Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Poult Sci ; 103(1): 103200, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939591

RESUMO

miR-19b-3p is reported to undertake various biological role, while its function and action mechanism in chicken hepatic lipid metabolism is unclear. Conservation analysis and tissue expression pattern of miR-19b-3p and its target gene were evaluated, respectively. Dual luciferase reporter system and Western blot technologies were adopted to validate miR-19b-3p target gene. Overexpression and knockdown assays were done to explore the biological functions of miR-19b-3p and target gene in Leghorn Male Hepatoma cell line (LMH). Regulatory approaches of estrogen on miR-19b-3p and target gene expressions are analyzed through site-directed mutation combined with estrogen receptors antagonist treatment assays. The results showed that chicken miR-19b-3p mature sequences are highly conserved among Capra hircus, Columba livia, Rattus norvegicus, Mus musculus, Cricetulus griseus, Danio rerio, Danio novaehollandiae, Orycodylus porosus, Crocodylus porosus, Gadus morhua, and widely expressed in lung, ovary, spleen, duodenum, kidney, heart, liver, leg muscle, and pectoral muscle tissues. miR-19b-3p could significantly increase intracellular triglyceride (TG) content and decrease intracellular cholesterol (TC) content via targeting methylsterol monooxygenase 1 (MSMO1) and elongase of very long chain fatty acids 5 (ELOVL5), which are highly conserved among species, in both mRNA and protein levels. Estrogen could inhibit miR-19b-3p expression, but directly promoted MSMO1 transcription via estrogen receptor α (ERα) and indirectly regulated ELOVL5 expression at the transcription level. Meanwhile, estrogen could also upregulate MSMO1 and ELOVL5 expression through inhibiting miR-19b-3p expression at the post-transcription level. Taken together, these results highlight the role and regulatory mechanism of miR-19b-3p in hepatic lipid metabolism in chicken, and might produce useful comparative information for human obesity studies and biomedical research.


Assuntos
Galinhas , MicroRNAs , Camundongos , Feminino , Humanos , Masculino , Animais , Ratos , Galinhas/genética , Galinhas/metabolismo , Columbidae/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Estrogênios , Triglicerídeos
2.
J Nanobiotechnology ; 21(1): 459, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037135

RESUMO

OBJECTIVE: This study aims to investigate the mechanism by which biomimetic composite hydrogels loaded with bone marrow mesenchymal stem cells (BMSCs) derived microRNA-19b-3p/WWP1 axis through extracellular vesicles (EVs) affect the new bone formation in rat bone defects. METHODS: First, synthesize the bionic composite hydrogel Gel-OCS/MBGN. Characterize it through field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and FTIR. Then, conduct performance tests such as rheology, dynamic mechanical analysis, in vitro mineralization, and degradation. Rat BMSCs were selected for in vitro cell experiments, and EVs derived from BMSCs were obtained by differential centrifugation. The EVs were loaded onto Gel-OCS/MBGN to obtain Gel-OCS/MBGN@EVs hydrogel. Cell viability and proliferation were detected by live/dead cell staining and CCK-8 assay, respectively. ALP and ARS staining was used to evaluate the osteogenic differentiation of BMSCs. Differential gene expression analysis of osteogenic differentiation was performed using high-throughput sequencing. TargetScan database predicted the binding site between miR-19b-3p and WWP1, and a dual-luciferase reporter assay was performed to confirm the targeting binding site. A rat bone defect model was established, and new bone formation was evaluated by Micro-CT, H&E staining, and Masson's trichrome staining. Immunofluorescence staining and immunohistochemistry were used to detect the expression levels of osteogenic-related factors in rat BMSCs. RT-qPCR and Western blot were used to detect the expression levels of genes and proteins in tissues and cells. RESULT: Gel-OCS/MBGN was successfully constructed and loaded with EVs, resulting in Gel-OCS/MBGN@EVs. The in vitro drug release experiment results show that Gel-OCS/MBGN could sustainably release EVs. Further experiments have shown that Gel-OCS/MBGN@EVs could significantly promote the differentiation of BMSCs into osteoblasts. Experiments have shown that WWP1 is a key factor in osteogenic differentiation and is regulated by miR-19b-3p. EVs promote osteogenic differentiation by suppressing WWP1 expression through the transmission of miR-19b-3p. In vivo animal experiments have demonstrated that Gel-OCS/MBGN@EVs significantly promote bone repair in rats with bone defects by regulating the miR-19b-3p/WWP1 signaling axis. CONCLUSION: Functional Gel-OCS/MBGN@EVs were obtained by constructing Gel-OCS/MBGN and loading EVs onto it. EVs could deliver miR-19b-3p to BMSCs, inhibit the expression of WWP1, and promote the osteogenic differentiation of BMSCs, ultimately promoting bone regeneration in rats with bone defects.


Assuntos
Vesículas Extracelulares , MicroRNAs , Ratos , Animais , Osteogênese , Hidrogéis , Biomimética , MicroRNAs/metabolismo , Diferenciação Celular , Vesículas Extracelulares/metabolismo , Células Cultivadas
3.
Front Immunol ; 14: 1181156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691947

RESUMO

Objective: Our previous studies revealed that normal synovial exosomes promoted chondrogenesis, and microRNA (miR)-19b-3p independently related to osteoarthritis (OA) risk. Subsequently, this study intended to further explore the effect of OA fibroblast-like synoviocyte (OA-FLS) exosomal miR-19b-3p on OA ferroptosis and its potential mechanisms. Methods: Interleukin (IL)-1ß-stimulated chondrocytes and medial meniscus surgery were used to construct the OA cellular model and the OA rat model, respectively. OA-FLS exosomes with/without miR-19b-3p modification were added to the IL-1ß-stimulated chondrocytes and OA rat models, followed by direct miR-19b-3p mimic/inhibitor transfection with/without SLC7A11 overexpression plasmids. miR-19b-3p, ferroptosis-related markers (malondialdehyde (MDA), glutathione (GSH)/oxidized glutathione (GSSG), ferrous ion (Fe2+), glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), and acyl-CoA synthetase long-chain family member 4 (ACSL4)), mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) levels were detected. Results: Enhanced ferroptosis reflected by dysregulated ferroptosis-related markers, a reduced MMP, and an increased ROS was observed in cartilage tissues from OA patients vs. controls, IL-1ß-stimulated chondrocytes vs. normal ones, and OA rat models vs. sham, so did miR-19b-3p. OA-FLS exosomes promoted MDA, Fe2+, ACSL4, and ROS but reduced cell viability, GSH/GSSG, GPX4, SLC7A11, and MMP in IL-1ß-stimulated chondrocytes, whose effect was enhanced by miR-19b-3p mimics and attenuated by miR-19b-3p inhibitors. miR-19b-3p negatively regulated SLC7A11 and directly bound to SLC7A11 via luciferase reporter gene assay. Furthermore, SLC7A11 overexpression weakened miR-19b-3p mimics' effect on ferroptosis-related markers, MMP, or ROS in IL-1ß-stimulated chondrocytes. OA-FLS exosomes also induced cartilage damage and ferroptosis in OA rats whose influence was tempered by miR-19b-3p inhibitors. Conclusion: OA-FLS exosomal miR-19b-3p enhances cartilage ferroptosis and damage by sponging SLC7A11 in OA, indicating a potential linkage among synovium, cartilage, and ferroptosis during the OA process.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Exossomos , Ferroptose , Osteoartrite , Sinoviócitos , Animais , Ratos , Cartilagem , Ferroptose/genética , Fibroblastos , Glutationa , Dissulfeto de Glutationa , Osteoartrite/genética , Espécies Reativas de Oxigênio , Sistema y+ de Transporte de Aminoácidos/genética
4.
Open Med (Wars) ; 18(1): 20220546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215052

RESUMO

Circular RNAs have been demonstrated to act as vital participants in various diseases, including preeclampsia (PE). This study aimed to research the effects of circ_0004904 on PE. The contents of circ_0004904, microRNA-19b-3p (miR-19b-3p) and arrestin domain containing 3 (ARRDC3) were quantified by quantitative real-time PCR and western blot. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 5-ethynyl-2'-deoxyuridine assays were enforced to assess cell proliferation. The transwell assay and flow cytometry were applied to detect the cell migration, invasion, and apoptosis. The liaison between miR-19b-3p and circ_0004904 or ARRDC3 was demonstrated by dual-luciferase reporter assay. Thereafter, circ_0004904 and ARRDC3 were augmented, and miR-19b-3p was restrained in PE. Circ_0004904 silencing contributed to cell proliferation, migration, and invasion, but restrained cell apoptosis in trophoblast cells. Further, miR-19b-3p was a target of circ_0004904, and miR-19b-3p could target ARRDC3. Additionally, circ_0004904 accelerated PE evolution via changing ARRDC3 level by binding to miR-19b-3p. In all, circ_0004904 encouraged PE progress via miR-19b-3p/ARRDC3 axis.

5.
Front Endocrinol (Lausanne) ; 14: 1149786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008948

RESUMO

Introduction: A healthy pregnancy requires successful blastocyst implantation into an adequately prepared or 'receptive' endometrium. Decidualization of uterine endometrial stromal fibroblast cells (hESF) is critical for the establishment of a healthy pregnancy. microRNAs (miRs) are critical regulators of cellular function that can be released by a donor cell to influence the physiological state of recipient cells. We aimed to determine how decidualization affects hESF miR release and investigated the function of one decidualization regulated miR, miR-19b-3p, previously shown to be associated with recurrent pregnancy loss. Method: miR release by hESF was determined by miR microarray on culture media from hESF decidualized in vitro for 3 and 14 days by treatment with oestradiol and medroxyprogesterone acetate. Cellular and whole endometrial/decidual tissue miR expression was quantified by qPCR and localized by in situ hybridization. The function of miR-19b-3p in HTR8/Svneo trophoblast cells was investigated using real time cell analysis (xCELLigence) and gene expression qPCR. Results: From our miR screen we found that essentially all hESF miR release was reduced following in vitro decidualization, significantly so for miR-17-5p, miR-21-3p, miR-34c-3p, miR-106b-5p, miR-138-5p, miR-296-5p, miR-323a-3p, miR-342-3p, miR-491-5p, miR-503-5p and miR-542-5p. qPCR demonstrated that miR-19b-3p, 181a-2-3p and miR-409-5p likewise showed a significant reduction in culture media following decidualization but no change was found in cellular miR expression following decidualization. In situ hybridization localized miR-19b-3p to epithelial and stromal cells in the endometrium and qPCR identified that miR-19b-3p was significantly elevated in the cycling endometrium of patients with a history of early pregnancy loss compared to normally fertile controls. Functionally, overexpression of miR-19b-3p significantly reduced HTR8/Svneo trophoblast proliferation and increased HOXA9 expression. Discussion: Our data demonstrates that decidualization represses miR release by hESFs and overexpression of miR-19b-3p was found in endometrial tissue from patients with a history of early pregnancy loss. miR-19b-3p impaired HTR8/Svneo proliferation implying a role in trophoblast function. Overall we speculate that miR release by hESF may regulate other cell types within the decidua and that appropriate release of miRs by decidualized hESF is essential for healthy implantation and placentation.


