Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biodegradation ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966620

RESUMO

This study proposes the was to evaluate the stability and methane production with organic load differents in an upflow anaerobic sludge blanket reactor (UASB) treating swine wastewater by methods of multivariate analysis. Four organic loads were used with average hydraulic holding times of one day. The methods of data analysis of linear regression, Pearson correlation, principal component analysis and hierarchical clustering analysis were used for understanding stability and methane production in the reactor. The highest concentrations of bicarbonate alkalinity of 683 mg L-1 CaCO3 and total volatile acids of 1418 mg L-1 HAc with maximum organic loading applied were obtained. The optimal stability conditions occurred at an intermediate and partial alkalinity ratio between 0.24 and 0.25 observed in initial phases with a chemical oxygen demand (COD) removal of 47-57%. Maximum methane production was 9.0 L CH4 d-1 observed with linear regression positive and occurred at the highest applied organic load, corresponding to the highest COD removal efficiency and increased microbial biomass. Positive and negative correlation between functional stability in anaerobic digestion showed regular activity between acids, alkalinity and organic matter removal. This fact was also proven by the analysis of principal components that showed three components responsible for explaining 83.2% of the data variability, and the alkalinity, organic matter influent and organic acids had the greatest effects on the stability of the UASB reactor. Hierarchical clusters detected the formation of five groupings with a similarity of 50.1%, indicating that temperature and pH were variables with unitary influences on data dimensionality.

2.
Biotechnol Lett ; 45(10): 1339-1353, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37535136

RESUMO

Methane production by microbial fermentation of municipal waste is a challenge for better yield processes. This work describes the characterization of a hydrogenotrophic methanogen microbial community used in a bioaugmentation procedure to improve the methane yield in a thermophilic anaerobic process, digesting the organic fraction of municipal solid waste. The performance of the bioaugmentation was assessed in terms of methane production and changes in the microbial community structure. The results showed that bioaugmentation slightly improved the cumulative methane yield (+ 4%) in comparison to the control, and its use led to an acceleration of the methanogenesis stage. We observed associated significant changes in the relative abundance of taxa and their interactions, using high throughput DNA sequencing of V3-16S rRNA gene libraries, where the abundance of the archaeal hydrogenotrophic genus Methanoculleus (class Methanomicrobia, phylum Euryarchaeota) and the bacterial order MBA08 (class Clostridia, phylum Firmicutes) were dominant. The relevant predicted metabolic pathways agreed with substrate degradation and the anaerobic methanogenic process. The purpose of the study was to evaluate the effect of the addition of hydrogenotrophic methanogens in the generation of methane, while treating organic waste through anaerobic digestion.


Assuntos
Euryarchaeota , Microbiota , Anaerobiose , Metano/metabolismo , RNA Ribossômico 16S/genética , Reatores Biológicos/microbiologia , Euryarchaeota/genética , Euryarchaeota/metabolismo , Microbiota/genética , Firmicutes/metabolismo
3.
Animals (Basel) ; 11(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808874

RESUMO

The aim of this study was to measure methane emissions (CH4) and herbage intake, and, on the basis of these results, obtain the methane yield (MY, methane yield as g CH4/kg dry matter intake (DMI) and Ym, methane yield as a percentage of Gross Energy intake), from beef cows grazing on native grasslands. We used forty pregnant heifers, with two treatments of herbage allowance (HA) adjusted seasonally (8 and 5 kg dry matter (DM)/kg cattle live weight (LW), on average), during autumn, winter and spring. Methane emissions (207 g CH4/d), organic matter intake (OMI, 7.7 kg organic matter (OM)/d), MY (23.6 g CH4/kg DMI) and Ym (7.4%), were similar between treatments. On the other hand, all variables had a marked increase in spring (10.8 kg OM/d and 312 g CH4/d), except for Ym. The methane emission factor from Intergovernmental Panel on Climate Change (IPCC) Tier 2 estimated with these results was 78 kg CH4/head/year. The results show that methane emissions and intake were influenced by the season, but not by the HA analyzed in this study. This information for cow-calf systems in native grasslands in Uruguay can be used in National greenhouse gases (GHG) inventories, representing a relevant contribution to global GHG inventories.

4.
Sci Total Environ ; 706: 135745, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31806330

RESUMO

The maximum methane yield that can be obtained from anaerobic co-digestion of microalgae and waste activated sludge (WAS) mixtures, after thermal pretreatment at 65 °C during 4 h, was investigated. Furthermore, the fitting of the experimental data by five kinetic models (first-order, second-order, modified Gompertz, Logistic, and two-substrate) was evaluated. Thermal pretreatment increased the methane yield of single microalgae and WAS digestion by ≈ 44 and by ≈ 52%, respectively. The results also showed that up to 60% of WAS can be co-digested with microalgae without impairing the methane yield, producing up to 338 mLCH4 gVS-1. Data from digestion of non-pretreated microalgae and WAS were well described by all kinetic models, but digestion of thermally pretreated microalgae, WAS, and their co-digestion mixtures, was best fitted by means of a two-substrate model, indicating that after pretreatment it is necessary to take into account the contribution of both rapidly and slowly biodegradable fractions.


Assuntos
Microalgas , Esgotos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Cinética , Metano
5.
Environ Sci Pollut Res Int ; 25(1): 712-722, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29063393

RESUMO

In Mexico, the corn tortilla is a food of great economic importance. Corn tortilla production generates about 1500-2000 m3 of wastewater per 600 tons of processed corn. Although this wastewater (also known as nejayote) has a high organic matter content, few studies in Mexico have analyzed its treatment. This study presents fresh data on the potential methane production capacity of nejayote in a two-phase anaerobic digestion system using an Anaerobic-Packed Column Reactor (APCR) to optimize the acidogenic phase and an up-flow anaerobic sludge blanket (UASB) reactor to enhance the methanogenic process. Results indicate that day 8 was ideal to couple the APCR to the UASB reactor. This allowed for a 19-day treatment that yielded 96% COD removal and generated a biogas containing 84% methane. The methane yield was 282 L kg-1 of CODremoved. Thus, two-phase anaerobic digestion is an efficient process to treat nejayote; furthermore, this study demonstrated the possibility of using an industrial application by coupling the APCR to the UASB reactor system, in order to assess its feasibility for biomethane generation as a sustainable bioenergy source.


Assuntos
Reatores Biológicos/microbiologia , Resíduos Industriais/análise , Metano/biossíntese , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Zea mays , Anaerobiose , Indústria Alimentícia , México , Esgotos/química
6.
Appl Biochem Biotechnol ; 178(8): 1522-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26728653

RESUMO

The effect of natural mineral on the mono-digestion of maize straw was evaluated in continuously stirred tank reactors (CSTRs) at 38 °C. Different strategies of mineral addition were studied. The organic loading rate (OLR) was varied from 0.5 to 2.5 g volatile solid (VS) L(-1) d(-1). A daily addition of 1 g mineral L(-1) in reactor 2 (R2) diminished the methane production by about 11 % with respect to the initial phase. However, after a gradual addition of mineral, an average methane yield of 257 NmL CH4 g VS(-1) was reached and the methane production was enhanced by 30 % with regard to R1. An increase in the frequency of mineral addition did not enhance the methane production. The archaeal community was more sensitive to the mineral than the bacterial population whose similarity stayed high between R1 and R2. Significant difference in methane yield was found for both reactors throughout the operation.


Assuntos
Reatores Biológicos , Metano/biossíntese , Zea mays , Archaea/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Metano/química , Minerais/química , Minerais/farmacologia , Resíduos
7.
J Environ Manage ; 168: 229-35, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26716354

RESUMO

As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to avoid environmental impact. Due to the biodegradability of manure, anaerobic digestion is an interesting alternative to treat these effluents. The low volatile solid concentration in the swine manure suggests the need for solid-liquid separation as a tool to improve biogas generation capacity. The present study aimed to determine the influence of simplified and cheap solid-liquid separation strategies (based on screening and settling) and different manure of each swine production phases (gestating and farrowing sows houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sows house (GSH-a and GSH-b), two farrowing sows house (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). The Biochemical Methane Production (BMP) tests were performed according to international standard procedure (VDI 4630). The settled sludge fraction responds for 20-30% of raw manure volume, producing 40-60% of the total methane yield. The methane potential of settled sludge fraction was about 2 times higher than the supernatant fraction. There are differences on biogas yield between the raw manure of different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH 970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences are relative to production phase (feed type, feeding techniques, etc.), but also the management of the effluent inside the facilities (water management).


Assuntos
Biocombustíveis , Reatores Biológicos , Metano/biossíntese , Anaerobiose , Animais , Brasil , Esterco , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA