Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Clin Transl Oncol ; 25(10): 2960-2971, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37024636

RESUMO

OBJECTIVE: Downregulation of miR-17-5p has been reported in several cancers, but whether and how miR-17-5p is downregulated in hepatocellular carcinoma (HCC) is unknown. Here, we examined whether miR-17-5p is downregulated in HCC and whether that affects expression of its target gene encoding transforming growth factor ß receptor 2 (TGFßR). METHODS: We screened for potential microRNAs (miRNAs) involved in HCC by analyzing published transcriptomes from HCC patients. Expression of miR-17-5p was measured in HCC cell lines and in tissues from HCC patients using quantitative real-time PCR. The in vitro effects of miR-17-5p on HCC cells were assessed by EdU proliferation assay, CCK-8 cell proliferation assay, colony-formation assay, transwell migration/invasion assay, wound healing assay, and flow cytometry. Effects of miR-17-5p were evaluated in vivo using mice with subcutaneous tumors. Effects of the miRNA on the epithelial-mesenchymal transition (EMT) were assessed, while its effects on TGFßR2 expression were analyzed using bioinformatics and a dual luciferase reporter assay. RESULTS: Patients with low miR-17-5p expression showed lower rates of overall and recurrence-free survival than patients with high miR-17-5p expression, and multivariate Cox regression identified low miR-17-5p expression as an independent predictor of poor overall survival in HCC patients. In vitro, miR-17-5p significantly inhibited HCC cell proliferation, migration, invasion, and the EMT, while promoting apoptosis. In vivo, it slowed the development of tumors. These protective effects of miR-17-5p were associated with downregulation of TGFßR2. CONCLUSION: The miRNA miR-17-5p can negatively regulate the expression of TGFßR2 and inhibit the EMT, thereby slowing tumor growth in HCC, suggesting a potential therapeutic approach against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Biol Res ; 56(1): 16, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005678

RESUMO

BACKGROUND/AIMS: Diabetes mellitus (DM) is highly susceptible to diabetic hind limb ischemia (DHI). MicroRNA (MiR)-17-5p is downregulated in DM and plays a key role in vascular protection. Endothelial progenitor cell (EPC)-released exosomes (EPC-EXs) contribute to vascular protection and ischemic tissue repair by transferring their contained miRs to target cells. Here, we investigated whether miR-17-5p-enriched EPC-EXs (EPC-EXsmiR-17-5p) had conspicuous effects on protecting vascular and skeletal muscle in DHI in vitro and in vivo. METHODS: EPCs transfected with scrambled control or miR-17-5p mimics were used to generate EPC-EXs and EPC-EXsmiR-17-5p. Db/db mice were subjected to hind limb ischemia. After the surgery, EPC-EXs and EPC-EXsmiR-17-5p were injected into the gastrocnemius muscle of the hind limb once every 7 days for 3 weeks. Blood flow, microvessel density, capillary angiogenesis, gastrocnemius muscle weight, structure integrity, and apoptosis in the hind limb were assessed. Vascular endothelial cells (ECs) and myoblast cells (C2C12 cells) were subjected to hypoxia plus high glucose (HG) and cocultured with EPC-EXs and EPC-EXsmiR-17-5p. A bioinformatics assay was used to analyze the potential target gene of miR-17-5p, the levels of SPRED1, PI3K, phosphorylated Akt, cleaved caspase-9 and cleaved caspase-3 were measured, and a PI3K inhibitor (LY294002) was used for pathway analysis. RESULTS: In the DHI mouse model, miR-17-5p was markedly decreased in hind limb vessels and muscle tissues, and infusion of EPC-EXsmiR-17-5p was more effective than EPC-EXs in increasing miR-17-5p levels, blood flow, microvessel density, and capillary angiogenesis, as well as in promoting muscle weight, force production and structural integrity while reducing apoptosis in gastrocnemius muscle. In Hypoxia plus HG-injured ECs and C2C12 cells, we found that EPC-EXsmiR-17-5p could deliver their carried miR-17-5p into target ECs and C2C12 cells and subsequently downregulate the target protein SPRED1 while increasing the levels of PI3K and phosphorylated Akt. EPC-EXsmiR-17-5p were more effective than EPC-EXs in decreasing apoptosis and necrosis while increasing viability, migration, and tube formation in Hypoxia plus HG-injured ECs and in decreasing apoptosis while increasing viability and myotube formation in C2C12 cells. These effects of EPC-EXsmiR-17-5p could be abolished by a PI3K inhibitor (LY294002). CONCLUSION: Our results suggest that miR-17-5p promotes the beneficial effects of EPC-EXs on DHI by protecting vascular ECs and muscle cell functions.


Assuntos
Diabetes Mellitus , MicroRNAs , Camundongos , Animais , Células Endoteliais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Movimento Celular , Músculo Esquelético/metabolismo , Isquemia , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia
3.
Biol. Res ; 56: 16-16, 2023. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1439483

RESUMO

BACKGROUND/AIMS: Diabetes mellitus (DM) is highly susceptible to diabetic hind limb ischemia (DHI). MicroRNA (MiR)-17-5p is downregulated in DM and plays a key role in vascular protection. Endothelial progenitor cell (EPC)-released exosomes (EPC-EXs) contribute to vascular protection and ischemic tissue repair by transferring their contained miRs to target cells. Here, we investigated whether miR-17-5p-enriched EPC-EXs (EPC-EXsmiR-17-5p) had conspicuous effects on protecting vascular and skeletal muscle in DHI in vitro and in vivo. METHODS: EPCs transfected with scrambled control or miR-17-5p mimics were used to generate EPC-EXs and EPC-EXsmiR-17-5p. Db/db mice were subjected to hind limb ischemia. After the surgery, EPC-EXs and EPC-EXsmiR-17-5p were injected into the gastrocnemius muscle of the hind limb once every 7 days for 3 weeks. Blood flow, microvessel density, capillary angiogenesis, gastrocnemius muscle weight, structure integrity, and apoptosis in the hind limb were assessed. Vascular endothelial cells (ECs) and myoblast cells (C2C12 cells) were subjected to hypoxia plus high glucose (HG) and cocultured with EPC-EXs and EPC-EXsmiR-17-5p. A bioinformatics assay was used to analyze the potential target gene of miR-17-5p, the levels of SPRED1, PI3K, phosphorylated Akt, cleaved caspase-9 and cleaved caspase-3 were measured, and a PI3K inhibitor (LY294002) was used for pathway analysis. RESULTS: In the DHI mouse model, miR-17-5p was markedly decreased in hind limb vessels and muscle tissues, and infusion of EPC-EXsmiR-17-5p was more effective than EPC-EXs in increasing miR-17-5p levels, blood flow, microvessel density, and capillary angiogenesis, as well as in promoting muscle weight, force production and structural integrity while reducing apoptosis in gastrocnemius muscle. In Hypoxia plus HG-injured ECs and C2C12 cells, we found that EPC-EXsmiR-17-5p could deliver their carried miR-17-5p into target ECs and C2C12 cells and subsequently downregulate the target protein SPRED1 while increasing the levels of PI3K and phosphorylated Akt. EPC-EXsmiR-17-5p were more effective than EPC-EXs in decreasing apoptosis and necrosis while increasing viability, migration, and tube formation in Hypoxia plus HG-injured ECs and in decreasing apoptosis while increasing viability and myotube formation in C2C12 cells. These effects of EPC-EXsmiR-17-5p could be abolished by a PI3K inhibitor (LY294002). CONCLUSION: Our results suggest that miR-17-5p promotes the beneficial effects of EPC-EXs on DHI by protecting vascular ECs and muscle cell functions.


