Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.657
Filtrar
1.
Data Brief ; 55: 110562, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38952952

RESUMO

Despite epidemiological indications, utility of metformin in liver cancer remains debated and the understanding of the mechanism underlying its anti-cancer effects remains incomplete. Particularly, whether it operates via similar mechanism under glucose-sufficient and glucose- deficient environments or whether these effects are reversible remains unexplored. This metabolomic dataset was collected from liver cancer (HepG2) cells treated with metformin or placebo over a period of 3 h to 48 h as well as from cells recovering after metformin withdrawal. Cells were exposed to placebo or 2.5 mM metformin with or without glucose (5 mM) supplementation. The cells were harvested at 3, 6, 12, 24, and 48 h post-treatment. Cells were also harvested after 24 h of treatment under one of these conditions followed by reversal of glucose and/or metformin exposure status for 48 h. Metabolites from six biological replicates of each experimental group were extracted using chilled monophasic metabolite extraction solvent (Water: Acetonitrile: Isopropanol= 2:3:3) containing homovanillic acid as an internal standard. Samples were derivatized using MOX reagent followed by MSTFA. Untargeted metabolomic profiling of derivatized samples were performed using an Agilent 7890B gas chromatograph coupled to a 5977B single quadrupole mass spectrometer. Analytes were injected through a splitless liner and separated on a HP-5MS ultra-inert column using ultrapure helium as the carrier gas. Peak alignment, annotation, and integration were done using Agilent MassHunter Quantitative analysis software. Multivariate analysis was performed using MetaboAnalyst 5.0. These experiments were performed to unravel the longitudinal evolution of cellular metabolome in response to metformin treatment, its glucose dependence, as well as to examine the reversibility of these changes. The dataset can help to identify glucose-independent pathways involved in anti-cancer effect of metformin. The dataset can be used to design experiments to develop novel therapeutic combinations synergistically acting with metformin to cripple the metabolic fitness of cancer cells. It can also help to develop experiments to test the effect of metformin withdrawal in liver cancer.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38953837

RESUMO

Metabolic reprogramming is recognized as a hallmark of cancer, enabling cancer cells to acquire essential biomolecules for cell growth, often characterized by upregulated glycolysis and/or fatty acid synthesis-related genes. The transcription factor forkhead box M1 (FOXM1) has been implicated in various cancers, contributing significantly to their development, including colorectal cancer (CRC), a major global health concern. Despite FOXM1's established role in cancer, its specific involvement in the Warburg effect and fatty acid biosynthesis in CRC remains unclear. We analyzed The Cancer Genome Atlas (TCGA) Colonic Adenocarcinoma and Rectal Adenocarcinoma (COADREAD) datasets to to derive the correlation of the expression levels between FOXM1 and multiple genes and the survival prognosis based on FOXM1 expression. Using two human CRC cell lines, HT29 and HCT116, we conducted RNAi or plasmid transfection procedures, followed by a series of assays, including RNA extraction, quantitative real-time polymerase chain reaction, Western blot analysis, cell metabolic assays, and immunofluorescence analysis. Higher expression levels of FOXM1 correlated with a poorer survival prognosis, and the expression of FOXM1 was positively correlated with glycolysis-related genes SLC2A1 and LDHA, de novo lipogenesis-related genes ACACA and FASN, and MYC. FOXM1 appeared to modulate AKT/mTOR signaling, the expression of c-Myc, proteins related to glycolysis and fatty acid biosynthesis, as well as extracellular acidification rate in HT29 and HCT116 cells. In summary, FOXM1 plays a regulatory role in glycolysis, fatty acid biosynthesis, and cellular energy consumption, thereby influencing CRC cell growth and patient prognosis.

3.
Redox Biol ; 75: 103260, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955114

RESUMO

Tumor metabolic reprogramming requires high levels of adenosine triphosphate (ATP) to maintain treatment resistance, which poses major challenges to chemotherapy and photothermal therapy. Especially, high levels of ATP promote copper ion efflux for limiting the curative effect of cuproptosis. Here, an H2S-responsive mesoporous Cu2Cl(OH)3-loading chemotherapeutic cisplatin (CDDP) was synthesized, and the final nanoparticle, CDDP@Cu2Cl(OH)3-CDs (CDCuCDs), was encapsulated by electrostatic action with carbon dots (CDs). CDCuCDs reacted with overproduction H2S in colon tumor to produce photothermic copper sulfide for photothermal therapy. CDDP was released by lysis to achieve chemotherapeutic effects. Importantly, CDDP elevated H2O2 levels in cells through a cascade reaction and continuously transforms H2O2 into highly cytotoxic •OH through chemodynamic therapy between H2O2 and Cu+, which enables nanoparticles to generate •OH and improve the chemotherapeutic efficacy. Highly toxic •OH disrupts mitochondrial homeostasis, prohibiting it from performing normal energy-supplying functions. Down-regulated ATP inhibits heat shock protein expression, which promotes the therapeutic effect of mild photothermal therapy and reduces the efflux of intracellular copper ions, thus improving the therapeutic effect of cuproptosis. Our research provides a potential therapeutic strategy using overproduction H2S responses in tumors, allowing tumor microenvironment-activated •OH nanogenerators to promote tumor energy remodeling for cancer treatment.

4.
Cancer Immunol Immunother ; 73(9): 171, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954021

RESUMO

In the intricate landscape of the tumor microenvironment, tumor-associated macrophages (TAMs) emerge as a ubiquitous cellular component that profoundly affects the oncogenic process. The microenvironment of hepatocellular carcinoma (HCC) is characterized by a pronounced infiltration of TAMs, underscoring their pivotal role in modulating the trajectory of the disease. Amidst the evolving therapeutic paradigms for HCC, the strategic reprogramming of metabolic pathways presents a promising avenue for intervention, garnering escalating interest within the scientific community. Previous investigations have predominantly focused on elucidating the mechanisms of metabolic reprogramming in cancer cells without paying sufficient attention to understanding how TAM metabolic reprogramming, particularly lipid metabolism, affects the progression of HCC. In this review article, we intend to elucidate how TAMs exert their regulatory effects via diverse pathways such as E2F1-E2F2-CPT2, LKB1-AMPK, and mTORC1-SREBP, and discuss correlations of TAMs with these processes and the characteristics of relevant pathways in HCC progression by consolidating various studies on TAM lipid uptake, storage, synthesis, and catabolism. It is our hope that our summary could delineate the impact of specific mechanisms underlying TAM lipid metabolic reprogramming on HCC progression and provide useful information for future research on HCC and the development of new treatment strategies.


Assuntos
Carcinoma Hepatocelular , Metabolismo dos Lipídeos , Neoplasias Hepáticas , Microambiente Tumoral , Macrófagos Associados a Tumor , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Microambiente Tumoral/imunologia , Animais , Reprogramação Celular , Transdução de Sinais , Reprogramação Metabólica
5.
Sci Total Environ ; 946: 174246, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955266

RESUMO

The ionizing radiation (IR) represents a formidable challenge as an environmental factor to mitochondria, leading to disrupt cellular energy metabolism and posing health risks. Although the deleterious impacts of IR on mitochondrial function are recognized, the specific molecular targets remain incompletely elucidated. In this study, HeLa cells subjected to γ-rays exhibited concomitant oxidative stress, mitochondrial structural alterations, and diminished ATP production capacity. The γ-rays induced a dose-dependent induction of mitochondrial fission, simultaneously manifested by an elevated S616/S637 phosphorylation ratio of the dynamin-related protein 1 (DRP1) and a reduction in the expression of the mitochondrial fusion protein mitofusin 2 (MFN2). Knockdown of DRP1 effectively mitigated γ-rays-induced mitochondrial network damage, implying that DRP1 phosphorylation may act as an effector of radiation-induced mitochondrial damage. The mitochondrial outer membrane protein voltage-dependent anion channel 1 (VDAC1) was identified as a crucial player in IR-induced mitochondrial damage. The VDAC1 inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), counteracts the excessive mitochondrial fission induced by γ-rays, consequently rebalancing the glycolytic and oxidative phosphorylation equilibrium. This metabolic shift was uncovered to enhance glycolytic capacity, thus fortifying cellular resilience and elevating the radiosensitivity of cancer cells. These findings elucidate the intricate regulatory mechanisms governing mitochondrial morphology under radiation response. It is anticipated that the development of targeted drugs directed against VDAC1 may hold promise in augmenting the sensitivity of tumor cells to radiotherapy and chemotherapy.

6.
J Cell Physiol ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946173

RESUMO

Amino acids are essential building blocks for proteins, crucial energy sources for cell survival, and key signaling molecules supporting the resistant growth of tumor cells. In tumor cells, amino acid metabolic reprogramming is characterized by the enhanced uptake of amino acids as well as their aberrant synthesis, breakdown, and transport, leading to immune evasion and malignant progression of tumor cells. This article reviews the altered amino acid metabolism in tumor cells and its impact on tumor microenvironment, and also provides an overview of the current clinical applications of amino acid metabolism. Innovative drugs targeting amino acid metabolism hold great promise for precision and personalized cancer therapy.

7.
Crit Rev Oncol Hematol ; : 104438, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977145

RESUMO

Cancer metabolism is now a key area for therapeutic intervention, targeting unique metabolic reprogramming crucial for tumor growth and survival. This article reviews the therapeutic potential of addressing metabolic vulnerabilities through glycolysis and glutaminase inhibitors, which disrupt cancer cell metabolism. Challenges such as tumor heterogeneity and adaptive resistance are discussed, with strategies including personalized medicine and predictive biomarkers to enhance treatment efficacy. Additionally, integrating diet and lifestyle changes with metabolic targeting underscores a holistic approach to improving therapy outcomes. The article also examines the benefits of incorporating these strategies into standard care, highlighting the potential for more tailored, safer treatments. In conclusion, exploiting metabolic vulnerabilities promises a new era in oncology, positioning metabolic targeting at the forefront of personalized cancer therapy and transforming patient care.

8.
Immune Netw ; 24(3): e26, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974210

RESUMO

Recent advancements in various technologies have shed light on the critical role of metabolism in immune cells, paving the way for innovative disease treatment strategies through immunometabolism modulation. This review emphasizes the glucose metabolism of myeloid-derived suppressor cells (MDSCs), an emerging pivotal immunosuppressive factor especially within the tumor microenvironment. MDSCs, an immature and heterogeneous myeloid cell population, act as a double-edged sword by exacerbating tumors or mitigating inflammatory diseases through their immune-suppressive functions. Numerous recent studies have centered on glycolysis of MDSC, investigating the regulation of altered glycolytic pathways to manage diseases. However, the specific changes in MDSC glycolysis and their exact functions continue to be areas of ongoing discussion yet. In this paper, we review a range of current findings, including the latest research on the alteration of glycolysis in MDSCs, the consequential functional alterations in these cells, and the outcomes of attempts to modulate MDSC functions by regulating glycolysis. Ultimately, we will provide insights into whether these research efforts could be translated into clinical applications.

9.
Life Sci ; 352: 122890, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971364

RESUMO

Cancer cells undergo metabolic reprogramming to survive in hypoxic conditions and meet the elevated energy demands of the cancer microenvironment. This metabolic alteration is orchestrated by hypoxia-inducible factor 1 (HIF-1), regulating various processes within cancer cells. The intricate metabolic modifications induced by hypoxia underscore the significance of HIF-1-induced metabolic reprogramming in promoting each aspect of cancer progression. The complex interactions between HIF-1 signalling and cellular metabolic processes in response to hypoxia are examined in this study, focusing on the metabolism of carbohydrates, nucleotides, lipids, and amino acids. Comprehending the various regulatory mechanisms controlled by HIF-1 in cellular metabolism sheds light on the intricate biology of cancer growth and offers useful insights for developing targeted treatments.

10.
Cancer Lett ; 598: 217105, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971490

RESUMO

Immune therapy has significantly improved the prognosis of hepatocellular carcinoma (HCC) patients, yet its efficacy remains limited, underscoring the urgency to identify new therapeutic targets and biomarkers. Here, we investigated the pathological and physiological roles of KIF20A and assess its potential in enhancing HCC treatment efficacy when combined with PD-1 inhibitors. We initially assess KIF20A's oncogenic function using liver-specific KIF20A knockout (Kif20a CKO) mouse models and orthotopic xenografts. Subsequently, we establish a regulatory axis involving KIF20A, FBXW7, and c-Myc, validated through construction of c-Myc splicing mutants. Large-scale clinical immunohistochemistry (IHC) analyses confirm the pathological relevance of the KIF20A-FBXW7-c-Myc axis in HCC. We demonstrate that KIF20A overexpression correlates with poor prognosis in HCC by competitively inhibiting FBXW7-mediated degradation of c-Myc, thereby promoting glycolysis and enhancing tumor proliferation. Conversely, KIF20A downregulation suppresses these effects, impairing tumor growth through c-Myc downregulation. Notably, KIF20A inhibition attenuates c-Myc-induced MMR expression, associated with improved prognosis in HCC patients receiving PD-1 inhibitor therapy. Furthermore, in Kif20a CKO HCC mouse models, we observe synergistic effects between Kif20a knockout and anti-PD-1 antibodies, significantly enhancing immunotherapeutic efficacy against HCC. Our findings suggest that targeting the KIF20A-c-Myc axis could identify HCC patients likely to benefit from anti-PD-1 therapy. In conclusion, we propose that combining KIF20A inhibitors with anti-PD-1 treatment represents a promising therapeutic strategy for HCC, offering new avenues for clinical development and patient stratification.

11.
Cancer Treat Rev ; 129: 102795, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38972133

RESUMO

Melanoma metabolism can be reprogrammed by activating BRAF mutations. These mutations are present in up to 50% of cutaneous melanomas, with the most common being V600E. BRAF mutations augment glycolysis to promote macromolecular synthesis and proliferation. Prior to the development of targeted anti-BRAF therapies, these mutations were associated with accelerated clinical disease in the metastatic setting. Combination BRAF and MEK inhibition is a first line treatment option for locally advanced or metastatic melanoma harboring targetable BRAF mutations. This therapy shows excellent response rates but these responses are not durable, with almost all patients developing resistance. When BRAF mutated melanoma cells are inhibited with targeted therapies the metabolism of those cells also changes. These cells rely less on glycolysis for energy production, and instead shift to a mitochondrial phenotype with upregulated TCA cycle activity and oxidative phosphorylation. An increased dependence on glutamine utilization is exhibited to support TCA cycle substrates in this metabolic rewiring of BRAF mutated melanoma. Herein we describe the relevant core metabolic pathways modulated by BRAF inhibition. These adaptive pathways represent vulnerabilities that could be targeted to overcome resistance to BRAF inhibitors. This review evaluates current and future therapeutic strategies that target metabolic reprogramming in melanoma cells, particularly in response to BRAF inhibition.

12.
FEBS Open Bio ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952051

RESUMO

Glucose is essential for energy metabolism, and its usage can determine other cellular functions, depending on the cell type. In some pathological conditions, cells are exposed to high concentrations of glucose for extended periods. In this study, we investigated metabolic, oxidative stress, and cellular senescence pathways in human bronchial epithelial cells (HBECs) cultured in media with physiologically low (5 mm) and high (12.5 mm) glucose concentrations. HBECs exposed to 12.5 mm glucose showed increased glucose routing toward the pentose phosphate pathway, lactate synthesis, and glycogen, but not triglyceride synthesis. These metabolic shifts were not associated with changes in cell proliferation rates, oxidative stress, or cellular senescence pathways. Since hyperglycemia is associated with fibrosis in the lung, we asked whether HBECS could activate fibroblasts. Primary human lung fibroblasts cultured in media conditioned by 12.5 mm glucose-exposed HBECs showed a 1.3-fold increase in the gene expression of COL1A1 and COL1A2, along with twofold increased protein levels of smooth muscle cell actin and 2.4-fold of COL1A1. Consistently, HBECs cultured with 12.5 mm glucose secreted proteins associated with inflammation and fibrosis, such as interleukins IL-1ß, IL-10, and IL-13, CC chemokine ligands CCL2 and CCL24, and with extracellular matrix remodeling, such as metalloproteinases (MMP)-1, MMP-3, MMP-9, and MMP-13 and tissue inhibitors of MMPs (TIMP)-1 and -2. This study shows that HBECs undergo metabolic reprogramming and increase the secretion of profibrotic mediators following exposure to high concentrations of glucose, and it contributes to the understanding of the metabolic crosstalk of neighboring cells in diabetes-associated pulmonary fibrosis.

13.
Theranostics ; 14(9): 3439-3469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948053

RESUMO

Rationale: Synergic reprogramming of metabolic dominates neuroblastoma (NB) progression. It is of great clinical implications to develop an individualized risk prognostication approach with stratification-guided therapeutic options for NB based on elucidating molecular mechanisms of metabolic reprogramming. Methods: With a machine learning-based multi-step program, the synergic mechanisms of metabolic reprogramming-driven malignant progression of NB were elucidated at single-cell and metabolite flux dimensions. Subsequently, a promising metabolic reprogramming-associated prognostic signature (MPS) and individualized therapeutic approaches based on MPS-stratification were developed and further validated independently using pre-clinical models. Results: MPS-identified MPS-I NB showed significantly higher activity of metabolic reprogramming than MPS-II counterparts. MPS demonstrated improved accuracy compared to current clinical characteristics [AUC: 0.915 vs. 0.657 (MYCN), 0.713 (INSS-stage), and 0.808 (INRG-stratification)] in predicting prognosis. AZD7762 and etoposide were identified as potent therapeutics against MPS-I and II NB, respectively. Subsequent biological tests revealed AZD7762 substantially inhibited growth, migration, and invasion of MPS-I NB cells, more effectively than that of MPS-II cells. Conversely, etoposide had better therapeutic effects on MPS-II NB cells. More encouragingly, AZD7762 and etoposide significantly inhibited in-vivo subcutaneous tumorigenesis, proliferation, and pulmonary metastasis in MPS-I and MPS-II samples, respectively; thereby prolonging survival of tumor-bearing mice. Mechanistically, AZD7762 and etoposide-induced apoptosis of the MPS-I and MPS-II cells, respectively, through mitochondria-dependent pathways; and MPS-I NB resisted etoposide-induced apoptosis by addiction of glutamate metabolism and acetyl coenzyme A. MPS-I NB progression was fueled by multiple metabolic reprogramming-driven factors including multidrug resistance, immunosuppressive and tumor-promoting inflammatory microenvironments. Immunologically, MPS-I NB suppressed immune cells via MIF and THBS signaling pathways. Metabolically, the malignant proliferation of MPS-I NB cells was remarkably supported by reprogrammed glutamate metabolism, tricarboxylic acid cycle, urea cycle, etc. Furthermore, MPS-I NB cells manifested a distinct tumor-promoting developmental lineage and self-communication patterns, as evidenced by enhanced oncogenic signaling pathways activated with development and self-communications. Conclusions: This study provides deep insights into the molecular mechanisms underlying metabolic reprogramming-mediated malignant progression of NB. It also sheds light on developing targeted medications guided by the novel precise risk prognostication approaches, which could contribute to a significantly improved therapeutic strategy for NB.


Assuntos
Progressão da Doença , Etoposídeo , Neuroblastoma , Microambiente Tumoral , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Microambiente Tumoral/efeitos dos fármacos , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Prognóstico , Reprogramação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Terapia de Alvo Molecular/métodos , Aprendizado de Máquina , Apoptose/efeitos dos fármacos , Reprogramação Metabólica
14.
J Cancer Prev ; 29(2): 32-44, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38957589

RESUMO

Cancer drug resistance is associated with metabolic adaptation. Cancer cells have been shown to implicate acetylated polyamines in adaptations during cell death. However, exploring the mimetic of acetylated polyamines as a potential anticancer drug is lacking. We performed intracellular metabolite profiling of human breast cancer MCF-7 cells treated with doxorubicin (DOX), a well known anticancer drug. A novel and in-house vertical tube gel electrophoresis assisted procedure followed by LC-HRMS analysis was employed to detect acetylated polyamines such as N1-acetylspermidine. We designed a mimetic N1-acetylspermidine (MINAS) which is a known substrate of histone deacetylase 10 (HDAC10). Molecular docking and molecular dynamics (MDs) simulations were used to evaluate the inhibitory potential of MINAS against HDAC10. The inhibitory potential and the ADMET profile of MINAS were compared to a known HDAC10 inhibitor Tubastatin A. N1-acetylspermidine, an acetylated form of polyamine, was detected intracellularly in MCF-7 cells treated with DOX over DMSO-treated MCF-7 cells. We designed and curated MINAS (PubChem CID 162679241). Molecular docking and MD simulations suggested the strong and comparable inhibitory potential of MINAS (-8.2 kcal/mol) to Tubastatin A (-8.4 kcal/mol). MINAS and Tubastatin A share similar binding sites on HDAC10, including Ser138, Ser140, Tyr183, and Cys184. Additionally, MINAS has a better ADMET profile compared to Tubastatin A, with a high MRTD value and lower toxicity. In conclusion, the data show that N1-acetylspermidine levels rise during DOX-induced breast cancer cell death. Additionally, MINAS, an N1-acetylspermidine mimetic compound, could be investigated as a potential anticancer drug when combined with chemotherapy like DOX.