Assuntos
Aborto Espontâneo , MicroRNAs , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Aborto Espontâneo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Estromais/metabolismo , Meios de Cultura/metabolismo
6.
Gynecol Obstet Invest ; 88(1): 16-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36574754

RESUMO

OBJECTIVES: Long intergenic nonprotein coding RNA 1857 (LINC01857) has been identified to play an oncogenic role in different cancers. Nevertheless, its expression and biological role in endometrial carcinoma (EC) are not clear. DESIGN: This study was a basic research on cell biology. MATERIALS, SETTING, METHODS: EC cell lines were used in this study. RNA expressions in EC cells were examined through RT-qPCR. The impacts of LINC01857 silence on EC cell proliferation, apoptosis, migration, and invasion were evaluated through functional assays, and the underlying regulatory mechanism at a molecular level was analyzed via mechanism assays. RESULTS: LINC01857 expression was aberrantly high in EC cells. LINC01857 silence inhibited EC cell proliferation, migration, and invasion and promoted EC cell apoptosis. Mechanically, LINC01857 acted as a sponge of miR-19b-3p. Upregulation of miR-19b-3p hampered EC cell malignant behaviors. MYCN proto-oncogene, bHLH transcription factor (MYCN) was the target gene of miR-19b-3p, and MYCN depletion repressed the malignant behaviors of EC cells. Further, LINC01857 was verified to recruit ELAV-like RNA-binding protein 1 (ELAVL1) to stabilize MYCN mRNA. LIMITATIONS: The function of LINC01857 in EC remains to be further investigated with clinical samples and more cell lines involved. CONCLUSIONS: LINC01857 exacerbated EC cell malignant behaviors via the miR-19b-3p/ELAVL1/MYCN axis.


Assuntos
Neoplasias do Endométrio , MicroRNAs , Feminino , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Semelhante a ELAV 1/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , RNA Longo não Codificante/genética
7.
Chin J Integr Med ; 29(6): 508-516, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36251141

RESUMO

OBJECTIVE: To investigate the therapeutic effect of gentisic acid (GA) on rheumatoid arthritis (RA) based on the miR-19b-3p/RAF1 axis. METHODS: The cell counting kit-8 method was used to detect the growth inhibitory effect of different concentrations of GA on MH7A cells, and the drug concentration of GA was determined in the experiment. The quantificational real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-19b-3p and RAF1. RAF1, extracellular regulated protein kinases1/2 (ERK1/2) and phospho-ERK1/2 (p-ERK1/2) were examined by Western blotting. Three methods (dual-luciferase assay, qRT-PCR and Western blot analysis) were used to verify miR-19b-3p targeting RAF1. Flow cytometry was performed to detect MH7A cell apoptosis. Transwell and wound healing assays were used to determine the invasion and migration capacities of MH7A cells. RESULTS: The growth of MH7A cells was gradually inhibited with increasing GA concentration. When the GA concentration exceeded 80 mmol/L, GA was significantly cytotoxic to MH7A cells, so the half maximal inhibitory concentration of GA for MH7A cells was calculated as 67.019 mmol/L. GA upregulated miR-19b-3p expression, downregulated RAF1 expression, inhibited ERK1/2 phosphorylation, induced MH7A cell apoptosis and suppressed MH7A cell invasion and migration (P<0.05 or P<0.01). RAF1 was identified as the target of miR-19b-3p and reversed inhibitory effects on miR-19b-3p expression (P<0.05 or P<0.01). The miR-19b-3p inhibitor upregulated RAF1 expression and ERK1/2 phosphorylation, suppressed MH7A cell apoptosis and induced MH7A cell invasion and migration (P<0.01). CONCLUSION: GA regulated miR-19b-3p/RAF1 axis to mediate ERK pathway and inhibit the development of RA.


Assuntos
Artrite Reumatoide , MicroRNAs , Humanos , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Gentisatos/farmacologia , Movimento Celular/genética
8.
Neurochem Res ; 48(3): 874-884, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36369428

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is a detrimental factor in infant death and chronic disease. The specific pathogenesis is not entirely clear. Therefore, exploring the pathogenesis of HIE is critical. The expression of miR-19b-3p and SOX6 in umbilical blood of HIE patients was detected by qRT-PCR assay. HT22 cells were triggered with oxygen-glucose deprivation/reoxygenation (OGD/R) to construct the HIE cell model. Cell Counting Kit-8 (CCK-8) assay was used to estimate viability. SOD and MDA levels were detected by enzyme linked immunosorbent assay. Flow cytometry was implemented to ascertain neurocyte apoptosis. Cellular ß-catenin immunofluorescence staining was used to detect the expression and distribution of ß-catenin protein. Wnt signaling pathway activation was detected by TOPFlash/FOPFlash luciferase reporter assay. The targeting correlation of SOX6 and miR-19b-3p was corroborated by dual-luciferase reporter gene assay and RNA pull-down assay. MiR-19b-3p expression was once down-regulated, whilst SOX6 expression was up-regulated in HIE patients. MiR-19b-3p overexpression promoted cell proliferation, repressed cell apoptosis, oxidative stress response, and Wnt/ß-catenin pathway activation in OGD/R-triggered HT22 cells. MiR-19b-3p negatively regulated SOX6 expression. SOX6 knockdown improved OGD/R-triggered HT22 cells injury via Wnt/ß-catenin pathway activation. MiR-19b-3p overexpression suppressed OGD/R-triggered HT22 cell injury via inhibiting SOX6 expression via activating Wnt/ß-catenin pathway.


Assuntos
Hipóxia-Isquemia Encefálica , MicroRNAs , Humanos , Via de Sinalização Wnt , beta Catenina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Luciferases/genética , Luciferases/metabolismo , Isquemia , Apoptose/genética , Fatores de Transcrição SOXD/metabolismo
9.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-982285

RESUMO

OBJECTIVE@#To investigate the therapeutic effect of gentisic acid (GA) on rheumatoid arthritis (RA) based on the miR-19b-3p/RAF1 axis.@*METHODS@#The cell counting kit-8 method was used to detect the growth inhibitory effect of different concentrations of GA on MH7A cells, and the drug concentration of GA was determined in the experiment. The quantificational real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-19b-3p and RAF1. RAF1, extracellular regulated protein kinases1/2 (ERK1/2) and phospho-ERK1/2 (p-ERK1/2) were examined by Western blotting. Three methods (dual-luciferase assay, qRT-PCR and Western blot analysis) were used to verify miR-19b-3p targeting RAF1. Flow cytometry was performed to detect MH7A cell apoptosis. Transwell and wound healing assays were used to determine the invasion and migration capacities of MH7A cells.@*RESULTS@#The growth of MH7A cells was gradually inhibited with increasing GA concentration. When the GA concentration exceeded 80 mmol/L, GA was significantly cytotoxic to MH7A cells, so the half maximal inhibitory concentration of GA for MH7A cells was calculated as 67.019 mmol/L. GA upregulated miR-19b-3p expression, downregulated RAF1 expression, inhibited ERK1/2 phosphorylation, induced MH7A cell apoptosis and suppressed MH7A cell invasion and migration (P<0.05 or P<0.01). RAF1 was identified as the target of miR-19b-3p and reversed inhibitory effects on miR-19b-3p expression (P<0.05 or P<0.01). The miR-19b-3p inhibitor upregulated RAF1 expression and ERK1/2 phosphorylation, suppressed MH7A cell apoptosis and induced MH7A cell invasion and migration (P<0.01).@*CONCLUSION@#GA regulated miR-19b-3p/RAF1 axis to mediate ERK pathway and inhibit the development of RA.


Assuntos
Humanos , Proliferação de Células , MicroRNAs/metabolismo , Artrite Reumatoide/genética , Gentisatos/farmacologia , Movimento Celular/genética
10.
Mol Cancer ; 21(1): 224, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536414

RESUMO

BACKGROUND: Recent studies have identified that circular RNAs (circRNAs) have an important role in cancer via their well-recognized sponge effect on miRNAs, which regulates a large variety of cancer-related genes. However, only a few circRNAs have been well-studied in renal cell carcinoma (RCC) and their regulatory function remains largely elusive. METHODS: Bioinformatics approaches were used to characterize the differentially expressed circRNAs in our own circRNA-sequencing dataset, as well as two public circRNA microarray datasets. CircNTNG1 (hsa_circ_0002286) was identified as a potential tumor-suppressing circRNA. Transwell assay and CCK-8 assay were used to assess phenotypic changes. RNA pull-down, luciferase reporter assays and FISH experiment were used to confirm the interactions among circNTNG1, miR-19b-3p, and HOXA5 mRNA. GSEA was performed to explore the downstream pathway regulated by HOXA5. Immunoblotting, chromatin immunoprecipitation, and methylated DNA immunoprecipitation were used to study the mechanism of HOXA5. RESULTS: In all three circRNA datasets, circNTNG1, which was frequently deleted in RCC, showed significantly low expression in the tumor group. The basic properties of circNTNG1 were characterized, and phenotype studies also demonstrated the inhibitory effect of circNTNG1 on RCC cell aggressiveness. Clinically, circNTNG1 expression was associated with RCC stage and Fuhrman grade, and it also served as an independent predictive factor for both OS and RFS of RCC patients. Next, the sponge effect of circNTNG1 on miR-19b-3p and the inhibition of HOXA5 by miR-19b-3p were validated. GSEA analysis indicated that HOXA5 could inactivate the epithelial-mesenchymal transition (EMT) process, and this inactivation was mediated by HOXA5-induced SNAI2 (Slug) downregulation. Finally, it was confirmed that the Slug downregulation was caused by HOXA5, along with the DNA methyltransferase DNMT3A, binding to its promoter region and increasing the methylation level. CONCLUSIONS: Based on the experimental data, in RCC, circNTNG1/miR-19b-3p/HOXA5 axis can regulate the epigenetic silencing of Slug, thus interfering EMT and metastasis of RCC. Together, our findings provide potential biomarkers and novel therapeutic targets for future study in RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Humanos , Biomarcadores , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Neoplasias Renais/genética , MicroRNAs/genética , RNA Circular/genética , Inativação Gênica , Epigênese Genética
11.
Front Cell Dev Biol ; 10: 973849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211460

RESUMO

Objective: To elucidate and validate the potential regulatory function of miR-19a/b-3p and its spermatogenesis-related transcripts content in sperm samples collected from men with oligoasthenozoospermia. Methods: Men presenting at an infertility clinic were enrolled. MicroRNA (miRNA) and target genes evaluation were carried out using in silico prediction analysis, Reverse transcription-quantitative PCR (RT-qPCR) validation, and Western blot confirmation. Results: The expression levels of miRNA-19a/b-3p were significantly up-regulated and 51 target genes were significantly down-regulated in oligoasthenozoospermic men compared with age-matched normozoospermic men as determined by RT-qPCR. Correlation analysis highlighted that sperm count, motility, and morphology were negatively correlated with miRNA-19a/b-3p and positively correlated with the lower expression level of 51 significantly identified target genes. Furthermore, an inverse correlation between higher expression levels of miRNA-19a/b-3p and lower expression levels of 51 target genes was observed. Consistent with the results of the RT-qPCR, reduced expression levels of STK33 and DNAI1 protein levels were identified in an independent cohort of sperm samples collected from men with oligoasthenozoospermia. Conclusion: Findings suggest that the higher expression of miRNA-19a/b-3p or the lower expression of target genes are associated with oligoasthenozoospermia and male infertility, probably through influencing basic semen parameters. This study lay the groundwork for future studies focused on investigating therapies for male infertility.

12.
Biol Direct ; 17(1): 20, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35978367

RESUMO

BACKGROUND: Recently, microRNAs (miRNAs), have been extensively investigated in diseases. The upregulated expression of miR-19b-3p has been validated in patients with hypertrophic cardiomyopathy. Nonetheless, it regulatory mechanism in myocardial infarction (MI) is still unclear. PURPOSE: This research aimed to investigate the role and molecular regulation mechanism of miR-19b-3p in MI. METHODS: QRT-PCR and western blot assays measured RNA and protein expression. Cell apoptosis were tested by flow cytometry and TUNEL assays. Cell viability was measured by trypan blue staining method. RIP and luciferase report assays examined gene interaction. The assays were performed under hypoxia condition. RESULTS: MiR-19b-3p was highly expressed in myocardial cell line H9C2, primary cardiomyocytes, and tissues from MI mouse model. MiR-19b-3p inhibition suppressed the apoptosis of cardiomyocytes. BC002059 could up-regulate ABHD10 through sequestering miR-19b-3p. BC002059 upregulation was observed to repress cell apoptosis. Rescue experiments demonstrated that miR-19b-3p overexpression abrogated the suppressive impact of BC002059 on the apoptosis of MI cells, and infarct size, area at risk as well as CK-MB and LDH release of MI mouse model tissues, which was further abolished via ABHD10 increment. CONCLUSION: MiR-19b-3p regulated by BC002059/ABHD10 axis promotes cell apoptosis in MI, which might provide a novel perspective for MI alleviation research.


Assuntos
Esterases/metabolismo , MicroRNAs , Infarto do Miocárdio , Animais , Apoptose/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Regulação para Cima
13.
Front Pharmacol ; 13: 863797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721175

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) can effectively alleviate liver fibrosis, but the efficacy of cell therapy alone is insufficient. In recent years, a combination of traditional Chinese medicine (TCM) and cell therapy has been increasingly used to treat diseases in clinical trials. Ferulic acid (FA) is highly effective in treating liver fibrosis, and a combination of cells and drugs is being tested in clinical trials. Therefore, we combined BMSCs and Ferulic acid to treat CCl4-induced fibrosis and determine whether this combination was more effective than single treatment. We used BMSCs and FA to treat CCl4-induced fibrosis in rat models, observed their therapeutic effects, and investigated the specific mechanism of this combination therapy in liver fibrosis. We created a BMSC/hepatic stellate cell (HSC) coculture system and used FA to treat activated HSCs to verify the specific mechanism. Then, we used cytochalasin D and angiotensin II to investigate whether BMSCs and FA inactivate HSCs through cytoskeletal rearrangement. MiR-19b-3p was enriched in BMSCs and targeted TGF-ß receptor II (TGF-ßR2). We separately transfected miR-19b-3p into HSCs and BMSCs and detected hepatic stellate cell activation. We found that the expression of the profibrotic markers α-SMA and COL1-A1 was significantly decreased in the combination group of rats. α-SMA and COL1-A1 levels were also significantly decreased in the HSCs with the combination treatment. Cytoskeletal rearrangement of HSCs was inhibited in the combination group, and RhoA/ROCK pathway gene expression was decreased. Following angiotensin II treatment, COL1-A1 and α-SMA expression increased, while with cytochalasin D treatment, profibrotic gene expression decreased in HSCs. The expression of COL1-A1, α-SMA and RhoA/ROCK pathway genes was decreased in the activated HSCs treated with a miR-19b-3p mimic, indicating that miR-19b-3p inactivated HSCs by suppressing RhoA/ROCK signalling. In contrast, profibrotic gene expression was significantly decreased in the BMSCs treated with the miR-19b-3p mimic and FA or a miR-19b-3p inhibitor and FA compared with the BMSCs treated with the miR-19b-3p mimic alone. In conclusion, the combination therapy had better effects than FA or BMSCs alone. BMSC and FA treatment attenuated HSC activation and liver fibrosis by inhibiting cytoskeletal rearrangement and delivering miR-19b-3p to activated HSCs, inactivating RhoA/ROCK signalling. FA-based combination therapy showed better inhibitory effects on HSC activation.

14.
Bioengineered ; 13(2): 3422-3433, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35067169

RESUMO

In the present study, we aimed to investigate the role of long non-coding RNA terminal differentiation-induced non-coding RNA (TINCR) in cisplatin (DDP) resistance of choroidal melanoma (CM) and the potential molecular mechanisms. CM and non-CM tissues were collected from 60 CM patients. DDP-resistant CM cells were obtained by selection with linearly increased DDP treatment. The expression levels of TINCR, microR-19b-3p (miR-19b-3p), and extracellular signal-regulated kinase 2 (ERK-2) were detected by quantitative real-time PCR. Cholecystokinin octapeptide (CCK-8) assay was utilized to detect chemosensitivity and cell viability. Flow cytometry analysis was performed to detect apoptotic cells. The protein levels of Bax, Bcl-2, cleaved-caspase-3, ERK-2, and nuclear factor-kappa B p65 were measured by Western blot. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were performed to determine the relationship among TINCR, miR-19b-3p, and ERK-2. The results showed that the levels of TINCR and ERK-2 were markedly increased in DDP-resistant CM tissues and cells, while miR-19b-3p level was significantly reduced. TINCR knockdown reduced DDP resistance and cell viability and promoted cell apoptosis, while TINCR overexpression exhibited opposite effects. TINCR and ERK-2 were direct targets of miR-19b-3p. Further experiments revealed that TINCR enhanced DDP resistance in CM cells by regulating the miR-19b-3p/ERK-2/NF-kb axis. Taken together, our study revealed a critical role of TINCR in regulating DDP resistance in CM and suggested that TINCR is a potential cisplatin-resistant CM therapeutic target.


Assuntos
Neoplasias da Coroide/metabolismo , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Sistema de Sinalização das MAP Quinases , Melanoma/metabolismo , MicroRNAs/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Linhagem Celular Tumoral , Neoplasias da Coroide/genética , Humanos , Melanoma/genética , MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética
15.
Bioengineered ; 12(1): 7849-7858, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34635014

RESUMO

G protein γ subunit 7 (GNG7) is a subunit of heterotrimeric G protein. It has been demonstrated low expressed GNG7 in various cancers. Nevertheless, the role of GNG7 in lung adenocarcinoma (LUAD) remains unclear. In the present study, GNG7 expression in LUAD tissues and cell lines was analyzed by RT-qPCR, western blot and immunohistochemical. Kaplan-Meier analysis was performed for determining the prognostic value of GNG7 expression. Then, the function of GNG7 in LUAD progression was examined by cell proliferation, invasion and mouse xenograft assays. In addition, the underlying biological mechanisms of GNG7 in LUAD progression were explored via the bioinformatics analysis and experimental validation. We found GNG7 was markedly down-regulated in LUAD tissues and cell lines. Clinically, low expression of GNG7 was associated with the dismal prognosis of LUAD patients. Gain-of-function analysis showed that GNG7 overexpression inhibited proliferation and invasion of LUAD cell in vitro, and compromised tumor formation ability in vivo. Besides, mechanistic study revealed that overexpression of GNG7 affected the progression of LUAD via inhibiting activation of Hedgehog signaling. Moreover, bioinformatics prediction and experimental verification confirmed that GNG7 was targeted by miR-19b-3p, which was elevated expression in LUAD and promoting the progression of LUAD. Furthermore, rescue experiments demonstrated that GNG7 reintroduction weakened miR-19b-3p-mediated aggressive tumor phenotypes of LUAD cells. These findings suggested miR-19b-3p/GNG7 axis contributed to the progression of LUAD through Hedgehog signaling, which might be a potential therapeutic target for LUAD treatment.


Assuntos
Adenocarcinoma de Pulmão , Subunidades gama da Proteína de Ligação ao GTP/genética , Proteínas Hedgehog/genética , Neoplasias Pulmonares , MicroRNAs/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Transdução de Sinais/genética
16.
J Am Heart Assoc ; 10(20): e022304, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34612058

RESUMO

Background Circulating microRNAs are emerging biomarkers for heart failure (HF). Our study aimed to assess the prognostic value of microRNA signature that is differentially expressed in patients with acute HF. Methods and Results Our study comprised a screening cohort of 15 patients with AHF and 5 controls, a PCR-discovery cohort of 50 patients with AHF and 26 controls and a validation cohort of 564 patients with AHF from registered study DRAGON-HF (Diagnostic, Risk Stratification and Prognostic Value of Novel Biomarkers in Patients With Heart Failure). Through screening by RNA-sequencing and verification by reverse-transcription quantitative polymerase chain reaction, 9 differentially expressed microRNAs were verified (miR-939-5p, miR-1908-5p, miR-7706, miR-101-3p, miR-144-3p, miR-4732-3p, miR-3615, miR-484 and miR-19b-3p). Among them, miR-19b-3p was identified as the microRNA signature with the highest fold-change of 8.4 and the strongest prognostic potential (area under curve with 95% CI, 0.791, 0.654-0.927). To further validate its prognostic value, in the validation cohort, the baseline level of miR-19b-3p was measured. During a follow-up period of 19.1 (17.7, 20.7) months, primary end point comprising of all-cause mortality or readmission due to HF occurred in 48.9% patients, while patients in the highest quartile of miR-19b-3p level presented the worst survival (Log-rank P<0.001). Multivariate Cox model showed that the level of miR-19b-3p could independently predict the occurrence of primary end point (adjusted hazard ratio,1.39; 95% CI, 1.18-1.64). In addition, miR-19b-3p positively correlated with soluble suppression of tumorigenicity 2 and echocardiographic indexes of left ventricular hypertrophy. Conclusions Circulating miR-19b-3p could be a valuable prognostic biomarker for AHF. In addition, a high level of circulating miR-19b-3p might indicate ventricular hypertrophy in AHF subjects. Registration URL: https://www.clinicaltrials.gov. Unique Identifier: NCT03727828.


Assuntos
MicroRNA Circulante , Insuficiência Cardíaca , Biomarcadores , MicroRNA Circulante/genética , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Humanos , Prognóstico
17.
Clin Transl Med ; 11(9): e478, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34586722

RESUMO

Numerous reports have elucidated the important participation of exosomes in the communication between tumor cells and other cancer-related cells including tumor-associated macrophages (TAMs) in microenvironment. However, the interchange of exosomes between tumor cells and TAMs in the progression of lung adenocarcinoma (LUAD) remains largely enigmatic. Herein, we discovered that LUAD cells induced the M2 polarization of TAMs and the M2-polarized macrophages facilitated LUAD cell invasion and migration and tumor metastasis in vivo. In detail, LUAD cells secreted exosomes to transport miR-19b-3p into TAMs so that miR-19b-3p targeted PTPRD and inhibited the PTPRD-mediated dephosphorylation of STAT3 in TAMs, leading to STAT3 activation and M2 polarization. Also, the activated STAT3 transcriptionally induced LINC00273 in M2 macrophages and exosomal LINC00273 was transferred into LUAD cells. In LUAD cells, LINC00273 recruited NEDD4 to facilitate LATS2 ubiquitination and degradation, so that the Hippo pathway was inactivated and YAP induced the transcription of RBMX. RBMX bound to miR-19b-3p to facilitate the packaging of miR-19b-3p into LUAD cell-derived exosomes. Collectively, our results revealed the mechanism underlying the interactive communication between LUAD cells and TAMs through elucidating the exchange of exosomal miR-19b-3p and LINC00273 and proved the prometastatic effect of the interchange between two cells. These discoveries opened a new vision for developing LUAD treatment.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Via de Sinalização Hippo/genética , Neoplasias Pulmonares/metabolismo , Ativação de Macrófagos/genética , RNA Longo não Codificante/genética , Células A549 , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Exossomos/metabolismo , Humanos , Neoplasias Pulmonares/genética , Macrófagos/metabolismo , MicroRNAs , RNA Longo não Codificante/metabolismo
18.
Aging (Albany NY) ; 13(18): 22459-22473, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34554926