Assuntos
Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Diabetes Mellitus , Movimento Celular , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases , Células Endoteliais , Isquemia , Hipóxia
4.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806488

RESUMO

Mutations and alterations in the expression of VEGFA, KRAS, and NFE2L2 oncogenes play a key role in cancer initiation and progression. These genes are enrolled not only in cell proliferation control, but also in angiogenesis, drug resistance, metastasis, and survival of tumor cells. MicroRNAs (miRNAs) are small, non-coding regulatory RNA molecules that can regulate post-transcriptional expression of multiple target genes. We aimed to investigate if miRNAs hsa-miR-17-5p, hsa-miR-140-5p, and hsa-miR-874-3p could interfere in VEGFA, KRAS, and NFE2L2 expression in cell lines derived from head and neck cancer (HNC). FADU (pharyngeal cancer) and HN13 (oral cavity cancer) cell lines were transfected with miR-17-5p, miR-140-5p, and miR-874-3p microRNA mimics. RNA and protein expression analyses revealed that miR-17-5p, miR-140-5p and miR-874-3p overexpression led to a downregulation of VEGFA, KRAS, and NFE2L2 gene expression in both cell lines analyzed. Taken together, our results provide evidence for the establishment of new biomarkers in the diagnosis and treatment of HNC.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas p21(ras) , Fator A de Crescimento do Endotélio Vascular , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
FEBS Open Bio ; 12(6): 1253-1264, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35417090

RESUMO

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are essential players in the regulation of gene expression. The majority of the twenty different hnRNP proteins act through the modulation of pre-mRNA splicing. Most have been shown to regulate the expression of critical genes for the progression of tumorigenic processes and were also observed to be overexpressed in several types of cancer. Moreover, these proteins were described as essential components for the maturation of some microRNAs (miRNAs). In the human genome, over 70% of miRNAs are transcribed from introns; therefore, we hypothesized that regulatory proteins involved with splicing could be important for their maturation. Increased expression of the miR-17-92 cluster has already been shown to be related to the development of many cancers, such as thyroid, lung, and lymphoma. In this article, we show that overexpression of hnRNP A1 and hnRNP C in BCPAP thyroid cancer cells directly affects the expression of miR-17-92 miRNAs. Both proteins associate with the 5'-end of this cluster, strongly precipitate miRNAs miR-17 and miR-18a and upregulate the expression of miR-92a. Upon overexpression of these hnRNPs, BCPAP cells also show increased proliferation, migration, and invasion rates, suggesting upregulation of these proteins and miRNAs is related to an enhanced tumorigenic phenotype.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Glândula Tireoide/genética
6.
Cell Physiol Biochem ; 56: 105-119, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35352515

RESUMO

BACKGROUND/AIMS: Pre-mRNA splicing is an essential step in eukaryotic gene expression regulation. Genes are composed of exons that remain in the mature mRNAs and intervening sequences named introns. Splicing is the removal of introns and ligation of exons in a mature transcript. Splice site or spliceosome component mutations can lead to different diseases, including neurodegenerative diseases and several cancer types. HuR is an RNA-binding protein that preferentially binds to U- and AU-rich elements, usually found at the 3' UTRs of some mRNAs. We previously observed HuR specifically associated with spliceosomes assembled on introns containing miR-18a and miR-19a. miR-18a and miR-19a are components of the intronic miR-17-92 cluster, along with other five miRNAs. This cluster has been reported to regulate proliferation, migration, and angiogenesis in cells. In this context, we reasoned HuR could be controlling the splicing and processing of these miRNAs, leading to altered cellular phenotypes. METHODS: We induced HuR overexpression in BCPAP and HEK-293T and analyzed the expression of miRNAs using qPCR, as well as the phenotypic effects in those cells. Cell counting to analyze cell growth was performed after trypan blue staining. Migration and invasion assays were performed using transwell filters and cells were counted after staining with crystal violet. We knocked down HuR using a specific siRNA and analyzed expression of miRNAs by qPCR, as well as cellular kinetics. RESULTS: Our results revealed HuR is associated with miR-19a in BCPAP and HEK-293T cells. Conversely, silencing HuR led to reduced miR-17-5p and miR-19a in BCPAP cells. Our data support that HuR stimulates the expression of miR-19, which is further processed and capable of finding its target sequence in a reporter plasmid. Cells overexpressing HuR showed increased cellular proliferation, migration, and invasion rates. Notably, under the presence of antimiR-19a, BCPAP-HuR cells showed reduced cell growth. Taken together, these results indicate the molecular alterations observed are associated with upregulation of miR-19a, leading to cellular processes involved in cancer development. CONCLUSION: Our findings propose a connection between HuR, miRNA biogenesis and cellular modifications. HuR stimulates miR-19a and miR-19b expression, which leads to up-regulation of cell proliferation, migration and invasion, promoting cancer development.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Humanos , Cinética , MicroRNAs/metabolismo , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/genética
7.
Thyroid ; 30(1): 81-94, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31578932

RESUMO

Background: Loss of the expression of thyroid differentiation markers such as sodium iodide symporter (NIS) and, consequently, radioiodine refractoriness is observed in aggressive papillary thyroid cancer and anaplastic thyroid cancer (ATC) that may harbor the BRAFV600E mutation. Activation of the BRAFV600E oncogene in thyroid follicular cells induces the expression of the miR-17-92 cluster that comprises seven mature microRNAs (miRNAs). miRNAs are a class of endogenous small RNAs (∼22 nt) that regulate gene expression post-transcriptionally. Indeed, miR-17-92 is overexpressed in ATC, and in silico prediction shows the potential targeting of thyroid transcription factors and tumor suppressor pathways. In this study, we aimed to investigate the role of the miR-17-92 cluster in thyroid cell differentiation and function. Methods:miR-17-92 silencing was performed using CRISPR/Cas9n-guided genomic editing of the miR-17-92 gene in the KTC2 ATC cell line, and miR-17-92 cluster or individual miRNAs were overexpressed in PCCl3 thyroid cells to evaluate the influence in thyroid cell differentiation and cell function. Results: In this study, we demonstrate that CRISPR/Cas9n gene editing of the miR-17-92 cluster results in promotion of thyroid follicular cell differentiation (NIS, thyroperoxidase, thyroglobulin, PAX8, and NKX2-1 expression) in the KTC2 ATC cell line and inhibits cell migration and proliferation by restoring transforming growth factor beta (TGF-ß) signaling pathway responsiveness. Moreover, induction of the miR-17-92 cluster in normal thyroid follicular cells strongly impairs thyroid differentiation and induces a pro-oncogenic effect by blocking TGF-ß signaling and increasing cell migration. Conclusions:miR-17-92 is a potent regulator of thyroid follicular cell differentiation, and CRISPR/Cas9n-mediated editing of the miR-17-92 gene efficiently blocks miR-17-92 expression in the KTC2 ATC cell line, resulting in improvement of thyroid differentiation. Thus, targeting miR-17-92 could provide a potential molecular approach to restoring thyroid cell differentiation and NIS expression in aggressive thyroid cancer.


Assuntos
Diferenciação Celular/fisiologia , MicroRNAs/genética , Carcinoma Anaplásico da Tireoide/genética , Células Epiteliais da Tireoide/patologia , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , MicroRNAs/metabolismo , Carcinoma Anaplásico da Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/patologia , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
8.
Int J Mol Sci ; 19(1)2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361751

RESUMO

Micro-RNAs (miRNAs) have emerged as novel gene expression regulators. Recent evidence strongly suggests a role for miRNAs in a large variety of cancer-related pathways. Different studies have shown that 18.7 to 37% of all human miRNA genes are clustered. miR-17-92 polycistronic cluster overexpression is associated with human hematolymphoid and solid malignancies including breast cancer (BC). Here, we report the identification of rs770419845, a rare 6 bp deletion located within the polycistronic miR-17-92 cluster, in two first-degree relatives from a Chilean family with familial BC and negative for point mutations in BRCA 1/2 genes. The deletion was identified by Sanger sequencing when 99 BRCA1/2 mutation-negative BC cases with a strong family history were initially screened. In silico analysis predicts that rs770419845 affects the secondary structure and stability of the pre-miR-17-pre-miR-18 region and the entire 17-92 cluster. The deletion was screened in 458 high-risk BRCA1/2-negative Chilean families and 480 controls. rs770419845 was not detected in any control but identified in a single family with two cases of BC and other cancers. Both BC cases, the mother and her daughter, carried the deletion. Based on bioinformatic analyses, the location of the deletion and its low frequency, we presume rs770419845 may be a pathogenic variant. Functional studies are needed to support this hypothesis.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Mutação em Linhagem Germinativa , Heterozigoto , MicroRNAs/genética , Família Multigênica , Deleção de Sequência , Adulto , Idoso , Sequência de Bases , Chile , Família , Feminino , Humanos , Pessoa de Meia-Idade , Conformação de Ácido Nucleico , Linhagem , RNA Longo não Codificante , Análise de Sequência de DNA
9.
Cancer Genomics Proteomics ; 14(5): 373-381, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28871004

RESUMO

BACKGROUND: Thyroid cancer is one of the most frequent types of endocrine cancers. In most cases, thyroid cancers are caused by deregulated miRNA expression, especially involving the miR17-92 cluster. miR17-92 transcription is altered in several different tumor types including lymphoma, leukemia, and of the breast and thyroid. As an intronic cluster, miR17-92 must be processed during splicing and therefore interaction between microprocessor and spliceosome machineries is of major importance in understanding its expression. MATERIALS AND METHODS: We investigated the protein composition of spliceosomes assembled on pre-RNAs containing intronic miR18a and miR19a, components of the miR17-92 cluster, using mass spectrometry. RESULTS: Interestingly, we observed that proteins associated with intronic miR18a and miR19a are cell-specific, and are similar for both miRNAs analyzed. The only exception is the group of heterogeneous nuclear proteins that are commonly recruited by different cells. CONCLUSION: miRNA processing depends on cell-specific proteins and heterogeneous nuclear proteins have a general role in miRNA processing from introns.


Assuntos
MicroRNAs/metabolismo , Splicing de RNA/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Ontologia Genética , Humanos , Espectrometria de Massas , Reação em Cadeia da Polimerase em Tempo Real
10.
Tumour Biol ; 37(10): 13637-13647, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27473081

RESUMO

Mycosis fungoides is the most common type of primary cutaneous T cell lymphoma. We have evaluated CDKN2A losses and MYC gains/amplifications by FISH analysis, as well as expression of miR-155 and members of the oncogenic cluster miR-17-92 (miR17, miR18a, miR19b, and miR92a) in MF patients with advanced disease. Formalin-fixed paraffin-embedded skin biopsies from 36 patients at diagnosis, 16 with tumoral MF (T-MF), 13 in histological transformation to a large T cell lymphoma (TR-MF), and 7 cases with folliculotropic variant (F-MF), were studied. Twenty cases showed genomic alterations (GAs): 8 (40 %) had CDKN2A deletion, 7 (35 %) showed MYC gain, and 5 (25 %) exhibited both alterations. GAs were more frequently observed in F-MF (p = 0.004) and TR-MF (p = 0.0001) than T-MF. GAs were significantly higher in cases presenting lesions in head, neck, and lower extremities compared to those observed in trunk and upper extremities (p = 0.03), when ≥25 % neoplastic cells were CD30 positive (p = 0.016) as well as in cases with higher Ki-67 proliferation index (p = 0.003). Patients with GAs showed bad response to treatment (p = 0.02) and short survival (p = 0.04). Furthermore, MF patients showed higher miRNA expression compared to controls (p ≤ 0.0223). T-MF showed higher miR17 and miR-18a expression compared to F-MF and TR-MF (p ≤ 0.0387) while miR19b, miR92a, and miR-155 showed increased levels in F-MF and TR-MF with respect to T-MF (p ≤ 0.0360). Increased expression of miR17 and miR19b in GA group compared to cases without alterations (p ≥ 0.0307) was also detected. Our results add new information about genomic imbalances in MF patients, particularly in F-MF, and extend the present view of miRNA deregulation in this disease.


Assuntos
Biomarcadores Tumorais/genética , Instabilidade Genômica , Linfoma Cutâneo de Células T/genética , MicroRNAs/genética , Micose Fungoide/genética , Neoplasias Cutâneas/genética , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos Par 8/genética , Cromossomos Humanos Par 9/genética , Feminino , Seguimentos , Genômica/métodos , Humanos , Hibridização in Situ Fluorescente , Linfoma Cutâneo de Células T/patologia , Masculino , Pessoa de Meia-Idade , Micose Fungoide/patologia , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/patologia
11.
Ann Hematol ; 95(6): 881-91, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27044389

RESUMO

Burkitt lymphoma (BL) is an aggressive B cell lymphoma characterized by the reciprocal translocation of the c-Myc gene with immunoglobulin genes. Recently, MYC has been shown to maintain the neoplastic state via the miR-17-92 microRNA cluster that suppresses chromatin regulatory genes and the apoptosis regulator Bim. However, the expression and prognostic impact of miR-17-92 members in pediatric BL (pBL) are unknown. Therefore, we investigated miR-17, miR-19a, miR-19b, miR-20, and miR-92a expression and prognostic impact in a series of 41 pBL samples. In addition, Bim protein expression was evaluated and compared to miR-17, miR-19a, miR-19b, miR-20, and miR-92a levels and patient outcomes. The expression of miR-17-92 members was evaluated by qPCR and Bim protein by immunohistochemistry. Log-rank test was employed to assess prognostic impact. We found that upregulated expression of miR-17 and miR-20a correlates with lack of pro-apoptotic Bim expression. Patients bearing tumors with upregulated miR-17 displayed decreased overall survival (OS), and multivariate analysis revealed that miR-17 was a significant predictor of shortened OS. Using hairpin inhibitors, we showed that inhibition of miR-17 resulted in enhanced Bim expression in a BL cell line overexpressing the miR-17-92 cluster. Our results describe for the first time miR-17, miR-19a, miR-19b, miR-20a, and miR-92a expression profiles in pBL. The prognostic impact of miR-17 should be validated in a larger series, and may provide new therapeutic avenues in the era of anti-miRNA therapy research. Additional functional studies are further required to understand the specific role of miR-17-92 cluster members in BL.


Assuntos
Linfoma de Burkitt/diagnóstico , Linfoma de Burkitt/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Adolescente , Linfoma de Burkitt/metabolismo , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Seguimentos , Humanos , Masculino , MicroRNAs/biossíntese , Prognóstico , RNA Longo não Codificante
12.
Front Med (Lausanne) ; 2: 64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442266

RESUMO

Overexpression of the miR-17-92 cluster is a key oncogenic event in various cancer types. The oncogenic effect of the miR-17-92 cluster is enhanced by cooperation between its members in targeting tumor-suppressive proteins and pathways such as PTEN and TGFß signaling. However, in the case of miR-19a and miR-19b, these have been shown to have a preponderant role in the cluster's oncogenicity. Important studies have revealed the influence of the Myc proto-oncogene family in the transcriptional regulation of miR-17-92. Recent findings show that other oncogenic signaling pathways, such as those of Notch and Sonic Hedgehog, activate miR-17-92 in cancer. Notwithstanding, another layer of complexity has been added by the influence of the relevant primary miR-17-92 tertiary structure during processing to mature miRNA. In this review, we attempt to integrate current transcriptional and post-transcriptional knowledge to enhance our global understanding of the coordinated up-regulation of miR-17-92 in cancer.

13.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;45(2): 131-138, Feb. 2012. ilus
Artigo em Inglês | LILACS | ID: lil-614575

RESUMO

MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3’ untranslated regions (3’UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3’UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3’UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.


Assuntos
Animais , Feminino , Camundongos , Gravidez , /genética , Proteínas de Ligação a DNA/genética , MicroRNAs/genética , Miócitos Cardíacos/citologia , Fatores de Transcrição/genética , Técnicas de Cultura de Células , Proliferação de Células , Biologia Computacional , Proteínas de Ligação a DNA/metabolismo , Luciferases/farmacologia , Camundongos Transgênicos , MicroRNAs/metabolismo , Plasmídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA