Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
BMC Neurol ; 24(1): 204, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879468

RESUMO

Hypoxia can cause a variety of diseases, including ischemic stroke and neurodegenerative diseases. Within a certain range of partial pressure of oxygen, cells can respond to changes in oxygen. Changes in oxygen concentration beyond a threshold will cause damage or even necrosis of tissues and organs, especially for the central nervous system. Therefore, it is very important to find appropriate measures to alleviate damage. MiRNAs can participate in the regulation of hypoxic responses in various types of cells. MiRNAs are involved in regulating hypoxic responses in many types of tissues by activating the hypoxia-inducible factor (HIF) to affect angiogenesis, glycolysis and other biological processes. By analyzing differentially expressed miRNAs in hypoxia and hypoxia-related studies, as well as the HT22 neuronal cell line under hypoxic stress, we found that the expression of miR-18a was changed in these models. MiR-18a could regulate glucose metabolism in HT22 cells under hypoxic stress by directly regulating the 3'UTR of the Hif1a gene. As a small molecule, miRNAs are easy to be designed into small nucleic acid drugs, so this study can provide a theoretical basis for the research and treatment of nervous system diseases caused by hypoxia.


Assuntos
Glucose , Hipocampo , Subunidade alfa do Fator 1 Induzível por Hipóxia , MicroRNAs , Neurônios , Animais , Humanos , Camundongos , Hipóxia Celular/fisiologia , Linhagem Celular , Glucose/metabolismo , Glucose/deficiência , Hipocampo/metabolismo , Hipocampo/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Neurônios/metabolismo
2.
Aging (Albany NY) ; 16(5): 4904-4919, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38460957

RESUMO

Stem cell therapy requires massive-scale homogeneous stem cells under strict qualification control. However, Prolonged ex vivo expansion impairs the biological functions and results in senescence of mesenchymal stem cells (MSCs). We investigated the function of CTDSPL in the premature senescence process of MSCs and clarified that miR-18a-5p played a prominent role in preventing senescence of long-term cultured MSCs and promoting the self-renewal ability of MSCs. Over-expression of CTDSPL resulted in an enlarged morphology, up-regulation of p16 and accumulation of SA-ß-gal of MSCs. The reduced phosphorylated RB suggested cell cycle arrest of MSCs. All these results implied that CTDSPL induced premature senescence of MSCs. We further demonstrated that miR-18a-5p was a putative regulator of CTDSPL by luciferase reporter assay. Inhibition of miR-18a-5p promoted the expression of CTDSPL and induced premature senescence of MSCs. Continuous overexpression of miR-18a-5p improved self-renewal of MSCs by reducing ROS level, increased expression of Oct4 and Nanog, and promoted growth rate and differentiation capability. We reported for the first time that the dynamic interaction of miR-18a-5p and CTDSPL is crucial for stem cell senescence.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Senescência Celular/genética , Regulação para Cima , Células-Tronco Mesenquimais/metabolismo
3.
Biochem Biophys Res Commun ; 694: 149403, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38147699

RESUMO

Mounting studies have showed that tumor microenvironment (TME) is crucial for cervical cancer (CC), and cancer-related fibroblasts (CAFs) play a major role in it. Recently, exosomal miRNAs secreted by CAFs have been found to be potential targets for cancer diagnosis and therapy. In this paper, we aimed to investigate the function of CAFs-mediated exosome miR-18a-5p (CAFs-exo-miR-18a-5p) in CC. First, in combination with bioinformatic data analysis of the GEO database (GSE86100) and RT-qPCR of CC clinical tissue samples and cell lines, miR-18a-5p was discovered to be markedly up-regulated in CC. Next, CAFs-secreted exosomes were isolated and it was found that miR-18a-5p expression was dramatically promoted in CC cell lines when treated with CAFs-exos. The CAFs-exo-miR-18a-5p was then elucidated to stimulate the proliferation and migration and inhibit the apoptosis of CC cells. In order to clarify the underlying mechanism, we further screened the target genes of miR-18a-5p. TMEM170B was selected by bioinformatic data analysis of online databases combined with RT-qPCR of CC clinical tissues and cells. Luciferase reporter gene analysis combined with molecular biology experiments further elucidated that miR-18a-5p suppressed TMEM170B expression in CC. Finally, both cell and animal experiments demonstrated that TMEM170B over-expression attenuated the oncogenic effect of CAFs-exo-miR-18a-5p. In conclusion, our study indicates that CAFs-mediated exosome miR-18a-5p promotes the initiation and development of CC by suppressing TMEM170B signaling axis, which provides a possible direction for the diagnosis and therapy of CC.


Assuntos
Fibroblastos Associados a Câncer , Exossomos , MicroRNAs , Neoplasias do Colo do Útero , Humanos , Animais , Feminino , Exossomos/genética , Exossomos/metabolismo , Neoplasias do Colo do Útero/patologia , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
4.
J Genet Eng Biotechnol ; 21(1): 114, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953403

RESUMO

BACKGROUND: The identification of miRNAs as well as characterization of miRNA-mRNA interactions in SARS-CoV-2 infection is important to understand their role in disease pathogenesis. Therefore the aim of the present study was to measure the expression levels of hsa-mir-18a-5p in the sera of severe COVID-19 Egyptian patients admitted to ICU to investigate its roles in the pathogenesis and severity of COVID-19 disease. METHODS: A total of 180 unvaccinated severe COVID-19 patients were enrolled in our study. Besides the routine laboratory work, the expression level of hsa-mir-18a-5p was done using reverse transcription quantitative real-time PCR (RTqPCR) technique. Also, target genes of hsa-mir-18a-5p were explored by using online bioinformatics databases. RESULTS: The expression level of hsa-mir-18a-5p decreased in nonsurvival severe COVID-19 patients (0.38 ± 0.26) when compared to the survival ones (0.84 ± 0.23). While as a prognostic tool for the prediction of bad prognosis and mortality among severe COVID-19 patients, our results showed that the serum hsa-mir-18a-5p expression level is a good sensitive and specific marker. By using bioinformatics tools, our results revealed that the decreased hsa-mir-18a-5p expression level may have a crucial role in COVID-19 pathogenesis and severity through decreased immunological responses (interpreted as lymphopenia) or increased inflammation (interpreted as increased serum levels of IL-6, CRP, LDH). CONCLUSION: Taken together, the decreased expression level of hsa-mir-18a-5p could be a bad prognostic marker and therapeutic overexpression of hsa-mir-18a-5p could be a novel approach in the treatment of COVID-19 disease.

5.
Rep Biochem Mol Biol ; 12(1): 136-146, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37724150

RESUMO

Background: Smad4 regulates the expression of the genes required for heart homeostasis. Regarding the central role of microRNAs in cardiac biology, we investigated the expression of the three Smad4-targeting miRNAs, namely miR-18a-5p, miR-19a-3p, and miR-20a-5p, as well as Smad4 during differentiation of human endometrium-derived mesenchymal stem cells (hEMSCs) into cardiomyocytes (CMs). Methods: To evaluate mesenchymal phenotype and multi-lineage differentiation ability of hEMSCs, immunophenotyping by flow cytometry and differentiation into osteoblasts and adipocytes were performed, respectively. For transdifferentiation into CMs, hEMSCs were exposed to a cardiomyogenic medium composed of 5-aza and bFGF for 30 days. The comparison between transcriptional expression levels of Nkx2-5, GATA4, Smad4, TNNT2, TBX5, miR-18a-5p, miR-19a-3p, and miR-20a-5p by qRT-PCR, as well as protein levels of Nkx2-5, Smad4, and cTnT by immunofluorescence staining, was conducted in every 6 days. Results: In vitro, the mesenchymal stem cell phenotype of hEMSCs and their potency for differentiation into other MSCs were confirmed. Differentiated hEMSCs had morphological characteristics of CMs. The percentage of positive cells for Nkx2-5, Smad4, and cTnT proteins was increased following induction and culminated on the 24th day. Also, mRNA levels of Nkx2-5, GATA4, Smad4, TNNT2, and TBX5 exhibited the same trend. The expression of investigated miRNAs was significantly decreased sequentially. A significant negative correlation between expressions of Smad4 and investigated miRNAs was observed. Conclusion: Our results indicate that miR-18a-5p, miR-19a-3p, and miR-20a-5p are involved in the cardiac differentiation propensity of hEMSCs potentially by regulation of Smad levels. Although, more mechanistic experiments are required to confirm this idea.

6.
Autoimmunity ; 56(1): 2259128, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37724521

RESUMO

Circular RNAs (circRNAs) are functional molecules in all kinds of fibrosis diseases. The current study was performed for the exploration of circ_0007535 in pulmonary fibrosis. RNA levels for circ_0007535, miR-18a-5p, and transforming growth factor-ß receptor 1 (TGFBR1) were assayed via a reverse transcription-quantitative polymerase chain reaction. Cell growth was determined by cell counting kit-8 assay for viability and ethynyl-2'-deoxyuridine assay for proliferation. Cell invasion and migration were examined by transwell assay and scratch assay. Western blot was performed for the detection of different proteins. Enzyme-linked immunosorbent assay was used to assess inflammatory response. The interaction analysis was conducted using dual-luciferase reporter assay, RNA immunoprecipitation assay, and biotin-coupled pull-down assay. Circ_0007535 was significantly upregulated by TGF-ß1 in HFL1 cells. TGF-ß1-induced proliferation, motility, ECM accumulation, and inflammatory reaction in HFL1 cells were alleviated by circ_0007535 knockdown. Circ_0007535 exhibited interaction with miR-18a-5p, and miR-18a-5p inhibition reversed all influences of circ_0007535 downregulation in TGF-ß1-treated HFL1 cells. Circ_0007535 acted as a miR-18a-5p sponge to regulate the expression of downstream target TGFBR1. MiR-18a-5p induced TGFBR1 level inhibition to attenuate TGF-ß1-mediated cell injury in HFL1 cells. This study evidenced that circ_0007535 facilitated TGF-ß1-induced pulmonary fibrosis by depending on the absorption of miR-18a-5p to upregulate TGFBR1.


Assuntos
MicroRNAs , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Fator de Crescimento Transformador beta1/genética , Fibroblastos , Pulmão , MicroRNAs/genética
7.
Immun Inflamm Dis ; 11(8): e952, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37647434

RESUMO

BACKGROUND: Myocardial injury is the main manifestation of cardiovascular diseases, and previous studies have shown that propofol (PPF) regulates myocardial injury. However, the mechanism of PPF in regulating myocardial injury remains to be further explored. This work aims to analyze the effects of PPF on human cardiomyocyte injury and the underlying mechanism. METHODS: The regulatory and functional role of PPF and circAPBB2 in human cardiomyocyte injury were analyzed using an in vitro hypoxia/reoxygenation (H/R) cell model, which was established by treating human cardiomyocytes (AC16 cells) with H/R. The study evaluated AC16 cell injury by analyzing cytotoxicity, oxidative stress, inflammation and apoptosis of H/R-induced AC16 cells. Quantitative real-time polymerase chain reaction was performed to detect circAPBB2, miR-18a-5p and dual specificity phosphatase 14 (DUSP14) expression. Protein expression was analyzed by Western blot analysis assay. Dual-luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation assay were performed to identify the associations among circAPBB2, miR-18a-5p and DUSP14. Cytotoxicity was investigated by cell counting kit-8 assay and lactate dehydrogenase activity detection kit. Oxidative stress was evaluated by cellular reactive oxygen species assay kit and superoxide dismutase activity assay kit. The production of tumor necrosis factor-α and interleukin-1ß was evaluated by enzyme-linked immunosorbent assays. RESULTS: The expression of circAPBB2 and DUSP14 was significantly decreased, while miR-18a-5p was increased in H/R-induced AC16 cells when compared with controls. H/R treatment-induced cytotoxicity, oxidative stress, inflammation and cell apoptosis were attenuated after circAPBB2 overexpression or PPF treatment, whereas these effects were restored by increasing miR-18a-5p expression. PPF treatment improved the inhibitory effect of ectopic circAPBB2 expression on H/R-induced cell injury. MiR-18a-5p silencing ameliorated H/R-induced AC16 damage by interacting with DUSP14. Mechanically, circAPBB2 acted as a miR-18a-5p sponge, and miR-18a-5p targeted DUSP14 in AC16 cells. CONCLUSION: PPF synergized with circAPBB2 to protect AC16 cells against H/R-induced oxidative stress, inflammation and apoptosis through the miR-18a-5p/DUSP14 pathway.


Assuntos
MicroRNAs , Propofol , Humanos , Miócitos Cardíacos , Propofol/farmacologia , Estresse Oxidativo , Apoptose , Inflamação , Hipóxia , MicroRNAs/genética
8.
Genes Dis ; 10(4): 1626-1640, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37397518

RESUMO

More than 50% of prostate cancer (PCa) patients have bone metastasis with osteoblastic lesions. MiR-18a-5p is associated with the development and metastasis of PCa, but it remains unclear whether it is involved in osteoblastic lesions. We first found that miR-18a-5p was highly expressed in the bone microenvironment of patients with PCa bone metastases. To address how miR-18a-5p affects PCa osteoblastic lesions, antagonizing miR-18a-5p in PCa cells or pre-osteoblasts inhibited osteoblast differentiation in vitro. Moreover, injection of PCa cells with miR-18a-5p inhibition improved bone biomechanical properties and bone mineral mass in vivo. Furthermore, miR-18a-5p was transferred to osteoblasts by exosomes derived from PCa cells and targeted the Hist1h2bc gene, resulting in Ctnnb1 up-regulation in the Wnt/ß-catenin signaling pathway. Translationally, antagomir-18a-5p significantly improved bone biomechanical properties and alleviated sclerotic lesions from osteoblastic metastases in BALB/c nude mice. These data suggest that inhibition of exosome-delivered miR-18a-5p ameliorates PCa-induced osteoblastic lesions.

