Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.422
Filtrar
1.
Cell Rep ; 43(7): 114453, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38985677

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infection, a major cause of hospital- and community-acquired pneumonia, still has a high mortality rate. Extracellular vesicles (EVs), as crucial mediators of intercellular communication, have a significant impact on infectious diseases. However, the role of EVs from alveolar macrophages (AMs) in MRSA pneumonia remains unclear. We report that AMs phagocytose MRSA and release more EVs in mice with MRSA pneumonia. EVs from AMs harboring phagocytosed MRSA exhibit significant proinflammatory effects and induce necroptosis by delivering tumor necrosis factor α (TNF-α) and miR-146a-5p. Mechanically, the upregulated miR-146a-5p in these EVs enhances the phosphorylation of RIPK1, RIPK3, and MLKL by targeting TNF receptor-associated factor 6 (TRAF6), thereby promoting TNF-α-induced necroptosis. The combination of a TNF-α antagonist and an miR-146a-5p antagomir effectively improves the outcomes of mice with MRSA pneumonia. Overall, we reveal the pronecrotic effect of EVs from MRSA-infected AMs and provide a promising target for the prevention and treatment of MRSA pneumonia.

2.
Colloids Surf B Biointerfaces ; 241: 114068, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38954940

RESUMO

Inspired by glycyrrhizin's strong pharmacological activities and the directed self-assembly into hydrogels, we created a novel carrier-free, injectable hydrogel (CAR@glycygel) by combining glycyrrhizin with carvacrol (CAR), without any other chemical crosslinkers, to promote wound healing on bacteria-infected skin. CAR appeared to readily dissolve and load into CAR@glycygel. CAR@glycygel had a dense, porous, sponge structure and strong antioxidant characteristics. In vitro, it showed better antibacterial ability than free CAR. For methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, and Escherichia coli, the diameter of inhibition zone values of CAR@glycygel were 3.80 ± 0.04, 3.31 ± 0.20 and 3.12 ± 0.24 times greater, respectively, than those of free CAR. The MICs for CAR@glycygel was 156.25 µg/mL while it was 1250.00 µg/mL for free CAR to these three bacteria. Its antibacterial mechanism appeared to involve destruction of the integrity of the bacterial cell wall and biomembrane, leading to a leakage of AKP and inhibition of biofilm formation. In vivo, CAR@glycygel effectively stopped bleeding. When applied to skin wounds on rats infected with MRSA, CAR@glycygel had strong bactericidal activity and improved wound healing. The wound healing rates for CAR@glycygel were 49.59 ± 15.78 %, 93.02 ± 3.09 % and 99.02 ± 0.55 % on day 3, day 7, and day 11, respectively, which were much better than blank control and positive control groups. Mechanisms of CAR@glycygel accelerating wound healing involved facilitating epidermis remolding, promoting the growth of hair follicles, stimulating collagen deposition, mitigating inflammation, and promoting angiogenesis. Overall, CAR@glycygel showed great potential as wound dressing for infected skin wounds.

3.
BMC Microbiol ; 24(1): 241, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961344

RESUMO

BACKGROUND: Staphylococcus aureus, a commensal bacterium, colonizes the skin and mucous membranes of approximately 30% of the human population. Apart from conventional resistance mechanisms, one of the pathogenic features of S. aureus is its ability to survive in a biofilm state on both biotic and abiotic surfaces. Due to this characteristic, S. aureus is a major cause of human infections, with Methicillin-Resistant Staphylococcus aureus (MRSA) being a significant contributor to both community-acquired and hospital-acquired infections. RESULTS: Analyzing non-repetitive clinical isolates of MRSA collected from seven provinces and cities in China between 2014 and 2020, it was observed that 53.2% of the MRSA isolates exhibited varying degrees of ability to produce biofilm. The biofilm positivity rate was notably high in MRSA isolates from Guangdong, Jiangxi, and Hubei. The predominant MRSA strains collected in this study were of sequence types ST59, ST5, and ST239, with the biofilm-producing capability mainly distributed among moderate and weak biofilm producers within these ST types. Notably, certain sequence types, such as ST88, exhibited a high prevalence of strong biofilm-producing strains. The study found that SCCmec IV was the predominant type among biofilm-positive MRSA, followed by SCCmec II. Comparing strains with weak and strong biofilm production capabilities, the positive rates of the sdrD and sdrE were higher in strong biofilm producers. The genetic determinants ebp, icaA, icaB, icaC, icaD, icaR, and sdrE were associated with strong biofilm production in MRSA. Additionally, biofilm-negative MRSA isolates showed higher sensitivity rates to cefalotin (94.8%), daptomycin (94.5%), mupirocin (86.5%), teicoplanin (94.5%), fusidic acid (81.0%), and dalbavancin (94.5%) compared to biofilm-positive MRSA isolates. The biofilm positivity rate was consistently above 50% in all collected specimen types. CONCLUSIONS: MRSA strains with biofilm production capability warrant increased vigilance.


Assuntos
Biofilmes , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/fisiologia , China/epidemiologia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Genes Bacterianos/genética , Humanos
4.
Cureus ; 16(6): e61845, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38978918

RESUMO

This case report presents a rare occurrence of a single lung abscess caused by Panton-Valentine leukocidin (PVL)-producing methicillin-resistant Staphylococcus aureus (MRSA) in a 38-year-old immunocompetent man. The patient, of Southeast Asian origin, presented with symptoms of fever, chest pain, cough, and shortness of breath following a recent flu-like illness. Imaging indicated a cavitary lung lesion in the left lower lobe, suggestive of a lung abscess. Initial antibiotic treatment failed, and drainage of the abscess confirmed MRSA with the PVL gene, indicating a community-acquired MRSA infection. The patient received intravenous vancomycin followed by oral linezolid, leading to the resolution of the abscess. Contact tracing and decolonization measures were implemented. This case highlights the importance of considering PVL-producing S. aureus as a potential pathogen in severe necrotizing pneumonia or sepsis and underscores the need for prompt diagnosis, appropriate antibiotic therapy, and infection control measures in managing such infections.

5.
BMC Microbiol ; 24(1): 246, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970013

RESUMO

Previous studies have shown that antimicrobial photodynamic inactivation (aPDI) can be strongly potentiated by the addition of the non-toxic inorganic salt, potassium iodide (KI). This approach was shown to apply to many different photosensitizers, including the xanthene dye Rose Bengal (RB) excited by green light (540 nm). Rose Bengal diacetate (RBDA) is a lipophilic RB derivative that is easily taken up by cells and hydrolyzed to produce an active photosensitizer. Because KI is not taken up by microbial cells, it was of interest to see if aPDI mediated by RBDA could also be potentiated by KI. The addition of 100 mM KI strongly potentiated the killing of Gram-positive methicillin-resistant Staphylocccus aureus, Gram-negative Eschericia coli, and fungal yeast Candida albicans when treated with RBDA (up to 15 µM) for 2 hours followed by green light (540 nm, 10 J/cm2). Both RBDA aPDI regimens (400 µM RBDA with or without 400 mM KI followed by 20 J/cm2 green light) accelerated the healing of MRSA-infected excisional wounds in diabetic mice, without damaging the host tissue.


Assuntos
Candida albicans , Staphylococcus aureus Resistente à Meticilina , Fármacos Fotossensibilizantes , Iodeto de Potássio , Rosa Bengala , Infecções Estafilocócicas , Cicatrização , Animais , Rosa Bengala/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Iodeto de Potássio/farmacologia , Camundongos , Candida albicans/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Escherichia coli/efeitos dos fármacos , Diabetes Mellitus Experimental/microbiologia , Diabetes Mellitus Experimental/tratamento farmacológico , Fotoquimioterapia/métodos , Sinergismo Farmacológico , Luz , Masculino
6.
Pediatr Dermatol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984592

RESUMO

Although many clinical variants of Staphylococcus aureus infection are well-recognized, atypical presentations may mimic other conditions. We describe two cases of atypical S. aureus infections in pediatric patients: a S. aureus infection presenting with a vesicopustular rash mimicking varicella zoster virus and a case of multifocal panniculitis. Both of these cases were specifically caused by methicillin-resistant S. aureus (MRSA). Additional cases of atypical S. aureus infections and presenting features from the current literature are also discussed.

7.
Res Sq ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38947088

RESUMO

Background: Vancomycin, an antibiotic with activity against Methicillin-resistant Staphylococcus aureus (MRSA), is frequently included in empiric treatment for community-acquired pneumonia (CAP) despite the fact that MRSA is rarely implicated in CAP. Conducting polymerase chain reaction (PCR) testing on nasal swabs to identify the presence of MRSA colonization has been proposed as an antimicrobial stewardship intervention to reduce the use of vancomycin. Observational studies have shown reductions in vancomycin use after implementation of MRSA colonization testing, and this approach has been adopted by CAP guidelines. However, the ability of this intervention to safely reduce vancomycin use has yet to be tested in a randomized controlled trial. Methods: STOP-Vanc is a pragmatic, prospective, single center, non-blinded randomized trial. Adult patients with suspicion for CAP who are receiving vancomycin and admitted to the Medical Intensive Care Unit at Vanderbilt University Medical Center will be screened for eligibility. Eligible patients will be enrolled and randomized in a 1:1 ratio to either receive MRSA nasal swab PCR testing in addition to usual care (intervention group), or usual care alone (control group). PCR testing results will be transmitted through the electronic health record to the treating clinicians. Primary providers of intervention group patients with negative swab results will also receive a page providing clinical guidance recommending discontinuation of vancomycin. The primary outcome will be vancomycin-free hours alive, defined as the number of hours alive and free of the use of vancomycin within the first seven days following trial enrollment estimated using a proportional odds ratio model. Secondary outcomes include 30-day all-cause mortality and time alive off vancomycin. Discussion: STOP-Vanc will provide the first randomized controlled trial data regarding the use of MRSA nasal swab PCR testing to guide antibiotic de-escalation. This study will provide important information regarding the effect of MRSA PCR testing and antimicrobial stewardship guidance on clinical outcomes in an intensive care unit setting. Trial registration: This trial was registered on ClinicalTrials.gov on February 22, 2024. (ClinicalTrials.gov identifier: NCT06272994).

8.
Biochem Pharmacol ; : 116404, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945279

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA), a notorious bacterium with high drug resistance and easy recurrence after surgery, has posed significant clinical treatment challenges. In the current scarcity of new antibiotics, the identification of adjuvants to existing antibiotics is a promising approach to combat infections caused by multidrug-resistant Gram-positive bacteria. The in vitro synergy test, which included a MIC assay, time-kill curve, antimicrobial susceptibility testing, and live/dead bacteria staining assay, revealed that laurocapram, a widely used chemical transdermal enhancer, could potentiate the antibacterial activity of cephalosporins against MRSA. In vitro, laurocapram combined with cefixime showed an excellent synergistic activity against MRSA (FICI = 0.28 ±â€¯0.00). In addition, the combination of laurocapram and cefixime may inhibited the formation of MRSA biofilm and caused cell membrane damage. Following that, we discovered that combining laurocapram with cefixime could alleviate the symptoms of mice in the MRSA skin infection model and the MRSA pneumonia model. In conclusion, laurocapram is a promising and low-cost antibacterial adjuvant, providing a new strategy for further exploring the use of lower doses of cephalosporins to combat MRSA infection.

9.
Colloids Surf B Biointerfaces ; 241: 114065, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38943768

RESUMO

Nanomaterial-based synergistic antibacterial agents are considered as promising tools to combat infections caused by antibiotic-resistant bacteria. Herein, multifunctional mesoporous silica nanoparticle (MSN)-based nanocomposites were fabricated for synergistic photothermal/photodynamic/chemodynamic therapy against methicillin-resistant Staphylococcus aureus (MRSA). MSN loaded with indocyanine green (ICG) as a core, while Prussian blue (PB) nanostructure was decorated on MSN surface via in situ growth method to form a core-shell nanohybrid (MSN-ICG@PB). Upon a near infrared (NIR) laser excitation, MSN-ICG@PB (200 µg mL-1) exhibited highly efficient singlet oxygen (1O2) generation and hyperthermia effect (48.7℃). In the presence of exogenous H2O2, PB with peroxidase-like activity promoted the generation of toxic hydroxyl radicals (•OH) to achieve chemodynamic therapy (CDT). PTT can greatly increase the permeability of bacterial lipid membrane, facilitating the generated 1O2 and •OH to kill bacteria more efficiently. Under NIR irradiation and exogenous H2O2, MSN-ICG@PB (200 µg mL-1) with good biocompatibility exhibited a synergistic antibacterial effect against MRSA with high bacterial killing efficiency (>98 %). Moreover, due to the synergistic bactericidal mechanism, MSN-ICG@PB with satisfactory biosafety makes it a promising antimicrobial agent to fight against MRSA.

10.
Cytotherapy ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38944795

RESUMO

BACKGROUND AIMS: The prevalence of chronic wounds continues to be a burden in human medicine. Methicillin-resistant Staphylococcus aureus (MRSA) is commonly isolated from infected wounds. MRSA infections primarily delay healing by impairing local immune cell functions. This study aimed to investigate the potential of mesenchymal stromal cell (MSC)-secreted bioactive factors, defined as the secretome, to improve innate immune responses in vivo. MSCs were isolated from the bone marrow of horses, which serve as valuable translational models for wound healing. The MSC secretome, collected as conditioned medium (CM), was evaluated in vivo using mouse models of acute and MRSA-infected skin wounds. METHODS: Punch biopsies were used to create two full-thickness skin wounds on the back of each mouse. Acute wounds were treated daily with control medium or bone marrow-derived MSC (BM-MSC) CM. The antibiotic mupirocin was administered as a positive control for the MRSA-infected wound experiments. Wounds were photographed daily, and wound images were measured to determine the rate of closure. Trichrome staining was carried out to examine wound tissue histologically, and immunofluorescence antibody binding was used to assess immune cell infiltration. Wounds in the MRSA-infected model were swabbed for quantification of bacterial load. RESULTS: Acute wounds treated with BM-MSC CM showed accelerated wound closure compared with controls, as illustrated by enhanced granulation tissue formation and resolution, increased vasculature and regeneration of hair follicles. This treatment also led to increased neutrophil and macrophage infiltration. Chronic MRSA-infected wounds treated with BM-MSC CM showed reduced bacterial load accompanied by better resolution of granulation tissue formation and increased infiltration of pro-healing M2 macrophages compared with control-treated infected wounds. CONCLUSIONS: Collectively, our findings indicate that BM-MSC CM exerts pro-healing, immunomodulatory and anti-bacterial effects on wound healing in vivo, validating further exploration of the MSC secretome as a novel treatment option to improve healing of both acute and chronic wounds, especially those infected with antibiotic-resistant bacteria.

11.
Expert Opin Pharmacother ; 25(8): 1027-1037, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863433

RESUMO

INTRODUCTION: Infections due to multidrug-resistant organisms (MDRO) are a serious concern for public health with high morbidity and mortality. Though many antibiotics have been introduced to manage these infections, there are remaining concerns regarding the optimal management of Gram-positive MDROs. AREAS COVERED: A literature search on the PubMed/Medline database was conducted. We applied no language and time limits for the search strategy. In this narrative review, we discuss the current options for managing Gram-positive MDROs as well as non-traditional antibacterial agents in development. EXPERT OPINION: Despite their introduction more than 70 years ago, glycopeptides are still the cornerstone in treating Gram-positive infections: all registrative studies of new antibiotics have glycopeptides as control; these studies are designed as not inferior studies, therefore it is almost impossible to give recommendations other than the use of glycopeptides in the treatment of Gram-positive infections. The best evidence on treatments different from glycopeptides comes from post-hoc analysis and meta-analysis. Non-traditional antibacterial agents are being studied to aid in short and effective antibiotic therapies. The use of non-traditional antibacterial agents is not restricted to replacing traditional antibacterial agents with alternative therapies; instead, they should be used in combination with antibiotic therapies.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Glicopeptídeos , Bactérias Gram-Positivas , Infecções por Bactérias Gram-Positivas , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Glicopeptídeos/uso terapêutico , Bactérias Gram-Positivas/efeitos dos fármacos , Desenvolvimento de Medicamentos , Animais
12.
Antimicrob Resist Infect Control ; 13(1): 68, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918863

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of mortality due to bacterial antimicrobial resistance. While S. aureus is common in skin and soft tissue infections (SSTI) in Africa, data on MRSA rates are scarce and reports vary widely across the continent (5%-80%). In this study, we describe the proportion of MRSA causing SSTI in Lambaréné, Gabon, over an 11-year period. METHODS: We retrospectively analyzed data from 953 bacterial specimens collected from inpatients and outpatients with SSTI at the Albert Schweitzer Hospital, Lambaréné, Gabon, between 2009 and 2019. We determined temporal changes in the prevalence of MRSA and identified risk factors for SSTI with MRSA. RESULTS: 68% of all specimens with bacterial growth yielded S. aureus (n = 499/731), of which 7% (36/497) with antimicrobial susceptibility testing were identified as MRSA. Age above 18 years, admission to the surgical ward, and deep-seated infections were significantly associated with MRSA as the causative agent. After an initial decline from 7% in 2009, there was a marked increase in the proportion of MRSA among all S. aureus from SSTI from 3 to 20% between 2012 and 2019. The resistance rate to erythromycin was significantly higher in MRSA than in methicillin-susceptible S. aureus (73% vs. 10%), and clindamycin resistance was detected exclusively in MRSA isolates (8%). CONCLUSION: The increasing proportion of MRSA causing SSTI over the 11-year period contrasts with many European countries where MRSA is on decline. Continuous surveillance of MRSA lineages in the hospital and community along with antibiotic stewardship programs could address the increasing trend of MRSA.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Infecções dos Tecidos Moles , Humanos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Gabão/epidemiologia , Infecções dos Tecidos Moles/microbiologia , Infecções dos Tecidos Moles/epidemiologia , Estudos Retrospectivos , Masculino , Feminino , Adulto , Adolescente , Pessoa de Meia-Idade , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Adulto Jovem , Prevalência , Criança , Fatores de Risco , Infecções Cutâneas Estafilocócicas/epidemiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Pré-Escolar , Idoso , Lactente
13.
Cytokine ; 180: 156662, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824863

RESUMO

BACKGROUND: Previous researches have clarified that miR-155 is increased in methicillin-resistant Staphylococcus aureus (MRSA) pneumonia, and modulates Th9 differentiation. Like Th9 cells, Th17 cells were also a subset of CD4+ T cells and involved in MRSA pneumonia progression. This work aimed to investigate the role and mechanism of miR-155 in Th17 differentiation. METHODS: Bronchoalveolar lavage fluid (BALF) was collected from children with MRSA pneumonia and bronchial foreign bodies. MRSA-infected murine model was established followed by collecting BALF and lung tissues. qRT-PCR, ELISA and flow cytometry were performed to examine the mRNA expression and concentration of IL-17 and the number of Th17 cells in above samples. HE and ELISA were used to evaluate inflammatory responses in lung. Furthermore, CD4+ T cells were isolated from BALF of children for in vitro experiments. After treatments with miR-155 mimic/inhibitor, the roles of miR-155 in Th17/IL-17 regulation were determined. The downstream of miR-155 was explored by qRT-PCR, western blotting, dual luciferase reporter analysis and RIP assay. RESULTS: The levels of IL-17 and the proportion of Th17 cells were increased in children with MRSA pneumonia. A similar pattern was observed in MRSA-infected mice. On the contrary, IL-17 neutralization abolished the activation of Th17/IL-17 induced by MRSA infection. Furthermore, IL-17 blockade diminished the inflammation caused by MRSA. In vitro experiments demonstrated miR-155 positively regulated IL-17 expression and Th17 differentiation. Mechanistically, FOXP3 was a direct target of miR-155. miR-155 inhibited FOXP3 level via binding between FOXP3 and Argonaute 2 (AGO2), the key component of RNA-induced silencing complex (RISC). FOXP3 overexpression reversed elevated IL-17 levels and Th17 differentiation induced by miR-155. CONCLUSIONS: miR-155 facilitates Th17 differentiation by reducing FOXP3 through interaction of AGO2 and FOXP3 to promote the pathogenesis of MRSA pneumonia. IL-17 blockade weakens the inflammation due to MRSA, which provides a nonantibiotic treatment strategy for MRSA pneumonia.


Assuntos
Diferenciação Celular , Fatores de Transcrição Forkhead , Inflamação , Interleucina-17 , Staphylococcus aureus Resistente à Meticilina , MicroRNAs , Células Th17 , MicroRNAs/genética , MicroRNAs/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Animais , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Humanos , Camundongos , Interleucina-17/metabolismo , Inflamação/metabolismo , Masculino , Líquido da Lavagem Broncoalveolar , Feminino , Criança , Pneumonia Estafilocócica/imunologia , Pneumonia Estafilocócica/metabolismo , Pneumonia Estafilocócica/microbiologia , Pré-Escolar
14.
Antimicrob Agents Chemother ; 68(7): e0021824, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38837393

RESUMO

NaHCO3 responsiveness is a novel phenotype where some methicillin-resistant Staphylococcus aureus (MRSA) isolates exhibit significantly lower minimal inhibitory concentrations (MIC) to oxacillin and/or cefazolin in the presence of NaHCO3. NaHCO3 responsiveness correlated with treatment response to ß-lactams in an endocarditis animal model. We investigated whether treatment of NaHCO3-responsive strains with ß-lactams was associated with faster clearance of bacteremia. The CAMERA2 trial (Combination Antibiotics for Methicillin-Resistant Staphylococcus aureus) randomly assigned participants with MRSA bloodstream infections to standard therapy, or to standard therapy plus an anti-staphylococcal ß-lactam (combination therapy). For 117 CAMERA2 MRSA isolates, we determined by broth microdilution the MIC of cefazolin and oxacillin, with and without 44 mM of NaHCO3. Isolates exhibiting ≥4-fold decrease in the MIC to cefazolin or oxacillin in the presence of NaHCO3 were considered "NaHCO3-responsive" to that agent. We compared the rate of persistent bacteremia among participants who had infections caused by NaHCO3-responsive and non-responsive strains, and that were assigned to combination treatment with a ß-lactam. Thirty-one percent (36/117) and 25% (21/85) of MRSA isolates were NaHCO3-responsive to cefazolin and oxacillin, respectively. The NaHCO3-responsive phenotype was significantly associated with sequence type 93, SCCmec type IVa, and mecA alleles with substitutions in positions -7 and -38 in the regulatory region. Among participants treated with a ß-lactam, there was no association between the NaHCO3-responsive phenotype and persistent bacteremia (cefazolin, P = 0.82; oxacillin, P = 0.81). In patients from a randomized clinical trial with MRSA bloodstream infection, isolates with an in vitro ß-lactam-NaHCO3-responsive phenotype were associated with distinctive genetic signatures, but not with a shorter duration of bacteremia among those treated with a ß-lactam.


Assuntos
Antibacterianos , Cefazolina , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Oxacilina , Infecções Estafilocócicas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefazolina/farmacologia , Cefazolina/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Oxacilina/farmacologia , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Fenótipo , beta-Lactamas/farmacologia , beta-Lactamas/uso terapêutico , Masculino , Bicarbonato de Sódio/farmacologia , Feminino , Pessoa de Meia-Idade
15.
JMIR AI ; 3: e48067, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38875598

RESUMO

BACKGROUND: Health care-associated infections due to multidrug-resistant organisms (MDROs), such as methicillin-resistant Staphylococcus aureus (MRSA) and Clostridioides difficile (CDI), place a significant burden on our health care infrastructure. OBJECTIVE: Screening for MDROs is an important mechanism for preventing spread but is resource intensive. The objective of this study was to develop automated tools that can predict colonization or infection risk using electronic health record (EHR) data, provide useful information to aid infection control, and guide empiric antibiotic coverage. METHODS: We retrospectively developed a machine learning model to detect MRSA colonization and infection in undifferentiated patients at the time of sample collection from hospitalized patients at the University of Virginia Hospital. We used clinical and nonclinical features derived from on-admission and throughout-stay information from the patient's EHR data to build the model. In addition, we used a class of features derived from contact networks in EHR data; these network features can capture patients' contacts with providers and other patients, improving model interpretability and accuracy for predicting the outcome of surveillance tests for MRSA. Finally, we explored heterogeneous models for different patient subpopulations, for example, those admitted to an intensive care unit or emergency department or those with specific testing histories, which perform better. RESULTS: We found that the penalized logistic regression performs better than other methods, and this model's performance measured in terms of its receiver operating characteristics-area under the curve score improves by nearly 11% when we use polynomial (second-degree) transformation of the features. Some significant features in predicting MDRO risk include antibiotic use, surgery, use of devices, dialysis, patient's comorbidity conditions, and network features. Among these, network features add the most value and improve the model's performance by at least 15%. The penalized logistic regression model with the same transformation of features also performs better than other models for specific patient subpopulations. CONCLUSIONS: Our study shows that MRSA risk prediction can be conducted quite effectively by machine learning methods using clinical and nonclinical features derived from EHR data. Network features are the most predictive and provide significant improvement over prior methods. Furthermore, heterogeneous prediction models for different patient subpopulations enhance the model's performance.

16.
Pharm Res ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886259

RESUMO

BACKGROUND: Although vancomycin is typically employed against methicillin-resistant Staphylococcus aureus (MRSA) infections, the optimal ratio of 24-h area under the concentration-time curve to minimum inhibitory concentration (AUC24/MIC) for severe or complicated infections lacks clear guideline recommendations. This study aimed to determine the target AUC24/MIC ratio associated with treatment outcomes of infections treated with vancomycin. METHODS: This retrospective multicenter cohort study included adult patients receiving ≥ 5 days of vancomycin for severe/complicated MRSA infections (e.g., osteoarticular, pulmonary, endocarditis, etc.) between January 2018 and December 2023. The primary outcome was 30-day mortality, with secondary outcomes including clinical success, microbiological eradication, and nephrotoxicity. Receiver operating characteristic (ROC) curve analysis was used to identify the AUC24/MIC cutoff for 30-day mortality. Multivariate regression analysis was used to determine association between AUC24/MIC and outcomes. RESULTS: This study included 82 patients. ROC identified a target AUC24/MIC of ≥ 505 for 30-day mortality. The overall 30-day mortality rate (22.0%) was significantly higher for below average AUC24/MIC cutoff (34.1%) than for above AUC24/MIC cutoff group (9.8%). Multivariate analysis confirmed AUC24/MIC of < 505 as an independent predictor (adjusted odds ratio, 5.001; 95% confidence interval, 1.335-18.75). The clinical success rate differed significantly between below- and above-cutoff groups, whereas microbiological eradication tended to favor the above-cutoff group. The nephrotoxicity rates were comparable between groups. CONCLUSIONS: In treating severe/complicated MRSA infections, vancomycin AUC24/MIC ratio ≥ 505 was independently associated with favorable 30-day mortality. Given the retrospective nature of this study, further prospective studies are essential to confirm the reliability of the target AUC24/MIC ratios.

17.
Front Pediatr ; 12: 1386310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895192

RESUMO

Background: Staphylococcus aureus infections are a significant cause of morbidity and mortality in pediatric populations worldwide. The Staphylo Research Network conducted an extensive study on pediatric patients across Colombia from 2018 to 2021. The aim of this study was to describe the epidemiological and microbiological characteristics of S. aureus in this patient group. Methods: We analyzed S. aureus isolates from WHONET-reporting centers. An "event" was a positive culture isolation in a previously negative individual after 2 weeks. We studied center characteristics, age distribution, infection type, and antibiotic susceptibilities, comparing methicillin sensitive (MSSA) and resistant S. aureus (MRSA) isolates. Results: Isolates from 20 centers across 7 Colombian cities were included. Most centers (80%) served both adults and children, with 55% offering oncology services and 85% having a PICU. We registered 8,157 S. aureus culture isolations from 5,384 events (3,345 MSSA and 1,961 MRSA) in 4,821 patients, with a median age of 5 years. Blood (26.2%) and skin/soft tissue (18.6%) were the most common infection sources. Most isolates per event remained susceptible to oxacillin (63.2%), clindamycin (94.3%), and TMP-SMX (98.3%). MRSA prevalence varied by city (<0.001), with slightly higher rates observed in exclusively pediatric hospitals. In contrast, the MRSA rate was somewhat lower in centers with Antimicrobial Stewardship Program (ASP). MRSA was predominantly isolated from osteoarticular infections and multiple foci, while MSSA was more frequently associated with recurrent infections compared to MRSA. Conclusions: This is the largest study of pediatric S. aureus infections in Colombia. We found MSSA predominance, but resistance have important regional variations. S. aureus remains susceptible to other commonly used antibiotics such as TMP-SMX and clindamycin. Ongoing monitoring of S. aureus infections is vital for understanding their behavior in children. Prospective studies within the Staphylored LATAM are underway for a more comprehensive clinical and genetic characterization.

18.
Chem Biol Drug Des ; 103(6): e14569, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877369

RESUMO

Staphylococcus aureus has the ability to invade cortical bone osteocyte lacuno-canalicular networks (OLCNs) and cause osteomyelitis. It was recently established that the cell wall transpeptidase, penicillin-binding protein 4 (PBP4), is crucial for this function, with pbp4 deletion strains unable to invade OLCNs and cause bone pathogenesis in a murine model of S. aureus osteomyelitis. Moreover, PBP4 has recently been found to modulate S. aureus resistance to ß-lactam antibiotics. As such, small molecule inhibitors of S. aureus PBP4 may represent dual functional antimicrobial agents that limit osteomyelitis and/or reverse antibiotic resistance. A high throughput screen recently revealed that the phenyl-urea 1 targets PBP4. Herein, we describe a structure-activity relationship (SAR) study on 1. Leveraging in silico docking and modeling, a set of analogs was synthesized and assessed for PBP4 inhibitory activities. Results revealed a preliminary SAR and identified lead compounds with enhanced binding to PBP4, more potent antibiotic resistance reversal, and diminished PBP4 cell wall transpeptidase activity in comparison to 1.


Assuntos
Antibacterianos , Simulação de Acoplamento Molecular , Proteínas de Ligação às Penicilinas , Staphylococcus aureus , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Antibacterianos/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Ureia/química , Ureia/farmacologia , Ureia/análogos & derivados , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores
19.
Nutrients ; 16(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38892531

RESUMO

Propolis has potential anti-inflammatory properties, but little is known about its efficacy against inflammatory reactions caused by drug-resistant bacteria, and the difference in efficacy between propolis and tree gum is also unclear. Here, an in vivo study was performed to study the effects of ethanol extract from poplar propolis (EEP) and poplar tree gum (EEG) against heat-inactivated methicillin-resistant Staphylococcus aureus (MRSA)-induced acute lung injury (ALI) in mice. Pre-treatment with EEP and EEG (100 mg/kg, p.o.) resulted in significant protective effects on ALI in mice, and EEP exerted stronger activity to alleviate lung tissue lesions and ALI scores compared with that of EEG. Furthermore, EEP significantly suppressed the levels of pro-inflammatory mediators in the lung, including TNF-α, IL-1ß, IL-6, and IFN-γ. Gut microbiota analysis revealed that both EEP and EEG could modulate the composition of the gut microbiota, enhance the abundance of beneficial microbiota and reduce the harmful ones, and partly restore the levels of short-chain fatty acids. EEP could modulate more serum metabolites and showed a more robust correlation between serum metabolites and gut microbiota. Overall, these results support the anti-inflammatory effects of propolis in the treatment of ALI, and the necessity of the quality control of propolis.


Assuntos
Lesão Pulmonar Aguda , Microbioma Gastrointestinal , Mediadores da Inflamação , Staphylococcus aureus Resistente à Meticilina , Própole , Própole/farmacologia , Animais , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Citocinas/sangue , Citocinas/metabolismo , Temperatura Alta , Modelos Animais de Doenças
20.
P R Health Sci J ; 43(2): 73-78, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860960

RESUMO

OBJECTIVE: Increased mupirocin use leads to mupirocin resistance and is associated with persistence of methicillin-resistant Staphylococcus aureus (MRSA) carriers, prolonged hospitalization, and significant economic burdens for health systems. The study aimed to investigate the antimicrobial activity of compounds of Salvia rosmarinus L. ("rosemary", formerly Rosmarinus officinalis), alone or in combination with mupirocin, against multidrug resistant MRSA using isolates obtained from pediatric patients. METHODS: The in vitro antibacterial activity of the monoterpene α-pinene (α-Pi), a rosemary essential oil constituent, alone and in combination with mupirocin, was evaluated by determining the minimum inhibitory concentrations and minimum bactericidal concentrations (MBCs) and the fractional inhibitory concentration indices (FICIs) and fractional bactericidal concentration indices against multidrug-resistant clinical MRSA strains. The in vivo efficacy of α-Pi, alone and in combination with mupirocin, to eradicate MRSA infection was determined using an optimized mouse model of MRSA-infected wounds. Mouse skin samples (obtained via biopsy) were assessed for toxicity, and rabbit skin samples for irritation. RESULTS: Both in vitro and in vivo, α-Pi was active against MRSA strains and acted synergistically with mupirocin against MRSA strains. Mupirocin-monoterpene combinations exhibited FICI values of 0.2 to 0.4, reducing the MBC of topical mupirocin 33-fold. A topical formulation containing α-Pi and mupirocin enhanced the efficacy of mupirocin in an in vivo MRSA-infected mouse skin model without significantly harming the skin of mice and rabbits. CONCLUSIONS: A topical formulation combining mupirocin and α-Pi may aid in the development of innovative agents for treating MRSA infections.


Assuntos
Antibacterianos , Monoterpenos Bicíclicos , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Quimioterapia Combinada , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Mupirocina , Mupirocina/administração & dosagem , Mupirocina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Camundongos , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Monoterpenos Bicíclicos/administração & dosagem , Monoterpenos Bicíclicos/farmacologia , Humanos , Monoterpenos/farmacologia , Monoterpenos/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Modelos Animais de Doenças , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...