RESUMO

Emerging studies have revealed that non-coding RNAs contribute to regulating intervertebral disc degeneration (IVDD). Here, we intended to probe into the function of miR-19b-3p in IVDD evolvement. The miR-19b-3p level in the intervertebral disc (IVD) tissues of IVDD patients and IL-1ß/TNF-α/hydrogen peroxide-treated human nucleus pulposus cells (HNPCs) was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Also, qRT-PCR was conducted to examine the profiles of MMP-3, MMP-9, MMP-13, ADAMTS-4 and ADAMTS-5. The PTEN/PI3K/Akt/mTOR pathway was examined by Western blot (WB). The miR-19b-3p overexpression assay was carried out, and HNPC proliferation and apoptosis were compared by the cell counting kit-8 (CCK-8) assay and flow cytometry (FCM). In addition, the mechanism of action of miR-19b-3p was clarified using the PTEN inhibitor (VO-Ohpic triphosphate) or the mTOR inhibitor (Rapamycin) on the basis of IL-1ß intervention and miR-19b-3p mimics transfection. Our results testified that miR-19b-3p expression was curbed in IVD tissues of the IVDD patients (vs. normal IVD tissues) and IL-1ß-, TNF-α, or hydrogen peroxide-treated HNPCs. Up-regulating miR-19b-3p enhanced HNPC proliferation and hampered its apoptosis. Moreover, miR-19b-3p dampened the PTEN profile and activated the PI3K/Akt/mTOR pathway. Interestingly, attenuating PTEN reduced IL-1ß-, TNF-α-, or hydrogen peroxide-mediated HNPC apoptosis and up-regulated PI3K/Akt/mTOR, while inhibiting the mTOR pathway offset the protective function of miR-19b-3p. Further mechanism studies illustrated that miR-19b-3p targeted the 3'untranslated region (UTR) of PTEN and abated the PTEN level. This research confirmed that miR-19b-3p suppressed HNPC apoptosis in the in-vitro model of IVDD by regulating PTEN/PI3K/Akt/mTOR pathway.


Assuntos
Degeneração do Disco Intervertebral , MicroRNAs/metabolismo , Núcleo Pulposo/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa
19.
Bioengineered ; 12(1): 3993-4003, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34282711

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most common digestive tumors, which has high mortality rate. Long non-coding RNAs (lncRNA) and MicroRNAs (miRNAs) are associated with the cell cycle and differentiation during the occurrence and development of malignant tumors. This research aimed to investigate the effects of lncRNA SNHG20 on the progress of oral squamous cell carcinoma (OSCC) cells. Ninety pairs of tumor tissues and paracancerous tissues were collected from patients with OSCC and the CAL27 and SCC25 OSCC cells were selected for the following experiments. RT-qPCR was used for detecting the expression of SNHG20, miR-19b-3p, and RAB14. Western blotting was used to detect the protein levels of RAB14. MTT assay was employed to assess cell proliferation. Transwell assay was used to determine the cell migration and invasion abilities. Furthermore, luciferase reporter and RNA pull-down assays were used to verify the binding of SNHG20/RAB14 to miR-19b-3p. Then, the function of the SNHG20/miR-19b-3p/RAB14 axis in OSCC was explored. The results indicated that lncRNA SNHG20 was upregulated in the tissues. Furthermore, bioinformatic analysis showed that both SNHG20 and RAB14 could bind to miR-19b-3p. RAB14 was upregulated, and miR-19b-3p was downregulated in the tissues. The knockdown of SNHG20 inhibited cell proliferation, migration, and invasion. Contrarily, the knockdown of miR-19b-3p reversed the effects of si-SNHG20 on cell proliferation, migration, and invasion, and the overexpression of RAB14 reversed the effects of miR-19b-3p mimic on the cell biological functions. LncRNA SNHG20 affects cell proliferation, migration, and invasion via the miR-19b-3p/RAB14 axis in OSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Movimento Celular/genética , MicroRNAs/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , RNA Longo não Codificante/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Invasividade Neoplásica , RNA Longo não Codificante/genética , Regulação para Cima/genética , Proteínas rab de Ligação ao GTP/genética
20.
Am J Cancer Res ; 11(6): 2802-2820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249429

RESUMO

Prostate cancer (PCa) is the most commonly diagnosed male malignancy worldwide. Early diagnosis and metastases detection are crucial features to diminish patient mortality. High fat diet (HFD) and metabolic syndrome increase PCa risk and aggressiveness. Our goal was to identify miRNAs-based biomarkers for PCa diagnosis and prognosis associated with HFD. Mice chronically fed with a HFD or control diet (CD) were subcutaneously inoculated with androgen insensitive PC3 cells. Xenografts from HFD-fed mice showed increased expression of 7 miRNAs that we named "candidates" compared to CD-fed mice. These miRNAs modulate specific metabolic and cancer related pathways. Using bioinformatic tools and human datasets we found that hsa-miR-19b-3p and miR-101-3p showed more than 1,100 validated targets involved in proteoglycans in cancer and fatty acid biosynthesis. These miRNAs were significantly increased in the bloodstream of PCa patients compared to non-PCa volunteers, and in prostate tumors compared to normal adjacent tissues (NAT). Interestingly, both miRNAs were also increased in tumors of metastatic patients compared to tumors of non-metastatic patients. Further receiver-operating characteristic (ROC) analysis determined that hsa-miR-19b-3p and hsa-miR-101-3p in serum showed poor predictive power to discriminate PCa from non-PCa patients. Hsa-miR-19b-3p showed the best score to discriminate between tumor and NAT, while hsa-miR-101-3p was useful to differentiate between metastatic and non-metastatic PCa patients. Hsa-miR-101-3p was increased in exosomes isolated from blood of PCa patients. Although more detailed functional exploration and validation of the molecular mechanisms are required, we identified hsa-miR-19b-3p and hsa-miR-101-3p with high potential for PCa diagnosis and prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...