9.
Cancer Biol Ther ; 24(1): 2224512, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37394766

RESUMO

OBJECTIVE: Human epidermal growth factor receptor 2 positive (HER2+) breast cancer (BC) is associated with poor prognosis. This study aimed to elucidate the role of miR-18a-5p in regulation of HER2+-BC progression along with its mechanism of action. METHODS: The expression of miR-18a-5p and HER2 in BC cells and tissues was analyzed using quantitative real-time PCR while protein level expression of AKT Serine/Threonine Kinase 1 (AKT), phosphorylated AKT (p-AKT), Phosphatidylinositol 3-kinase (PI3K), phosphorylated-PI3K (p-PI3K), and HER2 were assessed by western blotting. Cell Counting Kit-8, wound healing, and cell adhesion assays were used for in vitro analysis along with xenograft tumor model construction for in vivo analysis. Pearson correlation analysis and dual-luciferase reporter (DLR) assays were used to ascertain the targeting association between miR-18a-5p and HER2. RESULTS: There was a downregulation of miR-18a-5p expression in the BC tissues and cells. Functionally, overexpression of miR-18a-5p prevented BC cells from proliferation, adherence, migration, and activation of the P-PI3K/P-AKT pathway. In vivo experiment revealed that tumor growth was suppressed when miR-18a-5p was overexpressed. In BC, HER2 overexpression increased cell proliferation, cell-cell adhesion, migration, and P-PI3K/P-AKT signaling, but overexpression of miR-18a-5p reversed this effect because of the target relationship between miR-18a-5p and HER2. CONCLUSION: miR-18a-5p inhibits HER2+ BC progression by targeting HER2 to inhibit PI3K/AKT pathway activation. A theoretical foundation for the identification of new therapeutic targets for HER2+ BC may be provided by the miR-18a-5p - HER2 axis.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Movimento Celular/genética
10.
J Cancer ; 14(8): 1301-1308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283790

RESUMO

microRNAs (miRNAs) are non-coding, endogenous, small-molecule RNAs. They are involved in cell proliferation, differentiation, apoptosis, and metabolism. Additionally, they play an essential role in the development and progression of various malignancies. Recent research has revealed that miR-18a plays an important role in cancer development. However, its role in lymphoma is not yet fully understood. In this study, we investigated the clinicopathological characteristics and potential functional roles of miR-18a in lymphomas. First, we predicted the potential downstream genes of miR-18a using miRTarBase software and subjected these downstream genes to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to determine the potential mechanisms of action of these genes. We found that these target genes were closely related to cellular senescence, the p53 signaling pathway, and other signaling pathways. From the predicted downstream target genes, ATM and p53 were selected as the target genes; their deletion in patients with lymphoma was detected using the fluorescence in situ hybridization technique. The results showed that some patients with lymphoma have a deletion of the ATM and p53 genes. In addition, the deletion rates of ATM and p53 were positively correlated with the expression of miR-18a. Next, the expression levels of miR-18a and the deletion rates of ATM and p53 were used for correlation and prognostic analyses with patient clinical information. The findings revealed a significant difference in disease-free survival (DFS) between patients with lymphoma with ATM deletion and those with a normal ATM gene expression (p < 0.001). Moreover, a significant difference in overall survival (OS) and DFS between patients with p53 deletion and those with normal p53 expression was observed (p < 0.001). The results indicate that the deletion of ATM and p53 downstream of miR-18a is closely associated with the development of lymphoma. Thus, these biomarkers may serve as key prognostic biomarkers for lymphomas.

11.
Cell Cycle ; 22(13): 1544-1562, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287276

RESUMO

This study investigated the underlying mechanism of miR-18a-5p regulating the proliferation, invasion, and metastasis of nasopharyngeal carcinoma (NPC) cells in vitro and in vivo to indicate the pathogenesis of NPC. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was utilized to determine miR-18a-5p expression level in NPC tissues and cell lines. Besides, 2,5-diphenyl-2 H-tetrazolium bromide (MTT) and colony formation assays were employed to detect the effect of miR-18a-5p expression level on NPC cell proliferation. Wound healing and Transwell assays were utilized to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expression levels of epithelial-mesenchymal transition (EMT)-related proteins (Vimentin, N-cadherin, and E-cadherin) were identified by Western blot assay. After collecting exosomes from CNE-2 cells, it was found that exosomal miR-18a-5p secreted from NPC cells promoted NPC cell proliferation, migration, invasion, and EMT, whereas inhibition of miR-18a-5p expression level led to the opposite results. The dual-luciferase reporter assay showed that BTG anti-proliferation factor 3 (BTG3) was the target gene of miR-18a-5p, and BTG3 could overturn the effect of miR-18a-5p on NPC cells. Xenograft mouse model of NPC nude mice showed that miR-18a-5p promoted NPC growth and metastasis in vivo. This study revealed that exosomal miR-18a-5p derived from NPC cells promoted angiogenesis via targeting BTG3 and activating the Wnt/ß-catenin signaling pathway.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , Humanos , Animais , Camundongos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , MicroRNAs/metabolismo , Transição Epitelial-Mesenquimal/genética , Via de Sinalização Wnt/genética , Camundongos Nus , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Nasofaríngeas/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Ciclo Celular/metabolismo
12.
Folia Neuropathol ; 61(1): 77-87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114963

RESUMO

INTRODUCTION: Acute ischemic stroke (AIS) is a disease with high morbidity and mortality in the clinic. The current experiments aimed to study the effects of UCA1 interfering miR-18a-5p on cerebral ischemia-reperfusion (CI/R). MATERIAL AND METHODS: For rat models undergoing middle cerebral artery infarction (MCAO) surgery, the expression of UCA1 and miR-18a-5p was evaluated by qRT-PCR, and underlying function was identified by detecting infarct size, neurological scores, and inflammation. Luciferase report was applied to verify the relationship between UCA1 and miR-18a-5p. In the cell models, the impacts of UCA1 and miR-18a-5p were validated by CCK-8 assay, flow cytometry analysis, and ELISA. In patients with AIS, Pearson correlation was carried out to unveil the association between UCA1 and miR-18a-5p. RESULTS: The expression of UCA1 was at high levels and miR-18a-5p was at low levels in AIS patients. UCA1 knockdown showed a protective role in infarct size, neurofunction, and inflammation via binding miR-18a-5p. MiR-18a-5p participated in the regulation of UCA1 on cell viability, cell apoptosis, lactate dehydrogenase (LDH) levels, and inflammation. In patients with AIS, overexpression of UCA1 and underexpression of miR-18a-5p had a reverse correlation. CONCLUSIONS: Elimination of UCA1 was favourable to the recovery of the rat model and cells from CI/R damage by efficaciously sponging miR-18a-5p.


Assuntos
Isquemia Encefálica , AVC Isquêmico , MicroRNAs , RNA Longo não Codificante , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/genética , Reperfusão , Apoptose/genética
13.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(1): 24-33, 2023 Jan 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36935174

RESUMO

OBJECTIVES: Hyperhomocysteinaemia (Hcy) is an independent risk factor for cardiovascular and cerebrovascular diseases. MicroRNA (miR)-18a-5p is closely related to cardiovascular diseases. This study aims to investigate the effects of miR-18a-5p on homocysteine (Hcy)-induced myocardial cells injury. METHODS: H9c2 cells were transfected with miR-18a-5p mimic/miR-18a-5p mimic negative control (NC) or combined with Hcy for intervention, and untreated cells were set as a control group. The transfection efficiency was verified by real-time RT-PCR, and cell counting kit-8 (CCK-8) assay was used to determine cell viability. Flow cytometry was used to detect apoptosis and reactive oxygen species (ROS) levels. Western blotting was performed to measure the protein levels of microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin1, p62, Bax, Bcl-2, and Notch2. Dual luciferase reporter assay was used to detect the interaction of miR-18a-5p with Notch2. RESULTS: Compared with the control, treatment with Hcy or transfection with miR-18a-5p mimic alone, or combined treatment with Hcy and miR-18a-5p mimic/miR-18a-5p mimic NC significantly reduced the H9c2 cell viability, promoted apoptosis and ROS production, up-regulated the expressions of Bax and Beclin, down-regulated the expressions of Bcl-2, p62, and Notch2, and increased the ratio of LC3-II/LC3-I (all P<0.05). Compared with the combined intervention of miR-18a-5p mimic NC and Hcy group, the above indexes were more significantly changed in the combined intervention of miR-18a-5p mimic and Hcy group, and the difference between the 2 groups was statistically significant (all P<0.05). There is a targeted binding between Notch2 and miR-18a-5p. CONCLUSIONS: MiR-18a-5p could induce autophagy and apoptosis via increasing ROS production in cardiomyocytes, and aggravate Hcy-induced myocardial injury. Notch2 is a target of miR-18a-5p.


Assuntos
Autofagia , MicroRNAs , Miócitos Cardíacos , Apoptose/genética , Autofagia/genética , Proteína X Associada a bcl-2 , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio , Ratos , Animais , Miócitos Cardíacos/efeitos dos fármacos , Homocisteína/efeitos adversos , Hiper-Homocisteinemia
14.
Animals (Basel) ; 13(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36978627

RESUMO

The expression of miRNAs is one of the main epigenetic mechanisms responsible for the regulation of gene expression in mammals, and in cancer, miRNAs participate by regulating the expression of protein-coding cancer-associated genes. In canine mammary tumors (CMTs), the ESR1 gene encodes for ERα, and represents a major target gene for miR-18a and miR-18b, previously found to be overexpressed in mammary carcinomas. A loss in ERα expression in CMTs is commonly associated with poor prognosis, and it is noteworthy that the downregulation of the ESR1 would appear to be more epigenetic than genetic in nature. In this study, the expression of ESR1 mRNA in formalin-fixed, paraffin-embedded (FFPE) canine mammary tumors (CMTs) was evaluated and compared with the expression levels of miR18a and miR18b, both assessed via RT-qPCR. Furthermore, the possible correlation between the miRNA expression data and the immunohistochemical prognostic factors (ERα immunoexpression; Ki67 proliferative index) was explored. A total of twenty-six FFPE mammary samples were used, including 22 CMTs (7 benign; 15 malignant) and four control samples (three normal mammary glands and one case of lobular hyperplasia). The obtained results demonstrate that miR-18a and miR-18b are upregulated in malignant CMTs, negatively correlating with the expression of target ESR1 mRNA. Of note, the upregulation of miRNAs strictly reflects the progressive loss of ERα immunoexpression and increased tumor cell proliferation as measured using the Ki67 index. The results suggest a central role of miR-18a and miR-18b in the pathophysiology of canine mammary tumors as potential epigenetic mechanisms involved in ERα downregulation. Moreover, as miRNA expression reflects ERα protein status and a high proliferative index, miR-18a and miR-18b may represent promising biomarkers with prognostic value. More detailed investigations on a larger number of cases are needed to better understand the influence of these miRNAs in canine mammary tumors.

15.
Metab Brain Dis ; 38(4): 1273-1284, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36781583

RESUMO

Circular RNAs (circRNAs) exert regulatory roles in cerebrovascular disease. Human brain microvascular endothelial cells (HBMECs) participated in brain vascular dysfunction in ischemic stroke. Herein, the functions of circ_0000566 in oxygen-glucose deprivation and reoxygenation (OGD/R)-induced HBMECs were investigated. The expression of circ_0000566, miR-18a-5p, and Activin receptor type 2B (ACVR2B) was measured via quantitative real-time PCR (qRT-PCR). Cell Counting Kit-8 (CCK-8) and flow cytometry assays were utilized to detect cell viability and cell apoptosis. Western blot assay was employed to measure the levels of apoptotic-related proteins and ACVR2B. The secretion of IL-1ß, IL-6, and TNF-α was detected via corresponding kits. The relationship between miR-18a-5p and circ_0000566 or ACVR2B was examined via dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Circ_0000566 and ACVR2B were highly expressed, while miR-18a-5p was down-regulated in OGD/R-treated HBMECs. OGD/R treatment promoted HBMECs apoptosis and inflammation and suppressed cell viability, which could be attenuated by silencing of circ_0000566. Circ_0000566 acted as a miR-18a-5p sponge to contribute to OGD/R-induced HBMECs injury. ACVR2B served as a direct target of miR-18a-5p, and ACVR2B overexpression might abolish the inhibitory role of miR-18a-5p on OGD/R-treated HBMEC injury. Circ_0000566 sponged miR-18a-5p to regulate OGD/R-induced HBMECs injury via regulating ACVR2B expression.


Assuntos
Lesões Encefálicas , MicroRNAs , Humanos , Células Endoteliais , Apoptose , Encéfalo , MicroRNAs/genética , Glucose , Receptores de Activinas Tipo II/genética
16.
Oral Dis ; 29(4): 1550-1564, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35262985

RESUMO

OBJECTIVES: This study aimed to experimentally validate dysregulated expression of miRNA candidates selected through updated meta-analysis of most commonly deregulated miRNAs in oral cancer and to explore their diagnostic and prognostic potential. MATERIALS AND METHODS: Five miRNAs (miR-31-3p, miR-135b-5p, miR-18a-5p, miR-30a-5p and miR-139-5p) from updated meta-signature were selected for validation by qRT-PCR method in 35 oral cancer clinical specimens and adjacent non-cancerous tissue. RESULTS: Updated meta-analysis has identified 13 most commonly deregulated miRNAs in oral cancer. Seven miRNAs were consistently up-regulated (miR-21-5p, miR-31-3p, miR-135b-5p, miR-31-5p, miR-424-5p, miR-18a-5p and miR-21-3p), while five were down-regulated (miR-139-5p, miR-30a-3p, miR-375-3p, miR-376c-3p and miR-30a-5p). Increased expression of miR-31-3p and miR-135b-5p, and decreased expression of miR-139-5p and miR-30a-5p were confirmed in oral cancer compared to adjacent non-cancerous tissue. A three miRNAs combination (miR-31-3p, miR-139-5p and miR-30a-5p) gave the most promising diagnostic potential for discriminating oral cancer from non-cancerous tissue (AUC: 0.780 [95% CI: 0.673-0.886], p < 0.0005, sensitivity 94.3%, specificity 51.4%). High expression of miR-135b-5p, miR-18a-5p and miR-30a-5p was associated with poor survival (p = 0.003, p = 0.048, p = 0.016 respectively). CONCLUSION: miR-31-3p, miR-139-5p and miR-30a-5p panel was confirmed as a potential diagnostic biomarker when distinguishing oral cancer from non-cancerous tissue. miR-135b-5p, miR-18a-5p and miR-30a-5p might serve as potential biomarkers of poor survival of oral cancer patients.


