Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38963632

RESUMO

Methyl mercaptan is a typical volatile organosulfur pollutant contained in many gases emitted by urban waste treatment, various industries, natural gas handling, refining processes, and energy production. This work is a comprehensive overview of the scientific and practical aspects related to the management of methyl mercaptan pollution. The main techniques, including absorption, adsorption, oxidation, and biological treatments, are examined in detail. For each method, its capability as well as the technical advantages and drawbacks have been highlighted. The emerging methods developed for the removal of methyl mercaptan from natural gas are also reviewed. These methods are based on the catalytic conversion of CH3SH to hydrocarbons and H2S.

2.
Environ Sci Pollut Res Int ; 31(5): 7959-7976, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38175505

RESUMO

Sulfur-containing gases are main sources of landfill odors, which has become a big issue for pollution to environment and human health. Biocover is promising for treating landfill odors, with advantages of durability and environmental friendliness. In this study, charcoal sludge compost was utilized as the main effective component of a novel alternative landfill cover and the in situ control of sulfur-containing odors from municipal solid waste landfilling process was simulated under nine different operating conditions. Results showed that five sulfur-containing odors (hydrogen sulfide, H2S; methyl mercaptan, CH3SH; dimethyl sulfide, CH3SCH3; ethylmercaptan, CH3CH2SH; carbon disulfide, CS2) were monitored and removed by the biocover, with the highest removal efficiencies of 77.18% for H2S, 87.36% for CH3SH, and 92.19% for CH3SCH3 in reactor 8#, and 95.94% for CH3CH2SH and 94.44% for CS2 in reactor 3#. The orthogonal experiment showed that the factors influencing the removal efficiencies of sulfur-containing odors were ranked from high to low as follows: temperature > weight ratio > humidity content. The combination of parameters of 20% weight ratio, 25°C temperature, and 30% water content was more recommended based on the consideration of the removal efficiencies and economic benefits. The mechanisms of sulfur conversion inside biocover were analyzed. Most organic sulfur was firstly degraded to reduced sulfides or element sulfur, and then oxidized to sulfate which could be stable in the layer as the final state. In this process, sulfur-oxidizing bacteria play a great role, and the distribution of them in reactor 1#, 5#, and 8# was specifically monitored. Bradyrhizobiaceae and Rhodospirillaceae were the dominant species which can utilize sulfide as substance to produce sulfate and element sulfur, respectively. Based on the results of OUTs, the biodiversity of these sulfur-oxidizing bacteria, these microorganisms, was demonstrated to be affected by the different parameters. These results indicate that the novel alternative landfill cover modified with bamboo charcoal compost is effective in removing sulfur odors from landfills. Meanwhile, the findings have direct implications for addressing landfill odor problems through parameter adjustment.


Assuntos
Sulfeto de Hidrogênio , Odorantes , Humanos , Carvão Vegetal/metabolismo , Sulfeto de Hidrogênio/metabolismo , Enxofre/metabolismo , Instalações de Eliminação de Resíduos , Óxidos de Enxofre , Bactérias/metabolismo , Sulfatos/metabolismo
3.
mSystems ; 9(2): e0076423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289043

