Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 821
Filtrar
1.
J Agric Food Chem ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963795

RESUMO

The skeletal muscle is the major muscle tissue in animals, and its production is subject to a complex and strict regulation. The proliferation and differentiation of myoblasts are important factors determining chicken muscle development. Circular RNAs (circRNAs) are endogenous RNAs that are widely present in various tissues of organisms. Recent studies have shown that circRNA plays key roles in the development of skeletal muscles. The solute carrier (SLC) family functions in the transport of metabolites such as amino acids, glucose, nucleotides, and essential nutrients and is widely involved in various basic physiological metabolic processes within the body. In this study, we have cloned a novel chicken circular RNA circSLC2A13 generated from the solute carrier family 2 member 13 gene (SLC2A13). Also, circSLC2A1 was confirmed by sequencing verification, RNase R treatment, and reverse transcription analysis. Currently, our results show that circSLC2A13 promoted the proliferation and differentiation of chicken myoblasts. The double luciferase reporter system revealed that circSLC2A13 regulated the proliferation and differentiation of myoblasts by competitive binding with miR-34a-3p. In addition, results indicated that circSLC2A13 acts as a miR-34a-3p sponge to relieve its inhibitory effect on the target SMAD3 gene. In summary, this study found that chicken circSLC2A13 can bind to miR-34a-3p and weaken its inhibitory effect on the SMAD family member 3 gene (SMAD3), thereby promoting the proliferation and differentiation of myoblasts. This study laid foundations for broiler industry and muscle development research.

2.
J Cell Mol Med ; 28(13): e18527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984969

RESUMO

Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-ß signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type І in osteoblasts significantly. This research showed that ECP could regulate the TGF-ß/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.


Assuntos
Epimedium , MicroRNAs , Osteoblastos , RNA Longo não Codificante , Transdução de Sinais , Proteína Smad2 , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Proteína Smad2/metabolismo , Proteína Smad2/genética , Camundongos , Epimedium/química , Transdução de Sinais/efeitos dos fármacos , Masculino , Regeneração Óssea/efeitos dos fármacos , Humanos , Regulação da Expressão Gênica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética
3.
Int J Biol Macromol ; 275(Pt 2): 133688, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971281

RESUMO

Long noncoding RNAs (lncRNAs) participate in regulating skeletal muscle development. However, little is known about their role in regulating chicken myogenesis. In this study, we identified a novel lncRNA, lncMPD2, through transcriptome sequencing of chicken myoblasts at different developmental stages. Functionally, gain- and loss-of-function experiments showed that lncMPD2 inhibited myoblast proliferation and differentiation. Mechanistically, lncMPD2 directly bound to miR-34a-5p, and miR-34a-5p promoted myoblasts proliferation and differentiation and inhibited the mRNA and protein expression of its target gene THBS1. THBS1 inhibited myoblast proliferation and differentiation in vitro and delayed muscle regeneration in vivo. Furthermore, rescue experiments showed that lncMPD2 counteracted the inhibitory effects of miR-34a-5p on THBS1 and myogenesis-related gene mRNA and protein expression. In conclusion, lncMPD2 regulates the miR-34a-5p/THBS1 axis to inhibit the proliferation and differentiation of myoblasts and skeletal muscle regeneration. This study provides more insight into the molecular regulatory network of skeletal muscle development, identifying novel potential biomarkers for improving chicken quality and increasing chicken yield. In addition, this study provides a potential goal for breeding strategies that minimize muscle damage in chickens.

4.
Arch Biochem Biophys ; 758: 110063, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880321

RESUMO

To investigate the potential molecular mechanism of miR-34a in Sjögren's syndrome (SS). Transmission electron microscopy was used to observe the salivary gland tissues of mild and severe SS patients. SS mouse model was constructed and injected with miR-34a antagonist. HSGE cells were transfected with miR-34a mimic. Starbase predicted miR-34a binding sites and validated them with dual-luciferase reporter assays. Immunohistochemistry, HE staining, CCK-8, TUNEL assay, flow cytometry, immunofluorescence and Western Blot were used to investigate the effects of miR-34a on NF-κB signaling and mitochondrial pathway of apoptosis in HSGE cells. Severe SS patients showed obvious mitochondrial damage and apoptosis in salivary glands. MiR-34a was overexpressed and NF-κB signaling is activated in salivary glands of severe SS patients. Inhibition of miR-34a alleviated salivary gland injury in SS mice, as well as inhibited the activation of NF-κB signaling and mitochondrial pathway of apoptosis. In conclusion, miR-34a promoted NF-κB signaling by targeting IκBα, thereby causing mitochondrial pathway apoptosis and aggravating SS-induced salivary gland damage.