Assuntos
MicroRNAs , Neoplasias Bucais , Humanos , MicroRNAs/genética , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Prognóstico , Biomarcadores Tumorais/genética , Reação em Cadeia da Polimerase
17.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-971367

RESUMO

OBJECTIVES@#Hyperhomocysteinaemia (Hcy) is an independent risk factor for cardiovascular and cerebrovascular diseases. MicroRNA (miR)-18a-5p is closely related to cardiovascular diseases. This study aims to investigate the effects of miR-18a-5p on homocysteine (Hcy)-induced myocardial cells injury.@*METHODS@#H9c2 cells were transfected with miR-18a-5p mimic/miR-18a-5p mimic negative control (NC) or combined with Hcy for intervention, and untreated cells were set as a control group. The transfection efficiency was verified by real-time RT-PCR, and cell counting kit-8 (CCK-8) assay was used to determine cell viability. Flow cytometry was used to detect apoptosis and reactive oxygen species (ROS) levels. Western blotting was performed to measure the protein levels of microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin1, p62, Bax, Bcl-2, and Notch2. Dual luciferase reporter assay was used to detect the interaction of miR-18a-5p with Notch2.@*RESULTS@#Compared with the control, treatment with Hcy or transfection with miR-18a-5p mimic alone, or combined treatment with Hcy and miR-18a-5p mimic/miR-18a-5p mimic NC significantly reduced the H9c2 cell viability, promoted apoptosis and ROS production, up-regulated the expressions of Bax and Beclin, down-regulated the expressions of Bcl-2, p62, and Notch2, and increased the ratio of LC3-II/LC3-I (all P<0.05). Compared with the combined intervention of miR-18a-5p mimic NC and Hcy group, the above indexes were more significantly changed in the combined intervention of miR-18a-5p mimic and Hcy group, and the difference between the 2 groups was statistically significant (all P<0.05). There is a targeted binding between Notch2 and miR-18a-5p.@*CONCLUSIONS@#MiR-18a-5p could induce autophagy and apoptosis via increasing ROS production in cardiomyocytes, and aggravate Hcy-induced myocardial injury. Notch2 is a target of miR-18a-5p.


Assuntos
Ratos , Animais , Apoptose/genética , Autofagia/genética , Proteína X Associada a bcl-2 , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Espécies Reativas de Oxigênio , Miócitos Cardíacos/efeitos dos fármacos , Homocisteína/efeitos adversos , Hiper-Homocisteinemia
18.
International Journal of Surgery ; (12): 246-251,F3, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-989441

RESUMO

Objective:To investigate the effect of lncRNA AC132217.4 on the proliferation and invasion of liver cancer MHCC97-H cells and its molecular mechanism.Methods:The TCGA database was used to analyze the differential expression of AC132217.4 in liver cancer tissue and adjacent tissue, and to analyze the relationship between the expression level of AC132217.4 and the overall survival of liver cancer patients. Transfection of pcDNA-AC132217.4 plasmid into MHCC97-H cells was defined as AC132217.4 group, transfection of pcDNA plasmid into MHCC97-H cells was defined as negative control (NC) group, respectively. The proliferation and invasion ability of MHCC97-H cells were detected by MTT method and Matrigel invasion assay. The binding site between AC132217.4 and miR-18a-5p was analyzed by starBase v2.0 software and dual luciferase reporter gene assay. Real-time quantitative PCR (RT-qPCR) detected the differential expression of miR-18a-5p in the two groups of MHCC97-H cells. The expression of epithelial-mesenchymal transition protein was detected by Western-blotting. Measurement data with normal distribution were expressed as mean±standard deviation ( ± s), and t-test was used for comparison between the two groups. Results:Compared with adjacent tissues, the expression of AC132217.4 was down-regulated in liver cancer tissues ( P<0.01). Compared with liver cancer patients with low expression of AC132217.4, the overall survival of liver cancer patients with high AC132217.4 expression was longer ( P<0.05). The pcDNA-AC132217.4 plasmid significantly inhibited the proliferation of MHCC97-H cells ( P<0.05). The number of invasive cells in the NC group and AC132217.4 group were (131.30±12.55) and (37.45±7.77), respectively. The pcDNA-AC132217.4 plasmid significantly inhibited the invasive ability of MHCC97-H cells ( t=6.36, P<0.01). AC132217.4 directly complemented miR-18a-5p ( P<0.01). The expression of miR-18a-5p in MHCC97-H cells in AC132217.4 group (1.04±0.30) was significantly lower than that in NC group (6.13±0.75) ( t=6.27, P<0.01). Compared with the NC group, the expressions of epithelial phenotype proteins Cytokeratin and Claudin-1 in MHCC97-H cells in AC132217.4 group were up-regulated, while the expressions of mesenchymal phenotype proteins Vimentin, Slug and Snail were down-regulated. Conclusions:The expression of AC132217.4 is low in liver cancer tissue, and it is related to the overall survival of liver cancer patients. AC132217.4 might inhibit the proliferation and invasion of liver cancer MHCC97-H cells by sponge miR-18a-5p.

