RESUMO
To prevent the great dangers caused by emergency situations, providing rapid and high-quality emergency aid highly depends on the location of emergency medical centers. The purpose of this research is to present a multi-objective mathematical programing model based on the minimum P-envy algorithm to locate and construct emergency medical services (EMS). Maximizing the coverage in order to increase the probability of survival of different categories of patients, minimizing the costs of constructing EMS and optimizing the ratio of regions having the right to emergency medical services is one of the fundamental challenges in the health care system of countries. In this paper, a model for maximum utilization of EMS considering budget limitations is presented. In this study, since the problem is NP-Hard, the Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm were used to solve this problem. The parameters of the metaheuristic algorithms were tuned using the Taguchi method. Several instance problems were solved to compare the performance of 2 algorithms. The results demonstrate that the validity of the proposed model. Also, the mean of the solutions obtained by GA for small, medium, and large-size problems are better than the SA algorithm. Also, the GA algorithm obtained more efficient solutions than the SA algorithm.
RESUMO
Data acquisition and processing are areas of research in fault diagnosis in rotating machinery, where the rotor is a fundamental component that benefits from dynamic analysis. Several intelligent algorithms have been used to optimize investigations of this nature. However, the Jaya algorithm has only been applied in a few instances. In this study, measurements of the amplitude of vibration in the radial direction in a gas microturbine were analyzed using different rotational frequency and temperature levels. A response surface model was generated using a polynomial tuned by the Jaya metaheuristic algorithm applied to the averages of the measurements, and another on the whole sample, to determine the optimal operating conditions and the effects that temperature produces on vibrations. Several tests with different orders of the polynomial were carried out. The fifth-order polynomial performed better in terms of MSE. The response surfaces were presented fitting the measured points. The roots of the MSE, as a percentage, for the 8-point and 80-point fittings were 3.12% and 10.69%, respectively. The best operating conditions were found at low and high rotational frequencies and at a temperature of 300 ∘C. High temperature conditions produced more variability in the measurements and caused the minimum value of the vibration amplitude to change in terms of rotational frequency. Where it is feasible to undertake experiments with minimal variations, the model that uses only the averages can be used. Future work will examine the use of different error functions which cannot be conveniently implemented in a common second-order model. The proposed method does not require in-depth mathematical analysis or high computational capabilities.