5.
Heliyon ; 10(11): e31654, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828289

RESUMO

Osteoarthritis is a chronic degenerative disease based on the degeneration and loss of articular cartilage. Inflammation and aging play an important role in the destruction of the extracellular matrix, in which microRNA (miRNA) is a key point, such as miRNA-34a-5p. Upregulation of miRNA-34a-5p was previously reported in a rat OA model, and its inhibition significantly suppressed interleukin (IL)-1ß-induced apoptosis in rat chondrocytes. However, Oxidative stress caused by reactive oxygen species (ROS) can exacerbate the progression of miRNA regulated OA by mediating inflammatory processes. Thus, oxidative stress effects induced via tert-butyl hydroperoxide (tBHP) in human chondrocytes were assessed in the current research by evaluating mitochondrial ROS production, mitochondrial cyclooxygenase (COX) activity, and cell apoptosis. We also analyzed the activities of antioxidant enzymes including glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD). Additionally, inflammatory factors, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, IL-8, and IL-24, which contribute to OA development, were detected by enzyme-linked immunosorbent assay (ELISA). The results of this study indicated that miR-34a-5p/silent information regulator 1 (SIRT1)/p53 axis was involved in the ROS-induced injury of human chondrocytes. Moreover, dual-luciferase assay revealed that SIRT1 expression was directly regulated by miR-34a-5p, indicating the presence of a positive feedback loop in the miR-34a-5p/SIRT1/p53 axis that plays an important role in cell survival. However, ROS disrupted the miR-34a-5p/SIRT1/p53 axis, leading to the development of OA, and articular injection of SIRT1 agonist, SRT1720, in a rat model of OA effectively ameliorated OA progression in a dose-dependent manner. Our study confirms that miRNA-34a-5p could participate in oxidative stress responses caused by ROS and further regulate the inflammatory process via the SIRT1/p53 signaling axis, ultimately affecting the onset of OA, thus providing a new treatment strategy for clinical treatment of OA.

6.
Cancer Med ; 13(11): e7387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864479

RESUMO

BACKGROUND: Promising outcomes have been observed in multiple myeloma (MM) with the use of immunotherapies, specifically chimeric antigen receptor T (CAR-T) cell therapy. However, a portion of MM patients do not respond to CAR-T therapy, and the reasons for this lack of response remain unclear. The objective of this study was to investigate the impact of miR-34a on the immunosuppressive polarization of macrophages obtained from MM patients. METHODS: The levels of miR-34a and TLR9 (Toll-like receptor 9) were examined in macrophages obtained from both healthy individuals and patients with MM. ELISA was employed to investigate the cytokine profiles of the macrophage samples. Co-culture experiments were conducted to evaluate the immunomodulatory impact of MM-associated macrophages on CAR-T cells. RESULTS: There was an observed suppressed activation of macrophages and CD4+ T lymphocytes in the blood samples of MM patients. Overexpression of miR-34a in MM-associated macrophages dampened the TLR9 expression and impaired the inflammatory polarization. In both the co-culture system and an animal model, MM-associated macrophages suppressed the activity and tumoricidal effect of CAR-T cells in a miR-34a-dependent manner. CONCLUSION: The findings imply that targeting the macrophage miR-34a/TLR9 axis could potentially alleviate the immunosuppression associated with CAR-T therapy in MM patients.


Assuntos
MicroRNAs , Mieloma Múltiplo , Transdução de Sinais , Receptor Toll-Like 9 , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Mieloma Múltiplo/metabolismo , MicroRNAs/genética , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Humanos , Animais , Camundongos , Técnicas de Cocultura , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Imunoterapia Adotiva/métodos , Masculino , Feminino , Ativação de Macrófagos/imunologia , Ativação de Macrófagos/genética , Linhagem Celular Tumoral
7.
Arch Dermatol Res ; 316(6): 299, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819446

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is a malignant tumor originating from epidermal or appendageal keratinocytes, with a rising incidence in recent years. Understanding the molecular mechanism driving its development is crucial. This study aims to investigate whether miR-34a-5p is involved in the pathogenesis of cSCC by targeting Sirtuin 6 (SIRT6).The expression levels of miR-34a-5p and SIRT6 were determined in 15 cSCC tissue specimens, 15 normal tissue specimens and cultured cells via real-time polymerase chain reaction (RT-qPCR). Pearson's correlation analysis was conducted to evaluate the relationship between miR-34a-5p and SIRT6 expression levels in cSCC tissues. A431 and SCL-1 cells were transfected with miR-34a-5p mimic, negative control or miR-34a-5p mimic together with recombinant plasmids containing SIRT6 gene. Cell counting kit-8, clone formation assay, wound healing assay, and flow cytometry were employed to assess the effects of these transfections on proliferation, migration, and apoptosis, respectively. The interaction between miR-34a-5p and SIRT6 was characterized using a dual-luciferase reporter assay.MiR-34a-5p expression was down-regulated in cSCC tissues significantly, while the SIRT6 expression was the opposite. A negative correlation was observed between the expression of miR-34a-5p and SIRT6 in cSCC tissues. Furthermore, overexpression of miR-34a-5p led to a significant reduction in the proliferation and migration abilities of A431 and SCL-1 cells, accompanied by an increase in apoptosis levels and a decrease in SIRT6 expression levels. MiR-34a-5p was identified as a direct target of SIRT6. Importantly, overexpression of SIRT6 effectively counteracted the inhibitory effect mediated by miR-34a-5p in cSCC cells.Our findings suggest that miR-34a-5p functions as a tumor suppressor in cSCC cells by targeting SIRT6.


Assuntos
Apoptose , Carcinoma de Células Escamosas , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Sirtuínas , Neoplasias Cutâneas , Humanos , Sirtuínas/genética , Sirtuínas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Apoptose/genética , Movimento Celular/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Progressão da Doença , Masculino , Regulação para Baixo , Feminino , Pessoa de Meia-Idade
8.
Curr Med Sci ; 44(3): 503-511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38748366

RESUMO

OBJECTIVE: This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1 (PCED1B-AS1) in the development of hepatocellular carcinoma (HCC). METHODS: A total of 62 pairs of HCC tissues and adjacent non-tumor tissues were obtained from 62 HCC patients. The interactions of PCED1B-AS1 and microRNA-34a (miR-34a) were detected by dual luciferase activity assay and RNA pull-down assay. The RNA expression levels of PCED1B-AS1, miR-34a and CD44 were detected by RT-qPCR, and the protein expression level of CD44 was determined by Western blotting. The cell proliferation was detected by cell proliferation assay, and the cell invasion and migration by transwell invasion assay. The HCC tumor growth after PCED1B-AS1 was downregulated was determined by in vivo animal study. RESULTS: PCED1B-AS1 was highly expressed in HCC tissues, which was associated with poor survival of HCC patients. Furthermore, PCED1B-AS1 interacted with miR-34a in HCC cells, but they did not regulate the expression of each other. Additionally, PCED1B-AS1 increased the expression level of CD44, which was targeted by miR-34a. The cell proliferation and invasion assay revealed that miR-34a inhibited the proliferation and invasion of HCC in vitro, while CD44 exhibited the opposite effects. Furthermore, PCED1B-AS1 suppressed the role of miR-34a. Moreover, the knockdown of PCED1B-AS1 repressed the HCC tumor growth in nude mice in vivo. CONCLUSION: PCED1B-AS1 may play an oncogenic role by regulating the miR-34a/CD44 axis in HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos , Neoplasias Hepáticas , MicroRNAs , Invasividade Neoplásica , RNA Longo não Codificante , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proliferação de Células/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Camundongos , Invasividade Neoplásica/genética , Masculino , Linhagem Celular Tumoral , Feminino , Movimento Celular/genética , Pessoa de Meia-Idade , Camundongos Nus , RNA Antissenso/genética
9.
J Chemother ; : 1-12, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38706347

