stem cells (MSCs) generated F-actin disorganization at the nuclear envelope characterized by shorter length and volume of actin fibers contributing a less elongated nuclear shape. Our findings not only present a new tool for mechanobiology but introduce a novel pipeline for developing realistic computational models based on quantitative measures of F-actin.

4.
Biochem Biophys Res Commun ; 734: 150637, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39226737

RESUMO

Liquid biopsies have been receiving tremendous attention for their potential to reshape cancer management. Though current studies of cancer liquid biopsy primarily fucus on applying biochemical assays to characterize the genetic/molecular profiles of circulating tumor cells (CTCs) and their secondary products shed from tumor sites in bodily fluids, delineating the nanomechanical properties of tumor-associated materials in liquid biopsy specimens yields complementary insights into the biology of tumor dissemination and evolution. Particularly, atomic force microscopy (AFM) has become a standard and versatile toolbox for characterizing the mechanical properties of living biological systems at the micro/nanoscale, and AFM has been increasingly utilized to probe the nanomechanical properties of various tumor-derived analytes in liquid biopsies, including CTCs, tumor-associated cells, circulating tumor DNA (ctDNA) molecules, and extracellular vesicles (EVs), offering additional possibilities for understanding cancer pathogenesis from the perspective of mechanobiology. Herein, the applications of AFM in cancer liquid biopsy are summarized, and the challenges and future directions of AFM as a nanomechanical analysis tool in cancer liquid biopsy towards clinical utility are discussed and envisioned.

5.
ACS Synth Biol ; 13(8): 2600-2610, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39110689

RESUMO

The engineering of enzymatic activity generally involves alteration of the protein primary sequences, which introduce structural changes that give rise to functional improvements. Mechanical forces have been used to interrogate protein biophysics, leading to deep mechanistic insights in single-molecule studies. Here, we use simple DNA springs to apply small pulling forces to perturb the active site of a thermostable alcohol dehydrogenase. Methods were developed to enable the study of different spring lengths and spring orientations under bulk catalysis conditions. Tension applied across the active site expanded the binding pocket volume and shifted the preference of the enzyme for longer chain-length substrates, which could be tuned by altering the spring length and the resultant applied force. The substrate specificity changes did not occur when the DNA spring was either severed or rotated by ∼90°. These findings demonstrate an alternative approach in protein engineering, where active site architectures can be dynamically and reversibly remodeled using applied mechanical forces.


Assuntos
Álcool Desidrogenase , Biocatálise , Domínio Catalítico , DNA , Engenharia de Proteínas , Engenharia de Proteínas/métodos , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/química , DNA/metabolismo , DNA/química , DNA/genética , Especificidade por Substrato
6.
Dev Cell ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39137775

RESUMO

Formation of fluid-filled lumina by epithelial tissues is essential for organ development. How cells control the hydraulic and cortical forces to control lumen morphology is not well understood. Here, we quantified the mechanical role of tight junctions in lumen formation using MDCK-II cysts. We found that the paracellular ion barrier formed by claudin receptors is not required for the hydraulic inflation of a lumen. However, the depletion of the zonula occludens scaffold resulted in lumen collapse and folding of apical membranes. Combining quantitative measurements of hydrostatic lumen pressure and junctional tension with modeling enabled us to explain lumen morphologies from the pressure-tension force balance. Tight junctions promote lumen inflation by decreasing cortical tension via the inhibition of myosin. In addition, our results suggest that excess apical area contributes to lumen opening. Overall, we provide a mechanical understanding of how epithelial cells use tight junctions to modulate tissue and lumen shape.

7.
Dev Dyn ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096177

RESUMO

BACKGROUND: Early embryonic aortic arches (AA) are a dynamic vascular structures that are in the process of shaping into the great arteries of cardiovascular system. Previously, a time-lapsed mechanosensitive gene expression map was established for AA subject to altered mechanical loads in the avian embryo. To validate this map, we investigated effects on vascular microstructure and material properties following the perturbation of key genes using an in-house microvascular gene knockdown system. RESULTS: All siRNA vectors show a decrease in the expression intensity of desired genes with no significant differences between vectors. In TGFß3 knockdowns, we found a reduction in expression intensities of TGFß3 (≤76%) and its downstream targets such as ELN (≤99.6%), Fbn1 (≤60%), COL1 (≤52%) and COL3 (≤86%) and an increase of diameter in the left AA (23%). MMP2 knockdown also reduced expression levels in MMP2 (≤30%) and a 6-fold increase in its downstream target COL3 with a decrease in stiffness of the AA wall and an increase in the diameter of the AA (55%). These in vivo measurements were confirmed using immunohistochemistry, western blotting and a computational growth model of the vascular extracellular matrix (ECM). CONCLUSIONS: Localized spatial genetic modification of the aortic arch region governs the vascular phenotype and ECM composition of the embryo and can be integrated with mechanically-induced congenital heart disease models.