19.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499183

RESUMO

The Developmental Origins of Health and Disease (DOHaD) concept correlates early life exposure to stressor conditions with the increased incidence of non-communicable chronic diseases, including prostate cancer (PCa), throughout the life span. However, the molecular mechanisms involved in this process remain poorly understood. In this study, the deregulation of two miRNAs (rno-miR-18a-5p and rno-miR-345-3p) was described in the ventral prostate VP of old rats born to dams fed with a low protein diet (LPD) (6% protein in the diet) during gestational and lactational periods. Integrative analysis of the (VP) transcriptomic and proteomic data revealed changes in the expression profile of 14 identified predicted targets of these two DE miRNAs, which enriched terms related to post-translational protein modification, metabolism of proteins, protein processing in endoplasmic reticulum, phosphonate and phosphinate metabolism, the calnexin/calreticulin cycle, metabolic pathways, N-glycan trimming in the ER and the calnexin/calreticulin cycle, hedgehog ligand biogenesis, the ER-phagosome pathway, detoxification of reactive oxygen species, antigenprocessing-cross presentation, RAB geranylgeranylation, collagen formation, glutathione metabolism, the metabolism of xenobiotics by cytochrome P450, and platinum drug resistance. RT-qPCR validated the deregulation of the miR-18a-5p/P4HB (prolyl 4-hydroxylase subunit beta) network in the VP of older offspring as well as in the PNT-2 cells transfected with mimic miR-18a-5p. Functional in vitro studies revealed a potential modulation of estrogen receptor α (ESR1) by miR-18a-5p in PNT-2 cells, which was also confirmed in the VP of older offspring. An imbalance of the testosterone/estrogen ratio was also observed in the offspring rats born to dams fed with an LPD. In conclusion, deregulation of the miR-18a-5p/P4HB network can contribute to the developmental origins of prostate cancer in maternally malnourished offspring, highlighting the need for improving maternal healthcare during critical windows of vulnerability early in life.


Assuntos
MicroRNAs , Neoplasias da Próstata , Animais , Masculino , Ratos , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Proteômica , Transcriptoma
20.
Cell J ; 24(11): 665-672, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36377216

RESUMO

OBJECTIVE: Reportedly, long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) is involved in regulating colorectal cancer (CRC) progression. However, the function and detailed downstream mechanism of CASC2 in CRC progression are not fully elucidated. The aim of the study was to investigate the potential function and molecular mechanism of CASC2 in CRC progression. MATERIALS AND METHODS: In this experimental study, quantitative real-time polymerase chain reaction (qRT-PCR) was adopted to probe CASC2, microRNA-18a-5p (miR-18a-5p) and B cell translocation gene 3 (BTG3) mRNA expression in CRC tissues and cell lines. After CASC2 was overexpressed in Colo-678 and HCT116 cell lines, methylthiazol tetrazolium (MTT) and 5-bromo-2'-deoxyuridine (BrdU) assays were employed to examine the proliferation of CRC cells. Transwell migration and invasion assays were executed to evaluate the metastatic potential of CRC cells. The targeting relationships among CASC2, miR-18a-5p and BTG3 were validated by dual luciferase reporter gene assay. Western blot assay was applied to examine the regulatory effects of CASC2 and miR-18a-5p on BTG3 protein expression. RESULTS: CASC2 was decreased in CRC tissues and cell lines, and its low expression in CRC tissues was associated with larger tumor size and lymph node metastasis. CASC2 overexpression restrained proliferative, migrative and invasive capabilities of CRC cells. CASC2 could function as a molecular sponge for miR-18a-5p and repress the expression of miR-18a-5p. Furthermore, the inhibitory effects of CASC2 on the malignant phenotypes of CRC cells was counteracted by miR-18a-5p mimics. Additionally, CASC2 could positively regulate BTG3 expression via suppressing miR-18a-5p. CONCLUSION: CASC2 inhibits CRC development by suppressing miR-18a-5p and raising BTG3 expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...