RESUMO

Lung cancer is one of the most frequently diagnosed cancers worldwide, associated with a poor survival rate. Taxol (Paclitaxel) is commonly used as a chemotherapeutic treatment for advanced lung cancers. While Taxol has improved clinical outcomes for lung cancer patients, a significant number of them develop resistance to Taxol, resulting in treatment failure. The role of the long noncoding RNA HCG18 in lung cancer and Taxol resistance has not yet been fully understood. To investigate this, we examined the expression of HCG18 and miR-34a-5p in lung tumors and normal lung tissues using qRT-PCR. We also assessed Taxol resistance through cell viability and apoptosis assays. Through the starBase online service, we analyzed the interactions between lncRNA and mRNA as well as miRNA and mRNA. We further validated the association between lncRNA and miRNA through luciferase and RNA pull-down assays. Our findings demonstrated that HCG18 was significantly upregulated in lung cancer tissues compared to normal lung tissues. Silencing HCG18 increased the sensitivity of lung cancer cells to Taxol. Additionally, our study established a Taxol-resistant cell line and observed a substantial upregulation of HCG18 in Taxol-resistant lung cancer cells. Bioinformatic analysis predicted that HCG18 could bind to miR-34a-5p, forming a competing endogenous RNA network, which was confirmed through luciferase assay. We found that miR-34a-5p was downregulated in lung cancer tissues and negatively correlated with Taxol resistance, as it directly bound to the 3'UTR region of HDAC1. Further results showed that inhibition of HCG18 significantly increased miR-34a-5p expression and sensitized lung cancer cells to Taxol. This sensitization could be reversed by inhibiting miR-34a-5p. Finally, we demonstrated in a xenograft mouse model that inhibition of HCG18 sensitized Taxol-resistant lung cancer cells to Taxol treatment by modulating the miR-34a-5p-HDAC1 axis. In conclusion, our in vitro and in vivo results uncover a novel molecular mechanism by which HCG18 promotes Taxol resistance through modulation of the miR-34a-5p/HDAC1 axis. These findings contribute to the diagnosis and treatment of chemo-resistant lung cancer.

10.
EXCLI J ; 23: 384-400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655096

RESUMO

Glioblastoma multiform (GBM) is a commonly diagnosed brain neoplasm with a poor prognosis. Accumulating evidence has highlighted the significance of microRNA (miR) dysregulation in tumor development and progression. This study investigated the effect of hsa-miR-34a-5p and its combination with temozolomide on GBM, the related molecular mechanisms, and the signaling pathway using in-silico and in-vitro approaches. The in-silico tumor bulk and single-cell RNA sequencing analyses were done on TCGA-GTEx, CGGA, GSE13276, GSE90603, and GSE182109 datasets. After selecting the A172 cell line, hsa-miR-34a-5p mimics were transfected, and the cell viability, migration, cell cycle, clonogenicity, and apoptosis of studied groups were studied using MTT, scratch, flow cytometry, colony formation, and Annexin V/PI assays. The mRNA expression of CASP9, CASP3, CASP8, MMP2, CD44, CDK6, CDK4, CCND1, RAF1, MAP2K1, MET, SRC, and CD274 was studied using qRT-PCR method. hsa-miR-34a-5p downregulated RAF1 expression, as the signaling factor of the MAPK pathway. The combined treatment significantly downregulated the expression of MET, SRC, and MAP2K1, leading to the inhibition of the MET/MAPK pathway compared to temozolomide. Besides exerting anti-tumoral effects on the cell viability, migration, cell cycle, apoptosis, and clonogenicity of A172 cells, its combination with temozolomide enhanced temozolomide anti-tumoral effect. Compared to temozolomide, the combined treatment significantly decreased CDK4, CDK6, CCND1, and MMP2 expression. hsa-miR-34a-5p targets RAF1, as the signaling factor of the MAPK pathway, and potentiates the temozolomide anti-tumoral effect on A172 cells.