RESUMO

The major oral odor compound methyl mercaptan (CH3SH) is strongly associated with halitosis and periodontitis. CH3SH production stems from the metabolism of polymicrobial communities in periodontal pockets and on the tongue dorsum. However, understanding of CH3SH-producing oral bacteria and their interactions is limited. This study aimed to investigate CH3SH production by major oral bacteria and the impact of interspecies interactions on its generation. Using a newly constructed large-volume anaerobic noncontact coculture system, Fusobacterium nucleatum was found to be a potent producer of CH3SH, with that production stimulated by metabolic interactions with Streptococcus gordonii, an early dental plaque colonizer. Furthermore, analysis of extracellular amino acids using an S. gordonii arginine-ornithine antiporter (ArcD) mutant demonstrated that ornithine excreted from S. gordonii is a key contributor to increased CH3SH production by F. nucleatum. Further study with 13C, 15N-methionine, as well as gene expression analysis, revealed that ornithine secreted by S. gordonii increased the demand for methionine through accelerated polyamine synthesis by F. nucleatum, leading to elevated methionine pathway activity and CH3SH production. Collectively, these findings suggest that interaction between S. gordonii and F. nucleatum plays a key role in CH3SH production, providing a new insight into the mechanism of CH3SH generation in oral microbial communities. A better understanding of the underlying interactions among oral bacteria involved in CH3SH generation can lead to the development of more appropriate prophylactic approaches to treat halitosis and periodontitis. An intervention approach like selectively disrupting this interspecies network could also offer a powerful therapeutic strategy.IMPORTANCEHalitosis can have a significant impact on the social life of affected individuals. Among oral odor compounds, CH3SH has a low olfactory threshold and halitosis is a result of its production. Recently, there has been a growing interest in the collective properties of oral polymicrobial communities, regarded as important for the development of oral diseases, which are shaped by physical and metabolic interactions among community participants. However, it has yet to be investigated whether interspecies interactions have an impact on the production of volatile compounds, leading to the development of halitosis. The present findings provide mechanistic insights indicating that ornithine, a metabolite excreted by Streptococcus gordonii, promotes polyamine synthesis by Fusobacterium nucleatum, resulting in a compensatory increase in demand for methionine, which results in elevated methionine pathway activity and CH3SH production. Elucidation of the mechanisms related to CH3SH production is expected to lead to the development of new strategies for managing halitosis.


Assuntos
Halitose , Periodontite , Humanos , Fusobacterium nucleatum/genética , Halitose/microbiologia , Compostos de Sulfidrila/metabolismo , Bactérias , Streptococcus gordonii , Ornitina/metabolismo , Metionina/metabolismo , Poliaminas/metabolismo
4.
Clin Oral Investig ; 28(1): 102, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233664

RESUMO

OBJECTIVES: This study aimed to identify the levels of halitosis in patients with Medication-related osteonecrosis of the jaw (MRONJ) and osteoporosis and to suggest a new MRONJ screening method using halitosis measurement. MATERIALS AND METHODS: From October 2019 to April 2023, participants aged 19 years or older without periodontal disease were selected. Seventy-five participants, 25 in each group, were divided into an MRONJ group, an osteoporosis group without MRONJ, and a control group without osteoporosis and not taking osteoporosis drugs or antibiotics. Each participant underwent halitosis assessment twice using an exhaled breath analyzer to measure halitosis twice by blowing a straw for 1 min. Measured concentrations of hydrogen, hydrogen sulfide, and methyl mercaptan were compared between groups. RESULTS: Data from 22 patients in the MRONJ group, 25 in the osteoporosis group, and 25 in the control group were analyzed. The concentrations of hydrogen sulfide and methyl mercaptan were significantly higher in the MRONJ group than in the other groups, but the concentrations of hydrogen did not differ between the groups. When comparing the concentrations of hydrogen sulfide and methyl mercaptan in osteoporosis patients and solid cancer patients in the MRONJ group, there was a significant difference in hydrogen sulfide concentration, but there was no significant difference in methyl mercaptan. CONCLUSIONS: Quantifying the level of halitosis can be used to screen for MRONJ in patients taking bisphosphonates, such as patients with osteoporosis, prostate cancer, and breast cancer. CLINICAL RELEVANCE: MRONJ is accompanied by bad breath, and the concentrations of hydrogen sulfide and methyl mercaptan are associated with MRONJ.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos , Conservadores da Densidade Óssea , Halitose , Sulfeto de Hidrogênio , Osteonecrose , Osteoporose , Masculino , Humanos , Halitose/diagnóstico , Difosfonatos , Compostos de Sulfidrila , Hidrogênio , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/diagnóstico
5.
Nanomaterials (Basel) ; 13(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764631

RESUMO

The cooperative transition of sulfur-containing pollutants of H2S/CO/H2 to the high-value chemical methyl mercaptan (CH3SH) is catalyzed by Mo-based catalysts and has good application prospects. Herein, a series of Al2O3-supported molybdenum carbide catalysts with K doping (denoted herein as K-Mo2C/Al2O3) are fabricated by the impregnation method, with the carbonization process occurring under different atmospheres and different temperatures between 400 and 600 °C. The CH4-K-Mo2C/Al2O3 catalyst carbonized by CH4/H2 at 500 °C displays unprecedented performance in the synthesis of CH3SH from CO/H2S/H2, with 66.1% selectivity and a 0.2990 g·gcat-1·h-1 formation rate of CH3SH at 325 °C. H2 temperature-programmed reduction, temperature-programmed desorption, X-ray diffraction and Raman and BET analyses reveal that the CH4-K-Mo2C/Al2O3 catalyst contains more Mo coordinatively unsaturated surface sites that are responsible for promoting the adsorption of reactants and the desorption of intermediate products, thereby improving the selectivity towards and production of CH3SH. This study systematically investigates the effects of catalyst carbonization and passivation conditions on catalyst activity, conclusively demonstrating that Mo2C-based catalyst systems can be highly selective for producing CH3SH from CO/H2S/H2.

6.
Antioxidants (Basel) ; 12(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37760083

RESUMO

In order to cope with increased demands for energy and metabolites as well as to enhance stress resilience, tumor cells develop various metabolic adaptations, representing a hallmark of cancer. In this regard, the dysregulation of sulfur metabolism that may result in elevated levels of volatile sulfur compounds (VSCs) in body fluids, breath, and/or excretions of cancer patients has recently gained attention. Besides hydrogen sulfide (H2S), methanethiol is the predominant cancer-associated VSC and has been proposed as a promising biomarker for non-invasive cancer diagnosis. Gut bacteria are the major exogenous source of exposure to this foul-smelling toxic gas, with methanethiol-producing strains such as Fusobacterium nucleatum highly abundant in the gut microbiome of colorectal carcinoma (CRC) patients. Physiologically, methanethiol becomes rapidly degraded through the methanethiol oxidase (MTO) activity of selenium-binding protein 1 (SELENBP1). However, SELENBP1, which is considered a tumor suppressor, is often downregulated in tumor tissues, and this has been epidemiologically linked to poor clinical outcomes. In addition to impaired removal, an increase in methanethiol levels may derive from non-enzymatic reactions, such as a Maillard reaction between glucose and methionine, two metabolites enriched in cancer cells. High methionine concentrations in cancer cells may also result in enzymatic methanethiol production in mitochondria. Moreover, enzymatic endogenous methanethiol production may occur through methyltransferase-like protein 7B (METTL7B), which is present at elevated levels in some cancers, including CRC and hepatocellular carcinoma (HCC). In conclusion, methanethiol contributes to the scent of cancer as part of the cancer-associated signature combination of volatile organic compounds (VOCs) that are increasingly being exploited for non-invasive early cancer diagnosis.

7.
J Hazard Mater ; 442: 130029, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36166909

RESUMO

Organic sulfur gases (COS, CS2 and CH3SH) are widely present in reducing industrial off-gases, and these substances pose difficulties for the recovery of carbon monoxide and other gases. The reaction pathways and reaction mechanisms of organic sulfur on different catalyst surfaces have yet to be fully summarized. The literature shows that many factors, such as catalyst synthesis method, loaded metal composition, number of surface hydroxyl groups, number of acid-base sites and methods of surface modification, have important effects on the catalytic performance of metal catalysts. Therefore, this paper presents a comprehensive review of the research on the application of catalysts such as zeolites, metal oxides, carbon-based materials, and hydrotalcite-like derivatives in the field of organic sulfur removal. Future research prospects are summarized, more in situ characterization experiments and theoretical calculations are needed for the catalytic decomposition of methanethiol to analyze the coke generation pathways at the microscopic level, while the simultaneous removal of multiple organic sulfur gases needs to be focused on. Based on previous catalyst research, we propose possible innovations in catalyst design, desulfurization technology and organic sulfur resource utilization technology.

8.
Artigo em Japonês | WPRIM (Pacífico Ocidental) | ID: wpr-1007151

RESUMO

Mouthwash is used to support brushing because it is distributed throughout the oral cavity. In this study, we examined the efficacy of a mixture of three hot water extracts (from Hordeum vulgare L, Apocynum venetum L, and Brasenia schreberi J. F. Gmel) for the purpose of developing an effective mouthwash. The mixture suppressed enhanced tumor necrosis factor α and matrix metalloproteinase 3 gene expression by Porphyromonas gingivalis lipopolysaccharide stimulation in human gingival fibroblasts. Furthermore, human studies using a mouthwash containing the plant extracts (MW) improved gingival index and bleeding on probing in the gum, and reduced the concentration of methyl mercaptan, which causes bad breath, in the mouth. These findings suggest that continued use of MW has positive effects on gingival inflammation and halitosis, and is useful for maintaining oral health.

9.
Environ Monit Assess ; 195(1): 226, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36562856

RESUMO

Expanding industries and booming population have led to the increase in the installation of wastewater and sewer systems, even in close proximity to residential areas. Emissions from these installations particularly volatile organo-sulphur compounds (VOSCs) such as methyl mercaptan (CH3SH), ethyl mercaptan (C2H5SH), dimethyl sulphide (CH3SCH3) and carbon disulphide (CS2) are a nuisance to people even when present in small concentration. Strategies for removal involve addition of chemicals or other chemical processes which are generally expensive. Biofilters, on the other hand, consume large amount of energy and wash waters. Hence keeping commercialization in mind, it is important to develop a strategy which would be cost-effective and at the same time be effective to remove most of the odorous compounds present in these systems. In the present research work, granular activated carbons (GAC) are functionalized with alkali solution to improve the adsorption capacity. Liquid phase batch adsorption is performed with GAC and various functionalized activated carbons (FACs) with the help of raw sewage water from a local sewage water treatment plant. Concentration of odour was evaluated by two methods-olfactometry-based analysis for sensory measurement and GCMS-based analysis for analytical estimation of a specific odorous compound. The adsorption capacities of the functionalized GACs are higher primarily because of complex formation at the surface of modified GACs. Pseudo-second-order kinetic model agreed well with experimental results with the rate constant being 0.0191 mg/l min and 0.0153 mg/l min for methyl and ethyl mercaptan adsorption onto FAC-NH3. Boyd's film diffusion along with rate kinetic model supported that chemical adsorption forms the rate-limiting step. Response surface methodology (RSM) was used to optimize the removal of VOSCs with respect to different process parameters like adsorbent amount and time. The olfactometry removal of overall odour was also optimized taking 6 factors in the Box Behnken design. Variance of analysis results indicated that all the models displayed considerable goodness of fit with R2 values close to 1. Methyl mercaptan turned out to be the highest contributor to the overall odour as confirmed both from experimental and optimization study. The optimized olfactometry odour removal (77.4%) along with CH3SH removal (80.34%), C2H5SH removal (59.16%), CH3SCH3 removal (63.21%) and CS2 removal (71.95%) was found at optimum process conditions, with amount of adsorbent of 10.29 g, adsorption time of 2.92 h. This result indicates that methyl mercaptan (CH3SH) is the highest odour contributing component out of the studied VOSCs. The results show promising potential for the use of activated carbon as an adsorbent for removal of odorous compounds from STPs.


Assuntos
Compostos de Enxofre , Poluentes Químicos da Água , Humanos , Compostos de Enxofre/análise , Águas Residuárias , Esgotos/análise , Odorantes/análise , Porosidade , Monitoramento Ambiental , Compostos de Sulfidrila/química , Cinética , Adsorção , Poluentes Químicos da Água/análise
10.
Chemosphere ; 305: 135511, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35777537

RESUMO

Methyl mercaptan (MM) is a typical malodorous gas and low-concentration MM makes human uncomfortable. Adsorption is applied in industry to remove MM. However, adsorptive-site agglomeration results in that adsorbent is not fully utilized. In this work, pore size and unsaturated-site amount of Cu-based metal-organic frameworks (MOFs) were regulated by using different ligands to increase adsorptive-site accessibility for MM. As a result, when Cu2+ sites were imbedded in MOFs network, these sites were inaccessible for MM; when Cu2+ sites were occupied by none-network organics, these sites were accessible for MM after simple activation; when Cu2+ sites were occupied by water, these sites were the most effective for MM removal among above site species. Furthermore, with the increase of bonding sites in ligands, channel pore size of MOFs was increased. Both pore size and unsaturated-site amount were important to MM removal. When above MOFs were used in purification of ultra-low-concentration MM, the regulated MOFs with a big pore size (11 and 5 Å) and water-occupied sites showed a best removal capacity of 160.3 mg g-1. The main result of this work is in favor of understanding structure-efficiency relationship in MOFs. This work also helps to develop effective adsorbents for ultra-low-concentration pollutants.


Assuntos
Estruturas Metalorgânicas , Purificação da Água , Adsorção , Humanos , Compostos de Sulfidrila , Água , Purificação da Água/métodos
11.
Clin Toxicol (Phila) ; 60(5): 615-622, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34989638

RESUMO

CONTEXT: Methyl mercaptan (CH3SH) is a colorless, toxic gas with potential for occupational exposure and used as a weapon of mass destruction. Inhalation at high concentrations can result in dyspnea, hypoventilation, seizures, and death. No specific methyl mercaptan antidote exists, highlighting a critical need for such an agent. Here, we investigated the mechanism of CH3SH toxicity, and rescue from CH3SH poisoning by the vitamin B12 analog cobinamide, in mammalian cells. We also developed lethal CH3SH inhalation models in mice and rabbits, and tested the efficacy of intramuscular injection of cobinamide as a CH3SH antidote. RESULTS: We found that cobinamide binds to CH3SH (Kd = 84 µM), and improved growth of cells exposed to CH3SH. CH3SH reduced cellular oxygen consumption and intracellular ATP content and activated the stress protein c-Jun N-terminal kinase (JNK); cobinamide reversed these changes. A single intramuscular injection of cobinamide (20 mg/kg) rescued 6 of 6 mice exposed to a lethal dose of CH3SH gas, while all six saline-treated mice died (p = 0.0013). In rabbits exposed to CH3SH gas, 11 of 12 animals (92%) treated with two intramuscular injections of cobinamide (50 mg/kg each) survived, while only 2 of 12 animals (17%) treated with saline survived (p = 0.001). CONCLUSION: We conclude that cobinamide could potentially serve as a CH3SH antidote.


Assuntos
Antídotos , Cobamidas , Animais , Antídotos/uso terapêutico , Chlorocebus aethiops , Humanos , Camundongos , Coelhos , Compostos de Sulfidrila , Vitamina B 12
12.
Environ Sci Technol ; 55(24): 16723-16734, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34882404

RESUMO

Constructing catalysts with electronic metal-support interaction (EMSI) is promising for catalytic reactions. Herein, graphene-supported positively charged (Pt2+/Pt4+) atomically dispersed Pt catalysts (AD-Pt-G) with PtxC3 (x = 1, 2, and 4)-based EMSI coordination structures are achieved for boosting the catalytic ozonation for odorous CH3SH removal. A CH3SH removal efficiency of 91.5% can be obtained during catalytic ozonation using optimum 0.5AD-Pt-G within 12 h under a gas hourly space velocity of 60,000 mL h-1 g-1, whereas that of pure graphene is 40.4%. Proton transfer reaction time-of-flight mass spectrometry, in situ diffuse reflectance infrared Fourier transform spectroscopy/Raman, and electron spin resonance verify that the PtxC3 coordination structure with atomic Pt2+ sites on AD-Pt-G can activate O2 to generate peroxide species (*O2) for partial oxidation of CH3SH during the adsorption period and trigger O3 into surface atomic oxygen (*Oad), *O2, and superoxide radicals (·O2-) to accomplish a stable, high-efficiency, and deeper oxidation of CH3SH during the catalytic ozonation stage. Moreover, the results of XPS and DFT calculation imply the occurrence of Pt2+ → Pt4+ → Pt2+ recirculation on PtxC3 for AD-Pt-G to maintain the continuous catalytic ozonation for 12 h, i.e., Pt2+ species devote electrons in 5d-orbitals to activate O3, while Pt4+ species can be reduced back to Pt2+ via capturing electrons from CH3SH. This study can provide novel insights into the development of atomically dispersed Pt catalysts with a strong EMSI effect to realize excellent catalytic ozonation for air purification.


Assuntos
Grafite , Ozônio , Catálise , Oxirredução , Oxigênio
13.
J Hazard Mater ; 413: 124527, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33582466

RESUMO

Activated carbon was a widely-used adsorbent. However, it was usually classified as a hazardous waste after saturation adsorption for one pollution. For the first time, this article reported a regeneration method for the activated carbon saturated with methyl mercaptan. The regenerated carbon was partially transformed into graphene-oxide fragment with a thickness of 0.9-1.0 nm after a hydrothermal treatment at 180 °C. Electron paramagnetic resonance revealed that lactone group was transformed into lactone radical under the hydrothermal condition. The spins were increased from 4.54E+17-1.24E+18. The formed radical effectively reacted with the adsorbed methyl mercaptan and re-distributed the amorphous activated carbon to form lamellar graphene oxide. As a result, the spins were decreased from 1.24E+18-8.73E+17. At the same time, the amount of lactone group was decreased from 0.71 to 0.42 mmol/g. The regenerated activated carbon thus regained ability to adsorb methyl mercaptan. The main result of this paper puts forward a simple and low-cost method to obtain graphene oxide modified activated carbon from the regeneration of hazardous waste carbon. This conclusion makes contribution to the development of "zero-waste" conception.

14.
Inhal Toxicol ; 33(1): 25-32, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356664

RESUMO

BACKGROUND: Methyl mercaptan occurs naturally in the environment and is found in a variety of occupational settings, including the oil, paper, plastics, and pesticides industries. It is a toxic gas and deaths from methyl mercaptan exposure have occurred. The Department of Homeland Security considers it a high threat chemical agent that could be used by terrorists. Unfortunately, no specific treatment exists for methyl mercaptan poisoning. METHODS: We conducted a randomized trial in 12 swine comparing no treatment to intramuscular injection of the vitamin B12 analog cobinamide (2.0 mL, 12.5 mg/kg) following acute inhalation of methyl mercaptan gas. Physiological and laboratory parameters were similar in the control and cobinamide-treated groups at baseline and at the time of treatment. RESULTS: All six cobinamide-treated animals survived, whereas only one of six control animals lived (17% survival) (p = 0.0043). The cobinamide-treated animals returned to a normal breathing pattern by 3.8 ± 1.1 min after treatment (mean ± SD), while all but one animal in the control group had intermittent gasping, never regaining a normal breathing pattern. Blood pressure and arterial oxygen saturation returned to baseline values within 15 minutes of cobinamide-treatment. Plasma lactate concentration increased progressively until death (10.93 ± 6.02 mmol [mean ± SD]) in control animals, and decreased toward baseline (3.79 ± 2.93 mmol [mean ± SD]) by the end of the experiment in cobinamide-treated animals. CONCLUSION: We conclude that intramuscular administration of cobinamide improves survival and clinical outcomes in a large animal model of acute, high dose methyl mercaptan poisoning.


Assuntos
Antídotos/farmacologia , Cobamidas/farmacologia , Compostos de Sulfidrila/toxicidade , Animais , Antídotos/administração & dosagem , Cobamidas/administração & dosagem , Feminino , Exposição por Inalação , Injeções Intramusculares , Masculino , Distribuição Aleatória , Suínos
15.
J Colloid Interface Sci ; 582(Pt B): 950-960, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32927175

RESUMO

A novel deodorizer that is capable of selectively eliminating the odorous chemicals, such as ammonia, trimethylamine, hydrogen sulfide and methyl mercaptan, is described. The deodorizer is a nanostructured aerogel by nature, consisting of 2,2-6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidized cellulose nanofibrils (CNF), transition metal divalent cations (M2+), and multi-walled carbon nanotubes (CNT) as the constitutive elements. CNF are firstly mixed with M2+ (M2+, in this paper, typifies Ni2+, Co2+ and Cu2+) to form CNF-M2+ complexes, monodispersed CNT is then mixed to prepare CNT/CNF-M2+ waterborne slurries; CNT/CNF-M2+ hybridized aerogels are finally obtained via freezing-drying of the CNT/CNF-M2+ waterborne slurries. The CNT/CNF-M2+ aerogels are a foam-like structure consisting of CNF and CNT as backbones and M2+ as linkers. The aerogels show higher capabilities (in comparison with activated carbon) for selectively adsorbing ammonia, trimethylamine, hydrogen sulfide and methyl mercaptan. Computing simulations suggest a theoretical conclusion that the odorous chemicals are absorbed in a preferring manner of bimolecular absorptions via the M2+ moieties. The CNT/CNF-M2+ hybridized aerogels are lightweight, eco-friendly, and easy to produce in industrial scales. Our new finding, as is described in this paper, demonstrates potential applications of the TEMPO-oxidized CNF to the field of deodorizations.

16.
Water Environ Res ; 93(2): 316-327, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32706455

RESUMO

This study quantifies volatile sulfur compound (VSC) emissions from primary settling tanks and investigates their mechanisms of generation. Hydrogen sulfide (H2 S) and methyl mercaptan (MM) concentrations in the off-gas were dominant among the VSCs analyzed, while dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) were under their odor threshold for most sampling dates. H2 S emission in primary settling tanks was mainly the result of the stripping of dissolved sulfide (64%) generated in the sewers. Results indicate that MM emission was more dependent on the conditions in the primary clarifiers (only 16% stripping). Prevention of odor emission in primary settling tanks can be achieved by managing biofilms and microbial reactions in the sewer network. Controlling the biomass seeding and fermentation product availability in the primary settling tanks is essential to significantly minimize the kinetics of H2 S and MM generation. Overall, the management of sludge blanket heights and thus avoiding time at low oxidation-reduction potential minimized odor emission independent of sewer conditions. PRACTITIONER POINTS: H2 S emission from primary clarifiers mainly originated from the stripping of the dissolved sulfide formed in the sewers. MM emission contributed for 89% to overall odor emitted from primary clarifiers. Seeding of active biomass from the sewer into the primary clarifiers was be the main driver for both MM and H2 S formation. Increased availability of fermentation products or fermenters increased MM production.


Assuntos
Compostos de Enxofre , Recursos Hídricos , Odorantes/análise , Esgotos , Enxofre
17.
Waste Manag ; 116: 112-119, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32799093

RESUMO

Methyl mercaptan (MM) and dimethyl sulfide (DMS) are typical landfill odorous gases that have received little attention compared with hydrogen sulfide (H2S). In this study, landfill MM and DMS emissions were investigated regarding their origin from substrates with different sulfur states, namely, intrinsic organic sulfur and external inorganic sulfur (SO42-). Substrates with high protein contents showed the highest potential for MM and DMS emissions, at 46.0 and 9.2 µL·g-1 substrate, respectively. Meanwhile, a comparable contribution by SO42- was achieved when the SO42- content comprised over 40% of the substrate. The substrate contribution to DMS emission was up to 10 times the SO42- contribution. Meanwhile, the SO42- contribution to MM emission was over 1000 times that to DMS emissions. MM and DMS can accumulate in landfill sites and then be transformed into H2S or sulfide (S2-). This research offers a comprehensive understanding of MM and DMS emissions in landfill and provides a basis for classification management methods in landfill sites.


Assuntos
Sulfeto de Hidrogênio , Instalações de Eliminação de Resíduos , Compostos de Sulfidrila , Sulfetos , Enxofre
18.
ACS Appl Mater Interfaces ; 12(37): 41728-41739, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32830948

RESUMO

In this work, PdOx-CuOx co-loaded porous WO3 microspheres were synthesized with varying loading levels by ultrasonic spray pyrolysis (USP) using polymethyl methacrylate (PMMA) microspheres as a vehicle template. The as-prepared sensing materials and their fabricated sensor properties were characterized by X-ray analysis, nitrogen adsorption, and electron microscopy. The gas-sensing properties were studied toward methyl mercaptan (CH3SH), hydrogen sulfide (H2S), dimethyl sulfide (CH3SCH3), nitric oxide (NO), nitrogen dioxide (NO2), methane (CH4), ethanol (C2H5OH), and acetone (C3H6O) at 0.5 ppm under atmospheric conditions with different operating temperatures ranging from 100 to 400 °C. The results showed that the CH3SH response of USP-made WO3 microspheres was collaboratively enhanced by the creation of pores in the microsphere and co-loading of CuOx and PdOx at low operating temperatures (≤200 °C). More importantly, the CH3SH selectivity against H2S was significantly improved and high selectivity against CH3SCH3, NO, NO2, CH4, C2H5OH, and CH3COCH3 were upheld by the incorporation of PdOx to CuOx-loaded WO3 sensors. Therefore, the co-loading of PdOx-CuOx on porous WO3 structures could be promising strategies to achieve highly selective and sensitive CH3SH sensors, which would be practically useful for specific applications including biomedical and periodontal diagnoses.

19.
Environ Sci Pollut Res Int ; 27(2): 1224-1233, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30155638

RESUMO

In this work, sludge-derived carbon (SC) was innovatively integrated with copper oxide (CuO) on macroporous silicon carbide foams to construct a distinctive catalyst (CuO/SC) with strong catalytic activity, which can effectively activate persulfate (PS) for the removal of methyl mercaptan (CH3SH). The structure and morphology of CuO/SC were investigated by means of XRD, SEM, and EDS. The effects of initial pH values, copper contents, PS dosages, and flow rates on CH3SH removal were also investigated. Under optimal condition, more than 90% of CH3SH was removed by CuO/SC-PS combined system within 10-min reaction due to the synergistic function of CuO and SC. More importantly, on the basis of reactive species trapping and ESR spectroscopy, it is revealed that the responsible reactive species for catalytic CH3SH composition were ·SO4-, ·OH, 1O2, and ·O2- in CuO/SC-PS system. Finally, the possible PS activation scheme of CuO/SC samples was proposed.


Assuntos
Compostos Inorgânicos de Carbono/química , Carbono , Cobre/química , Esgotos , Compostos de Silício/química , Espécies Reativas de Oxigênio , Compostos de Sulfidrila/química
20.
J Vet Dent ; 36(2): 135-142, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31537147

RESUMO

Weissella (W.) cibaria strain Chonnam Medical University (CMU) has shown oral colonizing ability and inhibitory effects on the formation of volatile sulfur compounds (VSCs) in vitro studies. The present study was conducted to analyze the effects of the W. cibaria CMU on canine oral health. Halitosis, calculus, plaque, gingivitis, and intraoral microbiota were assessed in 3 groups: control (maltodextrin), W. cibaria CMU low concentration (CMU-L, 2 × 107 colony forming unit [CFU]), and high-concentration (CMU-H, 2 × 109 CFU). Halitosis was analyzed using both organoleptic evaluation and measurement of VSCs. Intraoral microbiota were analyzed by real-time polymerase chain reaction. From week 4, the total VSC level in the CMU-H group (4.0 ± 1.30 ng/10 mL) was significantly lower than in the control group (6.3 ± 2.28 ng/10 mL). Significant reduction in methyl mercaptan in the CMU-treated groups was also observed. In addition, the plaque index in the CMU-treated groups was significantly decreased. The CMU-treated groups showed significant decreases in Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, and Tannerella forsythia and demonstrated the colonizing ability of W. cibaria CMU in the oral cavity. We demonstrated that W. cibaria CMU suppresses halitosis, colonizes the oral cavity, and inhibits the proliferation of malodor-causing oral bacteria in beagles. According to these results, we expect that W. cibaria CMU could be a new oral hygiene solution by reducing VSC production and inhibiting the growth of oral harmful bacteria in companion animals.


Assuntos
Cálculos/veterinária , Doenças do Cão/microbiologia , Gengivite/veterinária , Infecções por Bactérias Gram-Positivas/veterinária , Halitose/veterinária , Weissella , Animais , Cálculos/microbiologia , Cães , Gengivite/microbiologia , Halitose/microbiologia , Compostos de Enxofre , Weissella/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...