8.
Microbiol Mol Biol Rev ; : e0014423, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158275

RESUMO

SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.

9.
Curr Biol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39163855

RESUMO

Muscle morphogenesis is a multi-step program, starting with myoblast fusion, followed by myotube-tendon attachment and sarcomere assembly, with subsequent sarcomere maturation, mitochondrial amplification, and specialization. The correct chronological order of these steps requires precise control of the transcriptional regulators and their effectors. How this regulation is achieved during muscle development is not well understood. In a genome-wide RNAi screen in Drosophila, we identified the BTB-zinc-finger protein Tono (CG32121) as a muscle-specific transcriptional regulator. tono mutant flight muscles display severe deficits in mitochondria and sarcomere maturation, resulting in uncontrolled contractile forces causing muscle rupture and degeneration during development. Tono protein is expressed during sarcomere maturation and localizes in distinct condensates in flight muscle nuclei. Interestingly, internal pressure exerted by the maturing sarcomeres deforms the muscle nuclei into elongated shapes and changes the Tono condensates, suggesting that Tono senses the mechanical status of the muscle cells. Indeed, external mechanical pressure on the muscles triggers rapid liquid-liquid phase separation of Tono utilizing its BTB domain. Thus, we propose that Tono senses high mechanical pressure to adapt muscle transcription, specifically at the sarcomere maturation stages. Consistently, tono mutant muscles display specific defects in a transcriptional switch that represses early muscle differentiation genes and boosts late ones. We hypothesize that a similar mechano-responsive regulation mechanism may control the activity of related BTB-zinc-finger proteins that, if mutated, can result in uncontrolled force production in human muscle.

10.
Hypertens Res ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103520

RESUMO

Recent advances in mechanobiology and the discovery of mechanosensitive ion channels have opened a new era of research on hypertension and related diseases. Piezo1 and Piezo2, first reported in 2010, are regarded as bona fide mechanochannels that mediate various biological and pathophysiological phenomena in multiple tissues and organs. For example, Piezo channels have pivotal roles in blood pressure control, triggering shear stress-induced nitric oxide synthesis and vasodilation, regulating baroreflex in the carotid sinus and aorta, and releasing renin from renal juxtaglomerular cells. Herein, we provide an overview of recent literature on the roles of Piezo channels in the pathogenesis of hypertension and related kidney damage, including our experimental data on the involvement of Piezo1 in podocyte injury and that of Piezo2 in renin expression and renal fibrosis in animal models of hypertensive nephropathy. The mechanosensitive ion channels Piezo1 and Piezo2 play various roles in the pathogenesis of systemic hypertension by acting on vascular endothelial cells, baroreceptors in the carotid artery and aorta, and the juxtaglomerular apparatus. Piezo channels also contribute to hypertensive nephropathy by acting on mesangial cells, podocytes, and perivascular mesenchymal cells.

11.
Front Cell Dev Biol ; 12: 1430728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086658

RESUMO

This study investigates differences in focal adhesion (FA) morphology and Talin cleavage levels between transformed and non-transformed cell lines. Utilizing fluorescently tagged wild-type Talin and Talin mutants with calpain cleavage site mutations, FA structures were visualized. Mutations in different Talin cleavage sites showed varying impacts on FA morphology and distribution across melanoma cell lines (Meljuso, A375P, A2058) and a non-transformed cell line (HFF). Western blot analysis, ratiometric fluorescence intensity-based measurements, and FRAP experiments revealed higher Talin cleavage levels within FAs of transformed cell lines compared to non-transformed cells. Additionally, growth assays indicated that reducing calpain cleavage levels attenuated transformed cell growth. These findings suggest that Talin cleavage level is crucial for FA morphology and assembly, with higher levels observed in transformed cells, influencing their growth dynamics.

12.
iScience ; 27(8): 110507, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39156637

RESUMO

Abnormal epigenetics is the initial factor of the occurrence and development of osteoarthritis (OA), and abnormal mechanical load is a key pathogenic factor of OA. However, how abnormal mechanical load affects chondrocyte epigenetics is unclear. Chondrocytes reportedly respond to mechanics through the extracellular matrix (ECM), which has a role in regulating epigenetics in various diseases, and mitochondria are potential mediators of communication between mechanics and epigenetics. Therefore, it is hypothesized that the matrix mechanics of cartilage regulates their epigenetics through mitochondria and leads to OA. The matrix stiffness of OA cartilage on the stress-concentrated side increases, mitochondrial damage of chondrocyte is severe, and the chondrocyte H3K27me3 is demethylated. Moreover, mitochondrial permeability transition pore (mPTP) opens to increase the translocation of plant homeodomain finger protein 8 (Phf8) into the nucleus to catalyze H3K27me3 demethylation. This provides a new perspective for us to understand the mechanism of OA based on mechanobiology.

13.
Int J Artif Organs ; : 3913988241268105, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166431

RESUMO

Mechanical forces related to blood pressure and flow patterns play a crucial role in vascular homeostasis. Perturbations in vascular stresses and strain resulting from changes in hemodynamic may occur in pathological conditions, leading to vascular dysfunction as well as in vascular prosthesis, arteriovenous shunt for hemodialysis and in mechanical circulation support. Turbulent-like blood flows can induce high-frequency vibrations of the vessel wall, and this stimulus has recently gained attention as potential contributors to vascular pathologies, such as development of intimal hyperplasia in arteriovenous fistula for hemodialysis. However, the biological response of vascular cells to this stimulus remains incompletely understood. This review provides an analysis of the existing literature concerning the impact of high-frequency stimuli on vascular cell morphology, function, and gene expression. Morphological and functional investigations reveal that vascular cells stimulated at frequencies higher than the normal heart rate exhibit alterations in cell shape, alignment, and proliferation, potentially leading to vessel remodeling. Furthermore, vibrations modulate endothelial and smooth muscle cells gene expression, affecting pathways related to inflammation, oxidative stress, and muscle hypertrophy. Understanding the effects of high-frequency vibrations on vascular cells is essential for unraveling the mechanisms underlying vascular diseases and identifying potential therapeutic targets. Nevertheless, there are still gaps in our understanding of the molecular pathways governing these cellular responses. Further research is necessary to elucidate these mechanisms and their therapeutic implications for vascular diseases.

14.
Macromol Rapid Commun ; : e2400419, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116444

RESUMO

This study reports the reversible solubility switching of a polymer triggered by non-phototoxic visible light. A photochromic polymerizable azobenzene monomer with four methoxy groups at the ortho-position (mAzoA) was synthesized, exhibiting reversible photoisomerization between trans- and cis-states using green (546 nm) and blue light (436 nm). Free radical copolymerization of hydrophilic dimethylacrylamide (DMAAm) with mAzoA produced a light-responsive random copolymer (P(mAzoA-r-DMAAm)) that shows a reversible photochromic reaction to visible light. Optimizing mAzoA content resulted in P(mAzoA10.7-r-DMAAm)3.0 kDa exhibiting LCST-type phase separation in PBS (pH 7.4) with trans- and cis-states at 39.2 °C and 32.9 °C, respectively. The bistable temperature range of 6.3 °C covers 37 °C, suitable for mammalian cell culture. Reversible solubility changes were demonstrated under alternating green and blue light at 37 °C. 1H NMR indicated significant retardation of thermal relaxation from cis- to trans-states, preventing undesired thermal mechanical degradation. Madin Darby Canine Kidney (MDCK) cells adhered to the P(mAzoA-r-DMAAm) hydrogel, confirming its non-cytotoxicity and potential for biocompatible interfaces. This principle is useful for developing hydrogels that can reversibly stimulate cells mechanically or chemically in response to visible light.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39181541

RESUMO

The potential of stem cells, for example upper periodontal ligament stem cells from the maxilla (u-PDLSC) and from the mandible (l-PDLSC), adipose-derived mesenchymal stem cells (AD-MSC), and bone marrow-derived mesenchymal stem cells (BM-MSC), with respect to periodontal remodeling and orthodontic treatment is of great importance. In this work, we focus on the comprehensive adaptability of different stem cell types to mechanical forces with the aim to better understanding cell behavior and to refine a new mechanistic approach to investigate periodontal remodeling. We comprehensively analyze stem cells and observe distinct morphological and proliferation changes under compression in dependence on stem cell type. The cell signaling of extracellular signal-regulated kinase (ERK) and protein kinase B, also called AKT, and their respective phosphorylation shows diverse responses to compression. Additionally, vascular endothelial growth factor and hepatocyte growth factor secretion were reduced under mechanical stress in all cell types, with cell-specific variations. Osteoprotegerin secretion was reduced under compression, particularly in u-PDLSC. At least, diverse soluble receptors of NF-kB-ligand secretion patterns among cell types under pressure were observed, providing crucial insights into bone metabolism. These findings offer a deeper understanding of the behavior of mesenchymal stem cells under mechanical stimuli, highlighting their roles in bone remodeling, wound healing, and tissue regeneration in orthodontic and regenerative medicine contexts. Our results underscore the potential of u-PDLSC, l-PDLSC, and AD-MSC in periodontal regeneration, with AD-MSC showing notable resilience under compression, indicating its promising role for further investigation for orthodontic research. While these findings are encouraging, further research is essential to fully comprehend the mechanism of stem cell-based periodontal therapies.

16.
J Orthop Res ; 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39182184

RESUMO

Articular joints facilitate motion and transfer loads to underlying bone through a combination of cartilage tissue and synovial fluid, which together generate a low-friction contact surface. Traumatic injury delivered to cartilage and the surrounding joint capsule causes secretion of proinflammatory cytokines by chondrocytes and the synovium, triggering cartilage matrix breakdown and impairing the ability of synovial fluid to lubricate the joint. Once these inflammatory processes become chronic, posttraumatic osteoarthritis (PTOA) development begins. However, the exact mechanism by which negative alterations to synovial fluid leads to PTOA pathogenesis is not fully understood. We hypothesize that removing the lubricating macromolecules from synovial fluid alters the relationship between mechanical loads and subsequent chondrocyte behavior in injured cartilage. To test this hypothesis, we utilized an ex vivo model of PTOA that involves subjecting cartilage explants to a single rapid impact followed by continuous articulation within a lubricating bath of either healthy synovial fluid, phosphate-buffered saline (PBS), synovial fluid treated with hyaluronidase, or synovial fluid treated with trypsin. These treatments degrade the main macromolecules attributed with providing synovial fluid with its lubricating properties; hyaluronic acid and lubricin. Explants were then bisected and fluorescently stained to assess global and depth-dependent cell death, caspase activity, and mitochondrial depolarization. Explants were tested via confocal elastography to determine the local shear strain profile generated in each lubricant. These results show that degrading hyaluronic acid or lubricin in synovial fluid significantly increases middle zone chondrocyte damage and shear strain loading magnitudes, while also altering chondrocyte sensitivity to loading.

17.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39201546

RESUMO

Philadelphia-Negative Myeloproliferative neoplasms (MPNs) are a diverse group of blood cancers leading to excessive production of mature blood cells. These chronic diseases, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), can significantly impact patient quality of life and are still incurable in the vast majority of the cases. This review examines the mechanobiology within a bone marrow niche, emphasizing the role of mechanical cues and the primary cilium in the pathophysiology of MPNs. It discusses the influence of extracellular matrix components, cell-cell and cell-matrix interactions, and mechanosensitive structures on hematopoietic stem cell (HSC) behavior and disease progression. Additionally, the potential implications of the primary cilium as a chemo- and mechanosensory organelle in bone marrow cells are explored, highlighting its involvement in signaling pathways crucial for hematopoietic regulation. This review proposes future research directions to better understand the dysregulated bone marrow niche in MPNs and to identify novel therapeutic targets.


Assuntos
Cílios , Transtornos Mieloproliferativos , Humanos , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/fisiopatologia , Cílios/metabolismo , Cílios/patologia , Animais , Medula Óssea/patologia , Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mecanotransdução Celular , Matriz Extracelular/metabolismo , Transdução de Sinais , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia
18.
Tissue Eng Part A ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39165245

RESUMO

Autologous fat transfer is a common procedure that patients undergo to rejuvenate large soft tissue defects. However, these surgeries are complicated by limited tissue sources, donor-site morbidity, and necrosis. While the biofabrication of fat tissue can serve as a clinical option for reconstructive surgery, the influence of matrix mechanics, specifically stiffness and viscosity, on adipogenesis requires further elucidation. Additionally, the effects of these mechanical parameters on metabolic and thermogenic fat potential have yet to be investigated. In this study, gelatin methacryloyl (GelMA) polymers with varying degrees of methacrylation (DoM) were fabricated to create matrices with different stiffnesses and viscosities. Human adipose-derived mesenchymal stem cells were then encapsulated in mechanically tunable GelMA and underwent adipogenesis to investigate the effects of matrix mechanics on lipid phenotype and fat potential. Mechanical testing confirmed that GelMA stiffness was regulated by DoM and weight composition, whereas viscosity was determined by the latter. Further work revealed that while lipid phenotype became more enriched as matrix stiffness and viscosity declined, the potential toward metabolic and thermogenic fat appeared to be more viscous dependent rather than stiffness dependent. In addition, fatty acid binding protein 4 and uncoupling protein 1 gene expression exhibited viscous-dependent behavior despite comparable levels of peroxisome proliferator-activated receptor gamma. However, despite the superior role of viscosity, lipid quantity and mitochondrial abundance demonstrated stiffness-dependent behavior. Overall, this work revealed that matrix viscosity played a more superior role than stiffness in driving adipogenesis and distinguishing between metabolic and thermogenic fat potential. Ultimately, this differentiation in fat production is important for engineering ideal adipose tissue for large soft tissue defects.

19.
Acta Biomater ; 186: 156-166, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39097123

RESUMO

Tumor organoids and tumors-on-chips can be built by placing patient-derived cells within an engineered extracellular matrix (ECM) for personalized medicine. The engineered ECM influences the tumor response, and understanding the ECM-tumor relationship accelerates translating tumors-on-chips into drug discovery and development. In this work, we tuned the physical and structural characteristics of ECM in a 3D bioprinted soft-tissue sarcoma microtissue. We formed cell spheroids at a controlled size and encapsulated them into our gelatin methacryloyl (GelMA)-based bioink to make perfusable hydrogel-based microfluidic chips. We then demonstrated the scalability and customization flexibility of our hydrogel-based chip via engineering tools. A multiscale physical and structural data analysis suggested a relationship between cell invasion response and bioink characteristics. Tumor cell invasive behavior and focal adhesion properties were observed in response to varying polymer network densities of the GelMA-based bioink. Immunostaining assays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) helped assess the bioactivity of the microtissue and measure the cell invasion. The RT-qPCR data showed higher expressions of HIF-1α, CD44, and MMP2 genes in a lower polymer density, highlighting the correlation between bioink structural porosity, ECM stiffness, and tumor spheroid response. This work is the first step in modeling STS tumor invasiveness in hydrogel-based microfluidic chips. STATEMENT OF SIGNIFICANCE: We optimized an engineering protocol for making tumor spheroids at a controlled size, embedding spheroids into a gelatin-based matrix, and constructing a perfusable microfluidic device. A higher tumor invasion was observed in a low-stiffness matrix than a high-stiffness matrix. The physical characterizations revealed how the stiffness is controlled by the density of polymer chain networks and porosity. The biological assays revealed how the structural properties of the gelatin matrix and hypoxia in tumor progression impact cell invasion. This work can contribute to personalized medicine by making more effective, tailored cancer models.


Assuntos
Bioimpressão , Matriz Extracelular , Gelatina , Hidrogéis , Impressão Tridimensional , Esferoides Celulares , Humanos , Esferoides Celulares/patologia , Esferoides Celulares/metabolismo , Matriz Extracelular/metabolismo , Gelatina/química , Linhagem Celular Tumoral , Hidrogéis/química , Dispositivos Lab-On-A-Chip , Invasividade Neoplásica , Metaloproteinase 2 da Matriz/metabolismo , Metacrilatos/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
20.
ACS Appl Mater Interfaces ; 16(34): 44549-44560, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39140610

RESUMO

The migration of breast cancer cells is the main cause of death and significantly regulated by physical factors of the extracellular matrix (ECM). To be specific, the curvature and stiffness of the ECM were discovered to effectively guide cell migration in velocity and direction. However, it is not clear what the extent of effect is when these dual-physical factors regulate cell migration. Moreover, the mechanobiology mechanism of breast cancer cell migration in the molecular level and analysis of cell traction force (CTF) are also important, but there is a lack of systematic investigation. Therefore, we employed a microfluidic platform to construct hydrogel microspheres with an independently adjustable curvature and stiffness as a three-dimensional substrate for breast cancer cell migration. We found that the cell migration velocity was negatively correlated to curvature and positively correlated to stiffness. In addition, curvature was investigated to influence the focal adhesion expression as well as the assignment of F-actin at the molecular level. Further, with the help of a motor-clutch mathematical model and hydrogel microsphere stress sensors, it was concluded that cells perceived physical factors (curvature and stiffness) to cause changes in CTF, which ultimately regulated cell motility. In summary, we employed a theoretical model (motor-clutch) and experimental strategy (stress sensors) to understand the mechanism of curvature and stiffness regulating breast cancer cell motility. These results provide evidence of force driven cancer cell migration by ECM physical factors and explain the mechanism from the perspective of mechanobiology.


Assuntos
Neoplasias da Mama , Movimento Celular , Hidrogéis , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Hidrogéis/química , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Microesferas , Actinas/metabolismo , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA