RESUMO
Seasonal floodplains in the Amazon basin are important sources of methane (CH4), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH4 cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.e., Amazonas and Tapajós rivers) and one upland forest. We employed a two-factorial experimental design comprising flooding (with non-flooded control) and temperature (at 27 °C and 30 °C, representing a 3 °C increase) as variables. We assessed prokaryotic community dynamics over 30 days using 16S rRNA gene sequencing and qPCR. These data were integrated with chemical properties, CH4 fluxes, and isotopic values and signatures. In the floodplains, temperature changes did not significantly affect the overall microbial composition and CH4 fluxes. CH4 emissions and uptake in response to flooding and non-flooding conditions, respectively, were observed in the floodplain soils. By contrast, in the upland forest, the higher temperature caused a sink-to-source shift under flooding conditions and reduced CH4 sink capability under dry conditions. The upland soil microbial communities also changed in response to increased temperature, with a higher percentage of specialist microbes observed. Floodplains showed higher total and relative abundances of methanogenic and methanotrophic microbes compared to forest soils. Isotopic data from some flooded samples from the Amazonas river floodplain indicated CH4 oxidation metabolism. This floodplain also showed a high relative abundance of aerobic and anaerobic CH4 oxidizing Bacteria and Archaea. Taken together, our data indicate that CH4 cycle dynamics and microbial communities in Amazonian floodplain and upland forest soils may respond differently to climate change effects. We also highlight the potential role of CH4 oxidation pathways in mitigating CH4 emissions in Amazonian floodplains.
RESUMO
Bioplastics hold significant promise in replacing conventional plastic materials, linked to various serious issues such as fossil resource consumption, microplastic formation, non-degradability, and limited end-of-life options. Among bioplastics, polyhydroxyalkanoates (PHA) emerge as an intriguing class, with poly(3-hydroxybutyrate) (P3HB) being the most utilized. The extensive application of P3HB encounters a challenge due to its high production costs, prompting the investigation of sustainable alternatives, including the utilization of waste and new production routes involving CO2 and CH4. This study provides a valuable comparison of two P3HBs synthesized through distinct routes: one via cyanobacteria (Synechocystis sp. PCC 6714) for photoautotrophic production and the other via methanotrophic bacteria (Methylocystis sp. GB 25) for chemoautotrophic growth. This research evaluates the thermal and mechanical properties, including the aging effect over 21 days, demonstrating that both P3HBs are comparable, exhibiting physical properties similar to standard P3HBs. The results highlight the promising potential of P3HBs obtained through alternative routes as biomaterials, thereby contributing to the transition toward more sustainable alternatives to fossil polymers.
RESUMO
Global warming has a strong impact on the polar regions, in particular, the Antarctic Peninsula and nearby islands. Methane (CH4) is a major factor in climate change and mitigation of CH4 emissions can be accomplished through microbial oxidation by methanotrophic bacteria. Understanding this biological process is crucial given the shortage of research carried out in this geographical area. The aim of this study was to characterise psychrophilic enrichment cultures of aerobic methanotrophs obtained from lake sediments of the Fildes Peninsula (King George Island, South Shetland Islands) and revealing the distribution of the genus Methylobacter in different lake sediments of the peninsula. Four stable methanotrophic enrichment cultures were obtained and analysed by metagenome-assembled genomes (MAGs). The phylogeny of methanotroph MAGs recovered from these enrichment cultures based on the 16S rRNA gene showed that K-2018 MAG008 and D1-2020 MAG004Ts clustered within the Methylobacter clade 2, with high similarity to Methylobacter tundripaludum SV96T (97.88 and 98.56% respectively). However, the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values with M. tundripaludum were < 95% (84.8 and 85.0%, respectively) and < 70% (30.2 and 30.3%, respectively), suggesting that they represent a putative novel species for which the name 'Ca. Methylobacter titanis' is proposed. This is the first species of clade 2 of the genus Methylobacter obtained from Antarctica. The bacterial diversity assessed by 16S rRNA gene sequencing of 21 samples of different lakes (water column and sediments) revealed 54 ASVs associated with methanotrophs and the genus Methylobacter as the most abundant. These results suggest that aerobic methanotrophs belonging to the Methylobacter clade 2 would be the main responsible for CH4 oxidation in these sediments.
Assuntos
Lagos , Methylococcaceae , Lagos/microbiologia , Regiões Antárticas , RNA Ribossômico 16S/genética , Metano , Oxirredução , DNA , Filogenia , Methylococcaceae/genéticaRESUMO
Deforestation threatens the integrity of the Amazon biome and the ecosystem services it provides, including greenhouse gas mitigation. Forest-to-pasture conversion has been shown to alter the flux of methane gas (CH4 ) in Amazonian soils, driving a switch from acting as a sink to a source of atmospheric CH4 . This study aimed to better understand this phenomenon by investigating soil microbial metagenomes, focusing on the taxonomic and functional structure of methane-cycling communities. Metagenomic data from forest and pasture soils were combined with measurements of in situ CH4 fluxes and soil edaphic factors and analysed using multivariate statistical approaches. We found a significantly higher abundance and diversity of methanogens in pasture soils. As inferred by co-occurrence networks, these microorganisms seem to be less interconnected within the soil microbiota in pasture soils. Metabolic traits were also different between land uses, with increased hydrogenotrophic and methylotrophic pathways of methanogenesis in pasture soils. Land-use change also induced shifts in taxonomic and functional traits of methanotrophs, with bacteria harbouring genes encoding the soluble form of methane monooxygenase enzyme (sMMO) depleted in pasture soils. Redundancy analysis and multimodel inference revealed that the shift in methane-cycling communities was associated with high pH, organic matter, soil porosity and micronutrients in pasture soils. These results comprehensively characterize the effect of forest-to-pasture conversion on the microbial communities driving the methane-cycling microorganisms in the Amazon rainforest, which will contribute to the efforts to preserve this important biome.
Assuntos
Microbiota , Solo , Solo/química , Metano/metabolismo , Florestas , Genes Bacterianos , Microbiota/genética , Microbiologia do SoloRESUMO
Riparian buffer systems (RBS) are a common agroforestry practice that involves maintaining a forested boundary adjacent to water bodies to protect the aquatic ecosystems in agricultural landscapes. While RBS have potential for carbon sequestration, they also can be sources of methane emissions. Our study site at Washington Creek in Southern Ontario, includes a rehabilitated tree buffer (RH), a grassed buffer (GRB), an undisturbed deciduous forest (UNF), an undisturbed coniferous forest (CF), and an adjacent agricultural field (AGR). The objective of this study was to assess the diversity and activity of CH4 cycling microbial communities in soils sampled during hot moments of methane fluxes (July 04 and August 15). We used qPCR and high-throughput amplicon sequencing from both DNA and cDNA to target methanogen and methanotroph communities. Methanogens, including the archaeal genera Methanosaeta, Methanosarcina, Methanomassiliicoccus, and Methanoreggula, were abundant in all RBSs, but they were significantly more active in UNF soils, where CH4 emissions were highest. Methylocystis was the most prevalent taxon among methanotrophs in all the riparian sites, except for AGR soils where the methanotrophs community was composed primarily of members of rice paddy clusters (RPCs and RPC-1) and upland soil clusters (TUSC and USCα). The main factors influencing the composition and assembly of methane-cycling microbiomes were soil carbon and moisture content. We concluded that the differences in CH4 fluxes observed between RBSs were primarily caused by differences in the presence and activity of methanogens, which were influenced by total soil carbon and water content. Overall, this study emphasizes the importance of understanding the microbial drivers of CH4 fluxes in RBSs in order to maximize RBS environmental benefits.
Assuntos
Metano , Microbiota , Metano/análise , Archaea/genética , Solo/química , Carbono , Microbiologia do SoloRESUMO
The northern Gulf of Mexico (nGOM) hypoxic zone is a shallow water environment where methane, a potent greenhouse gas, fluxes from sediments to bottom water and remains trapped due to summertime stratification. When the water column is destratified, an active planktonic methanotrophic community could mitigate the efflux of methane, which accumulates to high concentrations, to the atmosphere. To investigate the possibility of such a biofilter in the nGOM hypoxic zone we performed metagenome assembly, and metagenomic and metatranscriptomic read mapping. Methane monooxygenase (pmoA) was an abundant transcript, yet few canonical methanotrophs have been reported in this environment, suggesting a role for non-canonical methanotrophs. To determine the identity of these methanotrophs, we reconstructed six novel metagenome-assembled genomes (MAGs) in the Planctomycetota, Verrucomicrobiota and one putative Latescibacterota, each with at least one pmoA gene copy. Based on ribosomal protein phylogeny, closely related microbes (mostly from Tara Oceans) and isolate genomes were selected and co-analyzed with the nGOM MAGs. Gene annotation and read mapping suggested that there is a large, diverse and unrecognized community of active aerobic methanotrophs in the nGOM hypoxic zone and in the global ocean that could mitigate methane flux to the atmosphere.
Assuntos
Plâncton , Água , Golfo do México , Plâncton/genética , Metagenoma , Metano/metabolismo , Filogenia , Metagenômica , RNA Ribossômico 16S/genéticaRESUMO
Although floodplains are recognized as important sources of methane (CH4) in the Amazon basin, little is known about the role of methanotrophs in mitigating CH4 emissions in these ecosystems. Our previous data reported the genus Methylocystis as one of the most abundant methanotrophs in these floodplain sediments. However, information on the functional potential and life strategies of these organisms living under seasonal flooding is still missing. Here, we described the first metagenome-assembled genome (MAG) of a Methylocystis sp. recovered from Amazonian floodplains sediments, and we explored its functional potential and ecological traits through phylogenomic, functional annotation, and pan-genomic approaches. Both phylogenomics and pan-genomics identified the closest placement of the bin.170_fp as Methylocystis parvus. As expected for Type II methanotrophs, the Core cluster from the pan-genome comprised genes for CH4 oxidation and formaldehyde assimilation through the serine pathway. Furthermore, the complete set of genes related to nitrogen fixation is also present in the Core. Interestingly, the MAG singleton cluster revealed the presence of unique genes related to nitrogen metabolism and cell motility. The study sheds light on the genomic characteristics of a dominant, but as yet unexplored methanotroph from the Amazonian floodplains. By exploring the genomic potential related to resource utilization and motility capability, we expanded our knowledge on the niche breadth of these dominant methanotrophs in the Amazonian floodplains.
RESUMO
Ammonia oxidation is the rate-limiting first step of nitrification and a key process in the nitrogen cycle that results in the formation of nitrite (NO2 -), which can be further oxidized to nitrate (NO3 -). In the Amazonian floodplains, soils are subjected to extended seasons of flooding during the rainy season, in which they can become anoxic and produce a significant amount of methane (CH4). Various microorganisms in this anoxic environment can couple the reduction of different ions, such as NO2 - and NO3 -, with the oxidation of CH4 for energy production and effectively link the carbon and nitrogen cycle. Here, we addressed the composition of ammonium (NH4 +) and NO3 --and NO2 --dependent CH4-oxidizing microbial communities in an Amazonian floodplain. In addition, we analyzed the influence of environmental and geochemical factors on these microbial communities. Soil samples were collected from different layers of forest and agroforest land-use systems during the flood and non-flood seasons in the floodplain of the Tocantins River, and next-generation sequencing of archaeal and bacterial 16S rRNA amplicons was performed, coupled with chemical characterization of the soils. We found that ammonia-oxidizing archaea (AOA) were more abundant than ammonia-oxidizing bacteria (AOB) during both flood and non-flood seasons. Nitrogen-dependent anaerobic methane oxidizers (N-DAMO) from both the archaeal and bacterial domains were also found in both seasons, with higher abundance in the flood season. The different seasons, land uses, and depths analyzed had a significant influence on the soil chemical factors and also affected the abundance and composition of AOA, AOB, and N-DAMO. During the flood season, there was a significant correlation between ammonia oxidizers and N-DAMO, indicating the possible role of these oxidizers in providing oxidized nitrogen species for methanotrophy under anaerobic conditions, which is essential for nitrogen removal in these soils.
RESUMO
Global warming has a strong impact on polar regions. Particularly, the Antarctic Peninsula and nearby islands have experienced a marked warming trend in the past 50 years. Therefore, higher methane (CH4) emissions from this area could be expected in the future. Since mitigation of these emissions can be carried out by microbial oxidation, understanding this biological process is crucial since to our knowledge, no related studies have been performed in this area before. In this work, the aerobic CH4 oxidation potential of five freshwater lake sediments of Fildes Peninsula (King George Island, South Shetland Islands) was determined with values from 0.07 to 10 µmol CH4 gdw-1 day-1 and revealed up to 100-fold increase in temperature gradients (5, 10, 15, and 20°C). The structure and diversity of the bacterial community in the sediments were analyzed by next-generation sequencing (Illumina MiSeq) of 16S rRNA and pmoA genes. A total of 4,836 ASVs were identified being Proteobacteria, Actinobacteriota, Acidobacteriota, and Bacteroidota the most abundant phyla. The analysis of the pmoA gene identified 200 ASVs of methanotrophs, being Methylobacter Clade 2 (Type I, family Methylococcaceae) the main responsible of the aerobic CH4 oxidation. Moreover, both approaches revealed the presence of methanotrophs of the classes Gammaproteobacteria (families Methylococcaceae and Crenotrichaceae), Alphaproteobacteria (family Methylocystaceae), Verrucomicrobia (family Methylacidiphilaceae), and the candidate phylum of anaerobic methanotrophs Methylomirabilota. In addition, bacterial phospholipid fatty acids (PLFA) biomarkers were studied as a proxy for aerobic methane-oxidizing bacteria and confirmed these results. Methanotrophic bacterial diversity was significantly correlated with pH. In conclusion, our findings suggest that aerobic methanotrophs could mitigate in situ CH4 emissions in a future scenario with higher temperatures in this climate-sensitive area. This study provides new insights into the diversity of methanotrophs, as well as the influence of temperature on the CH4 oxidation potential in sediments of freshwater lakes in polar regions of the southern hemisphere.
RESUMO
The Amazonian floodplain forests are dynamic ecosystems of great importance for the regional hydrological and biogeochemical cycles and function as a significant CH4 source contributing to the global carbon balance. Unique geochemical factors may drive the microbial community composition and, consequently, affect CH4 emissions across floodplain areas. Here, we report the in situ composition of CH4 cycling microbial communities in Amazonian floodplain sediments. We considered how abiotic factors may affect the microbial community composition and, more specifically, CH4 cycling groups. We collected sediment samples during wet and dry seasons from three different types of floodplain forests, along with upland forest soil samples, from the Eastern Amazon, Brazil. We used high-resolution sequencing of archaeal and bacterial 16S rRNA genes combined with real-time PCR to quantify Archaea and Bacteria, as well as key functional genes indicative of the presence of methanogenic (mcrA) and methanotrophic (pmoA) microorganisms. Methanogens were found to be present in high abundance in floodplain sediments, and they seem to resist the dramatic environmental changes between flooded and nonflooded conditions. Methanotrophs known to use different pathways to oxidise CH4 were detected, including anaerobic archaeal and bacterial taxa, indicating that a wide metabolic diversity may be harboured in this highly variable environment. The floodplain environmental variability, which is affected by the river origin, drives not only the sediment chemistry but also the composition of the microbial communities. These environmental changes seem also to affect the pools of methanotrophs occupying distinct niches. Understanding these shifts in the methanotrophic communities could improve our comprehension of the CH4 emissions in the region.
Assuntos
Euryarchaeota , Metano , Archaea/genética , Brasil , RNA Ribossômico 16S/genética , Microbiologia do SoloRESUMO
Methanotrophic bacteria can use methane as sole carbon and energy source. Its importance in the environment is related to the mitigation of methane emissions from soil and water to the atmosphere. Brazilian mangroves are highly productive, have potential to methane production, and it is inferred that methanotrophic community is of great importance for this ecosystem. The scope of this study was to investigate the functional and taxonomic diversity of methanotrophic bacteria present in the anthropogenic impacted sediments from Bertioga´s mangrove (SP, Brazil). Sediment sample was cultivated with methane and the microbiota actively involved in methane oxidation was identified by DNA-based stable isotope probing (DNA-SIP) using methane as a labeled substrate. After 4 days (96 h) of incubation and consumption of 0.7 mmol of methane, the most active microorganisms were related to methanotrophs Methylomonas and Methylobacter as well as to methylotrophic Methylotenera, indicating a possible association of these bacterial groups within a methane-derived food chain in the Bertioga mangrove. The abundance of genera Methylomonas, able to couple methane oxidation to nitrate reduction, may indicate that under low dissolved oxygen tensions, some aerobic methanotrophs could shift to intraerobic methane oxidation to avoid oxygen starvation.
Assuntos
Metano , Microbiota , Brasil , DNA , Isótopos , Oxirredução , Filogenia , Microbiologia do SoloRESUMO
This study investigates the relationship between collective motion and propulsion of bacterial consortia and their biopolymer production efficiency. Rheological tests were conducted for suspensions of two different methanotrophic bacterial consortia obtained after enrichment of sediment samples from mangrove sites in Brazil. We considered the linear viscoelasticity region and analyzed the values of storage and loss moduli as functions of days of cultivation, for different values of the volume fraction. The suspensions' rheological behaviors reflected the bacterial growth stage. We found that the formation of structures over time in some types of consortia can hinder the movement of bacteria in the search for nutrients. The change in complex viscosity of the two consortia followed a different and rich behavior that appears to be closely related to their capacity to capture methane. Our analysis showed a possible correlation between collective motion, viscosity reduction, and biopolymer production. The pieces of evidence from this study suggest that the efficiency of bacterial motion is directly related to biopolymer production, and this could facilitate the process of identifying the best consortium of biopolymer producing bacteria.
Assuntos
Bactérias/crescimento & desenvolvimento , Hidroxibutiratos/metabolismo , Metano/metabolismo , Consórcios Microbianos , Poliésteres/metabolismo , ReologiaRESUMO
This work evaluated the effect of different initial biomass ratios in a co-culture of an alkaliphilic methanotrophic bacteria consortium (AMB) and the green microalga Scenedesmus obtusiusculus (GM) on the maximum CH4 specific biodegradation rate and global carbon uptake. The highest maximum specific biodegradation rate was 589 ± 0.01 mgCH4 gbiomass-1 d-1 obtained for a proportion of 3:1 AMB-GM (w w-1) and 8% of initial CH4 in the headspace. The methane degradation rate was 1.5 times lower than the value obtained solely by the AMB consortium, and it was associated with pH increases due to the evolved CO2 consumption by the microalga. Increased activity of the AMB consortium along the experiments was due to progressive adaptation. Massive sequencing revealed the presence of methanotrophic/methylotrophic species such as Methylocystis sp., Methylomicrobium sp., Methylophaga sp., and Hyphomicrobium sp. Successful complete methane and carbon dioxide uptake was obtained with the 3:1, 4:1, and 5:1 AMB-GM biomass ratios, while for the rest of the ratios tested, more than 70% of the initial methane was transformed into biomass and inorganic carbon. This study showed that methanotrophic-microalgal co-cultures lead to a promising strategy for greenhouse gases mitigation in one step.
Assuntos
Biodegradação Ambiental , Gases de Efeito Estufa , Metano/metabolismo , Microalgas/fisiologia , Biomassa , Dióxido de Carbono/metabolismo , Técnicas de Cocultura , Methylocystaceae , Microalgas/metabolismo , Scenedesmus/metabolismoRESUMO
Methane is produced in anaerobic environments, such as reactors used to treat wastewaters, and can be consumed by methanotrophs. The composition and structure of a microbial community enriched from anaerobic sewage sludge under methane-oxidation condition coupled to denitrification were investigated. Denaturing gradient gel electrophoresis (DGGE) analysis retrieved sequences of Methylocaldum and Chloroflexi. Deep sequencing analysis revealed a complex community that changed over time and was affected by methane concentration. Methylocaldum (8.2%), Methylosinus (2.3%), Methylomonas (0.02%), Methylacidiphilales (0.45%), Nitrospirales (0.18%), and Methanosarcinales (0.3%) were detected. Despite denitrifying conditions provided, Nitrospirales and Methanosarcinales, known to perform anaerobic methane oxidation coupled to denitrification (DAMO) process, were in very low abundance. Results demonstrated that aerobic and anaerobic methanotrophs coexisted in the reactor together with heterotrophic microorganisms, suggesting that a diverse microbial community was important to sustain methanotrophic activity. The methanogenic sludge was a good inoculum to enrich methanotrophs, and cultivation conditions play a selective role in determining community composition.
Assuntos
Reatores Biológicos , Desnitrificação , Metano , Anaerobiose , Esgotos/química , Esgotos/microbiologiaRESUMO
The oxidation of methane (CH4) using biofilters has been proposed as an alternative to mitigate anthropogenic greenhouse gas emissions with a low concentration of CH4 that cannot be used as a source of energy. However, conventional biofilters utilize organic packing materials that have a short lifespan, clogging problems, and are commonly inoculated with non-specific microorganisms leading to unpredictable CH4 elimination capacities (EC) and removal efficiencies (RE). The main objective of this work was to characterize the oxidation of CH4 in two biotrickling filters (BTFs) packed with polyethylene rings and inoculated with two methanotrophic bacteria, Methylomicrobium album and Methylocystis sp., in order to determine EC and CO2 production (pCO2) when using a specific inoculum. The repeatability of the results in both BTFs was determined when they operated at the same inlet load of CH4. A dynamic mathematical model that describes the CH4 abatement in the BTFs was developed and validated using mass transfer and kinetic parameters estimated independently. The results showed that EC and pCO2 of the BTFs are not identical but very similar for all the conditions tested. The use of specific inoculum has shown a faster startup and higher EC per unit area (0.019 gCH4 m-2 h-1) in comparison to most of the previous studies at the same CH4 load rate (23.2 gCH4 m-3 h-1). Global mass balance showed that the maximum reduction of CO2 equivalents was 98.5 gCO2eq m-3 h-1. The developed model satisfactorily described CH4 abatement in BTFs for a wide range of conditions.
Assuntos
Reatores Biológicos , Recuperação e Remediação Ambiental/métodos , Metano/metabolismo , Methylococcaceae/metabolismo , Methylocystaceae/metabolismo , Biodegradação Ambiental , Filtração , Gases de Efeito Estufa/metabolismo , Modelos Biológicos , OxirreduçãoRESUMO
The flux of methane (CH4 ) from inland waters to the atmosphere has a profound impact on global atmospheric greenhouse gas (GHG) levels, and yet, strikingly little is known about the dynamics controlling sources and sinks of CH4 in the aquatic setting. Here, we examine the cycling and flux of CH4 in six large rivers in the Amazon basin, including the Amazon River. Based on stable isotopic mass balances of CH4 , inputs and outputs to the water column were estimated. We determined that ecosystem methane oxidation (MOX) reduced the diffusive flux of CH4 by approximately 28-96% and varied depending on hydrologic regime and general geochemical characteristics of tributaries of the Amazon River. For example, the relative amount of MOX was maximal during high water in black and white water rivers and minimal in clear water rivers during low water. The abundance of genetic markers for methane-oxidizing bacteria (pmoA) was positively correlated with enhanced signals of oxidation, providing independent support for the detected MOX patterns. The results indicate that MOX in large Amazonian rivers can consume from 0.45 to 2.07 Tg CH4 yr(-1) , representing up to 7% of the estimated global soil sink. Nevertheless, climate change and changes in hydrology, for example, due to construction of dams, can alter this balance, influencing CH4 emissions to atmosphere.