15.
Front Pharmacol ; 15: 1423629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989149

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a malignancy with high incidence in China. Due to the lack of effective molecular targets, the prognosis of ESCC patients is poor. It is urgent to explore the pathogenesis of ESCC to identify promising therapeutic targets. Metabolic reprogramming is an emerging hallmark of ESCC, providing a novel perspective for revealing the biological features of ESCC. In the hypoxic and nutrient-limited tumor microenvironment, ESCC cells have to reprogram their metabolic phenotypes to fulfill the demands of bioenergetics, biosynthesis and redox homostasis of ESCC cells. In this review, we summarized the metabolic reprogramming of ESCC cells that involves glucose metabolism, lipid metabolism, and amino acid metabolism and explore how reprogrammed metabolism provokes novel opportunities for biomarkers and potential therapeutic targets of ESCC.

16.
Elife ; 122024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980302

RESUMO

Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.


Assuntos
Indicã , Falência Renal Crônica , Receptores de Hidrocarboneto Arílico , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Falência Renal Crônica/imunologia , Falência Renal Crônica/metabolismo , Humanos , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , Ácido Araquidônico/metabolismo , Masculino , Imunidade Inata/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Araquidonato 5-Lipoxigenase/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Imunidade Treinada
17.
Antioxidants (Basel) ; 13(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929183

RESUMO

A pathway frequently altered in cancer is glutaminolysis, whereby glutaminase (GA) catalyzes the main step as follows: the deamidation of glutamine to form glutamate and ammonium. There are two types of GA isozymes, named GLS and GLS2, which differ considerably in their expression patterns and can even perform opposing roles in cancer. GLS correlates with tumor growth and proliferation, while GLS2 can function as a context-dependent tumor suppressor. However, both isoenzymes have been described as essential molecules handling oxidant stress because of their involvement in glutathione production. We reviewed the literature to highlight the critical roles of GLS and GLS2 in restraining ROS and regulating both cellular signaling and metabolic stress due to their function as indirect antioxidant enzymes, as well as by modulating both reductive carboxylation and ferroptosis. Blocking GA activity appears to be a potential strategy in the dual activation of ferroptosis and inhibition of cancer cell growth in a ROS-mediated mechanism.

18.
Curr Issues Mol Biol ; 46(6): 6199-6222, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921041

RESUMO

Human papillomavirus 16 (HPV 16) infection is associated with several types of cancer, such as head and neck, cervical, anal, and penile cancer. Its oncogenic potential is due to the ability of the E6 and E7 oncoproteins to promote alterations associated with cell transformation. HPV 16 E6 and E7 oncoproteins increase metabolic reprogramming, one of the hallmarks of cancer, by increasing the stability of hypoxia-induced factor 1 α (HIF-1α) and consequently increasing the expression levels of their target genes. In this report, by bioinformatic analysis, we show the possible effect of HPV 16 oncoproteins E6 and E7 on metabolic reprogramming in cancer through the E6-E7-PHD2-VHL-CUL2-ELOC-HIF-1α axis. We proposed that E6 and E7 interact with VHL, CUL2, and ELOC in forming the E3 ubiquitin ligase complex that ubiquitinates HIF-1α for degradation via the proteasome. Based on the information found in the databases, it is proposed that E6 interacts with VHL by blocking its interaction with HIF-1α. On the other hand, E7 interacts with CUL2 and ELOC, preventing their binding to VHL and RBX1, respectively. Consequently, HIF-1α is stabilized and binds with HIF-1ß to form the active HIF1 complex that binds to hypoxia response elements (HREs), allowing the expression of genes related to energy metabolism. In addition, we suggest an effect of E6 and E7 at the level of PHD2, VHL, CUL2, and ELOC gene expression. Here, we propose some miRNAs targeting PHD2, VHL, CUL2, and ELOC mRNAs. The effect of E6 and E7 may be the non-hydroxylation and non-ubiquitination of HIF-1α, which may regulate metabolic processes involved in metabolic reprogramming in cancer upon stabilization, non-degradation, and translocation to the nucleus.

19.
Metabolites ; 14(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38921460

RESUMO

Epigenetic and metabolic reprogramming alterations are two important features of tumors, and their reversible, spatial, and temporal regulation is a distinctive hallmark of carcinogenesis. Epigenetics, which focuses on gene regulatory mechanisms beyond the DNA sequence, is a new entry point for tumor therapy. Moreover, metabolic reprogramming drives hepatocellular carcinoma (HCC) initiation and progression, highlighting the significance of metabolism in this disease. Exploring the inter-regulatory relationship between tumor metabolic reprogramming and epigenetic modification has become one of the hot directions in current tumor metabolism research. As viral etiologies have given way to metabolic dysfunction-associated steatotic liver disease (MASLD)-induced HCC, it is urgent that complex molecular pathways linking them and hepatocarcinogenesis be explored. However, how aberrant crosstalk between epigenetic modifications and metabolic reprogramming affects MASLD-induced HCC lacks comprehensive understanding. A better understanding of their linkages is necessary and urgent to improve HCC treatment strategies. For this reason, this review examines the interwoven landscape of molecular carcinogenesis in the context of MASLD-induced HCC, focusing on mechanisms regulating aberrant epigenetic alterations and metabolic reprogramming in the development of MASLD-induced HCC and interactions between them while also updating the current advances in metabolism and epigenetic modification-based therapeutic drugs in HCC.

20.
J Am Heart Assoc ; 13(13): e034805, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38934866

RESUMO

BACKGROUND: The regenerative capacity of the adult mammalian hearts is limited. Numerous studies have explored mechanisms of adult cardiomyocyte cell-cycle withdrawal. This translational study evaluated the effects and underlying mechanism of rhCHK1 (recombinant human checkpoint kinase 1) on the survival and proliferation of cardiomyocyte and myocardial repair after ischemia/reperfusion injury in swine. METHODS AND RESULTS: Intramyocardial injection of rhCHK1 protein (1 mg/kg) encapsulated in hydrogel stimulated cardiomyocyte proliferation and reduced cardiac inflammation response at 3 days after ischemia/reperfusion injury, improved cardiac function and attenuated ventricular remodeling, and reduced the infarct area at 28 days after ischemia/reperfusion injury. Mechanistically, multiomics sequencing analysis demonstrated enrichment of glycolysis and mTOR (mammalian target of rapamycin) pathways after rhCHK1 treatment. Co-Immunoprecipitation (Co-IP) experiments and protein docking prediction showed that CHK1 (checkpoint kinase 1) directly bound to and activated the Serine 37 (S37) and Tyrosine 105 (Y105) sites of PKM2 (pyruvate kinase isoform M2) to promote metabolic reprogramming. We further constructed plasmids that knocked out different CHK1 and PKM2 amino acid domains and transfected them into Human Embryonic Kidney 293T (HEK293T) cells for CO-IP experiments. Results showed that the 1-265 domain of CHK1 directly binds to the 157-400 amino acids of PKM2. Furthermore, hiPSC-CM (human iPS cell-derived cardiomyocyte) in vitro and in vivo experiments both demonstrated that CHK1 stimulated cardiomyocytes renewal and cardiac repair by activating PKM2 C-domain-mediated cardiac metabolic reprogramming. CONCLUSIONS: This study demonstrates that the 1-265 amino acid domain of CHK1 binds to the 157-400 domain of PKM2 and activates PKM2-mediated metabolic reprogramming to promote cardiomyocyte proliferation and myocardial repair after ischemia/reperfusion injury in adult pigs.


Assuntos
Proliferação de Células , Quinase 1 do Ponto de Checagem , Modelos Animais de Doenças , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/genética , Humanos , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Células HEK293 , Suínos , Reprogramação Celular , Proteínas de Ligação a Hormônio da Tireoide , Regeneração , Ligação Proteica , Sus scrofa , Remodelação Ventricular/fisiologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Metabolismo Energético/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Reprogramação Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...