11.
Mol Ther Oncol ; 32(1): 200765, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596294

RESUMO

Gallbladder cancer incidence has been increasing globally, and it remains challenging to expect long prognosis with the current systemic chemotherapy. We identified a novel nucleic acid-mediated therapeutic target against gallbladder cancer by using innovative organoid-based gallbladder cancer models generated from KrasLSL-G12D/+; Trp53f/f mice. Using comprehensive microRNA expression analyses and a bioinformatics approach, we identified significant microRNA-34a-5p downregulation in both murine gallbladder cancer organoids and resected human gallbladder cancer specimens. In three different human gallbladder cancer cell lines, forced microRNA-34a-5p expression inhibited cell proliferation and induced cell-cycle arrest at the G1 phase by suppressing direct target (CDK6) expression. Furthermore, comprehensive RNA sequencing revealed the significant enrichment of gene sets related to the cell-cycle regulators after microRNA-34a-5p expression in gallbladder cancer cells. In a murine xenograft model, locally injected microRNA-34a-5p mimics significantly inhibited gallbladder cancer progression and downregulated CDK6 expression. These results provide a rationale for promising therapeutics against gallbladder cancer by microRNA-34a-5p injection, as well as a strategy to explore therapeutic targets against cancers using organoid-based models, especially for those lacking useful genetically engineered murine models, such as gallbladder cancer.

12.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474177

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) can cause a variety of malignancies. Ganciclovir (GCV) is one of the most efficient drugs against KSHV, but its non-specificity can cause other side effects in patients. Nucleic acid miR-34a-5p can inhibit the transcription of KSHV RNA and has great potential in anti-KSHV therapy, but there are still problems such as easy degradation and low delivery efficiency. Here, we constructed a co-loaded dual-drug nanocomplex (GCV@ZIF-8/PEI-FA+miR-34a-5p) that contains GCV internally and adsorbs miR-34a-5p externally. The folic acid (FA)-coupled polyethyleneimine (PEI) coating layer (PEI-FA) was shown to increase the cellular uptake of the nanocomplex, which is conducive to the enrichment of drugs at the KSHV infection site. GCV and miR-34a-5p are released at the site of the KSHV infection through the acid hydrolysis characteristics of ZIF-8 and the "proton sponge effect" of PEI. The co-loaded dual-drug nanocomplex not only inhibits the proliferation and migration of KSHV-positive cells but also decreases the mRNA expression level of KSHV lytic and latent genes. In conclusion, this co-loaded dual-drug nanocomplex may provide an attractive strategy for antiviral drug delivery and anti-KSHV therapy.


Assuntos
Herpesvirus Humano 8 , MicroRNAs , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Ganciclovir/farmacologia , MicroRNAs/genética , Sarcoma de Kaposi/genética
13.
Mol Neurobiol ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427212

RESUMO

This study aimed to analyze the possible association of miR-30a-5p, miR-30e-5p, and miR-34a-5p identified as potential candidate miRNAs in schizophrenia, with the COMT gene. Candidate miRNAs were obtained from the TargetScan database. The SH-SY5Y human neuroblastoma cell line was used as a cellular model for schizophrenia. miR-30a-5p, miR-30e-5p, and miR-34a-5p mimics were transfected into the SH-SY5Y cell line. Total RNA was isolated from transfected cells and RNA-IP samples and reverse transcripted for miRNA and mRNA analysis. RT-qPCR and western blot were performed to observe changes in expression levels of COMT. RNA-immunoprecipitation was performed to determine RNA-protein interactions after mimic transfection. In the study, it was observed that COMT gene expression levels decreased significantly after miR-30a-5p and miR-34a-5p expressions, whereas increased significantly as a result of miR-30e-5p transfection. RNA-IP data have shown that the amount of COMT pulled down by Ago2 was increased after miR-30a-5p and miR-34a-5p transfections. RNA-IP results revealed that miR-30a-5p and miR-34a-5p are direct targets for the COMT gene.

14.
Biomol Concepts ; 15(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525814

RESUMO

Triple-negative breast cancer (TNBC) is a highly metastatic subtype of breast cancer. Due to the absence of obvious therapeutic targets, microRNAs (miRNAs) provide possible hope to treat TNBC. Withaferin A (WA), a steroidal lactone, possesses potential anticancer activity with lesser side effects. The present study identifies hub genes (CDKN3, TRAF6, CCND1, JAK1, MET, AXIN2, JAG1, VEGFA, BRCA1, E2F3, WNT1, CDK6, KRAS, MYB, MYCN, TGFßR2, NOTCH1, SIRT1, MYCN, NOTCH2, WNT3A) from the list of predicted targets of the differentially expressed miRNAs (DEMs) in WA-treated MDA-MB-231 cells using in silico protein-protein interaction network analysis. CCND1, CDK6, and TRAF6 hub genes were predicted as targets of miR-34a-5p and miR-146a-5p, respectively. The study found the lower expression of miR-34a-5p and miR-146a-5p in MDA-MB-231 cells, and further, it was observed that WA treatment effectively restored the lost expression of miR-34a-5p and miR-146a-5p in MDA-MB-231 cells. An anti-correlation expression pattern was found among the miR-34a-5p and miR-146a-5p and the respective target hub genes in WA-treated TNBC cells. In conclusion, WA might exert anti-cancer effect in TNBC cells by inducing miR-34a-5p and miR-146a-5p expressions and decreasing CCND1, CDK6, and TARF6 target hub genes in TNBC cells.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Vitanolídeos , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Células MDA-MB-231 , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/uso terapêutico , Fator 6 Associado a Receptor de TNF/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo
15.
Iran Biomed J ; 28(1): 53-8, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445462

RESUMO

Background: MiR-34a and miR-126 mainly act as tumor suppressors and are often downregulated in various cancers, including non-small cell lung cancer (NSCLC). We aimed to determine the methylation status of miR-34a and miR-126 in NSCLC patients. Methods: The current study included 63 paraffin-embedded NSCLC and paired adjacent normal tissues. After DNA extraction and bisulfite treatment, the methylation status of miR-34a and miR-126 were evaluated using the MSP method. Results: There was no statistically significant difference between tumor and normal tissues regarding the methylation status of miR-34a and miR-126 (p > 0.05). Moreover, we found no significant correlation between the methylation status of miR-34a and miR-126 with patients' demographic parameters, including gender, age, and pathology subtype (p > 0.05). Conclusion: Considering the low expression of mir-126 and mir-34 in NSCLC, more sensitive methods are recommended to be exploited for detecting the level of methylation or underlying mechanisms other than promoter hypermethylation in silencing these genes in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas/genética
16.
Gene ; 912: 148370, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38490506

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are short, noncoding RNAs with essential roles in cellular pathways and are often associated with various diseases and stress conditions. Recently, they have been discovered in mitochondria, termed "mitomiRs," with unique functions. Mitochondria, crucial organelles for energy production and stress responses, Dysregulated mitomiRs functions and expression has been evident in stress conditions such as cardiovascular and neurodegenerative. In this meta-analysis we have systematically identified miR-34a & miR-146a as possible potential biomarkers for affliction. METHODS: A meta-analysis was conducted to assess the potential role of miR-34a and miR-146a, two specific mitomiRs, as biomarkers in stress-related conditions. The study followed PRISMA guidelines, involving comprehensive database searches in May and September 2023. Twelve studies meeting predefined inclusion criteria were selected, and data analysis included the evaluation of miR-34a and miR-146a expression levels in various stress conditions compared to control groups. We also performed Gene ontology (GO) and Pathway enrichment analysis to observe how mitomiRs affects our body. RESULTS: The meta-analysis revealed a significant increase in overall mitomiRs (miR-34a and miR-146a) expression levels in experimental groups experiencing different stress conditions compared to control groups (Z = 3.54, p < 0.05 using RevMan software). miR-34a demonstrated more pronounced upregulation and exhibited potential as a specific biomarker in certain stress-related conditions (Z = 2.22, p < 0.05). However, miR-146a did not show a significant difference, requiring further investigation in various stress-related contexts. The Analysis indicated a high degree of heterogeneity among the studies. CONCLUSION: This meta-analysis emphasises the importance of mitomiRs, especially miR-34a, as potential biomarkers in the intricate interplay between stress, mitochondrial function, and disease. The study opens new avenues for exploring miRNAs' diagnostic and therapeutic applications in stress-related diseases, highlighting their pivotal role at the crossroads of molecular biology, psychology, and medicine.


Assuntos
Sistema Cardiovascular , MicroRNAs , Biomarcadores/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/genética , Regulação para Cima , Humanos
17.
Artigo em Inglês | MEDLINE | ID: mdl-38299288

RESUMO

BACKGROUND: Taurine upregulated gene 1 (TUG1) has been identified on long noncoding RNA (lncRNA); however, its function in myocardial cells following ischemia/ reperfusion (I/R) injury has not been explored. This study aimed to investigate the role of LncTUG1 in I/R injury by focusing on its relationship with autophagy induction by regulating miR-34a-5p expression. METHODS: We established a myocardial I/R model and H9C2 hypoxia-ischemic and reoxygenation (HI/R) conditions to induce I/R injury. TTC, Western blot, CCK-8 assay, quantitative reverse transcription PCR, flow cytometry, and confocal microscopy were used to assess the size of myocardial infarct, level of some apoptotic-related and autophagy-associated proteins, cell viability, the level of LncRNA TUG1, apoptosis, and autophagy, respectively. RESULTS: The results revealed that a TUG1 knockdown protected against I/R-induced myocardial injury by decreasing the impairment in cardiac function. LncRNA TUG1 expression was increased in a myocardial I/R model and HI/R in H9C2 cells. Moreover, inhibition of LncTUG1 enhanced H9C2 cell viability and protected the cells from HI/R-induced apoptosis. Silencing LncRNA TUG1 promoted HI/R-induced autophagy. Furthermore, TUG1 siRNA upregulated the level of miR-34a-5p compared to the HI/R group. The protective effect of LncRNA TUG1 inhibition on H9C2 cells following HI/R was eliminated by blocking autophagy with an miR-34a-5p inhibitor. CONCLUSION: These findings indicated that inhibiting TUG1 may reduce the extent of myocardial I/R injury by regulating miR-34a-5p. Taken together, these results suggest that LncRNA TUG1 may represent a novel therapeutic target for myocardial I/R injury.

18.
J Dent Sci ; 19(1): 428-437, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303867

RESUMO

Background/purpose: Oral cancer is a prevalent malignancy affecting men globally. This study aimed to investigate the regulatory role of miR-34a in oral cancer cells through the Axl/Akt/glycogen synthase kinase-3ß (GSK-3ß) pathway and its impact on cellular malignancy. Materials and methods: We examined the effects of miR-34a overexpression on the malignancy of oral cancer cells. Multiple oral cancer cell lines were assessed to determine the correlation between endogenous miR-34a and Axl levels. Transfection experiments with miR-34a were conducted to analyze its influence on Axl mRNA and protein expression. Luciferase reporter assays were performed to investigate miR-34a's modulation of Axl gene transcription. Manipulation of miR-34a expression was utilized to demonstrate its regulatory effects on oral cancer cells through the Axl/Akt/GSK-3ß pathway. Results: Overexpression of miR-34a significantly suppressed the malignancy of oral cancer cells. We observed an inverse correlation between endogenous miR-34a and Axl levels across multiple oral cancer cell lines. Transfection of miR-34a resulted in decreased Axl mRNA and protein expression, and luciferase reporter assays confirmed miR-34a-mediated modulation of Axl gene transcription. The study revealed regulatory effects of miR-34a on oral cancer cells through the Axl/Akt/GSK-3ß pathway, leading to alterations in downstream target genes involved in cellular proliferation and tumorigenesis. Conclusion: Our findings highlight the significance of the miR-34a/Axl/Akt/GSK-3ß signaling axis in modulating the malignancy of oral cancer cells. Targeting miR-34a may hold therapeutic potential in oral cancer treatment, as manipulating its expression can attenuate the aggressive behavior of oral cancer cells via the Axl/Akt/GSK-3ß pathway.

19.
Oncol Res ; 32(3): 577-584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361758

RESUMO

Background: microRNA-34a (miR-34a) had been reported to have a diagnostic role in acute myeloid leukemia (AML). However, its value in the bone marrow (BM) of AML patients, in addition to its role in response to therapy is still unclear. The current study was designed to assess the diagnostic, prognostic, and predictive significance of miR-34a in the BM of AML patients. Methods: The miR-34a was assessed in BM aspirate of 82 AML patients in relation to 12 normal control subjects using qRT-PCR. The data were assessed for correlation with the relevant clinical criteria, response to therapy, disease-free survival (DFS), and overall survival (OS) rates. Results: miR-34a was significantly downregulated in AML patients [0.005 (3.3 × 10-6-1.32)], compared to the control subjects [0.108 (3.2 × 10-4-1.64), p = 0.021]. The median relative quantification (RQ) of miR-34a was 0.106 (range; 0-32.12). The specificity, sensitivity, and area under the curve (AUC) for the diagnosis of AML were (58.3%, 69.5%, 0.707, respectively, p = 0.021). patients with upregulated miR-34a showed decreased platelets count <34.5 × 109/L, and achieved early complete remission (CR, p = 0.031, p = 0.044, respectively). Similarly, patients who were refractory to therapy showed decreased miR-34a levels in comparison to those who achieved CR [0.002 (0-0.01) and 0.12 (0-32.12), respectively, p = 0.002]. Therefore, miR-34a could significantly identify patients with CR with a specificity of 75% and sensitivity of 100% at a cut-off of 0.014 (AUC = 0.927, p = 0.005). There was no considerable association between miR-34a expression and survival rates of the included AML patients. Conclusion: miR-34a could be a beneficial diagnostic biomarker for AML patients. In addition, it serves as a good indicator for response to therapy, which could possibly identify patients who are refractory to treatment with 100% sensitivity and 75% specificity.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Humanos , Medula Óssea/química , Medula Óssea/metabolismo , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Prognóstico , Intervalo Livre de Doença
20.
Health Sci Rep ; 7(2): e1861, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332929

RESUMO

Background and aims: MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are well-known types of noncoding RNAs (ncRNAs), which have been known as the key regulators of gene expression. They can play critical roles in viral infection by regulating the host immune response and interacting with genes in the viral genome. In this regard, ncRNAs can be employed as biomarkers for viral diseases. The current study aimed to evaluate peripheral blood mononuclear cell (PBMC) ncRNAs (lncRNAs-homeobox C antisense intergenic RNA [HOTAIR], -H19, X-inactive-specific transcript [XIST], plasmacytoma variant translocation 1 [PVT-1], and miR-34a) as diagnostic biomarkers to differentiate severe COVID-19 cases from mild ones. Methods: Candidate ncRNAs were selected according to previous studies and assessed by real-time polymerase chain reaction in the PBMC samples of patients with severe coronavirus disease 2019 (COVID-19) (n = 40), healthy subjects (n = 40), and mild COVID-19 cases (n = 40). Furthermore, the diagnostic value of the selected ncRNAs was assessed by analyzing the receiver-operating characteristic (ROC). Results: The results demonstrated that the expression pattern of the selected ncRNAs was significantly different between the studied groups. The levels of HOTAIR, XIST, and miR-34a were remarkably overexpressed in the severe COVID-19 group in comparison with the mild COVID-19 group, and in return, the PVT-1 levels were lower than in the mild COVID-19 group. Interestingly, the XIST expression level in men with severe COVID-19 was higher compared to women with mild COVID-19. ROC results suggested that HOTAIR and PVT-1 could serve as useful biomarkers for screening mild COVID-19 from severe COVID-19. Conclusions: Overall, different expression patterns of the selected ncRNAs and ROC curve results revealed that these factors can contribute to COVID-19 pathogenicity and can be considered diagnostic markers of COVID-19 severe outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...