Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Aging (Albany NY) ; 16(9): 7915-7927, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38728237

RESUMO

OBJECTIVE: This research aimed to explore IL-21/miR-361-5p/MAP3K9 expression in shoulder arthritis and identify its regulatory pathways. METHODS: We established a rat shoulder arthritis model, then quantified IL21 and miR-361-5p in synovial fluid using ELISA and monitored the arthritis development. Additionally, IL21's effect on miR-361-5p levels in cultured human chondrocytes (HC-a) was assessed. Chondrocyte cell cycle status and apoptosis were measured via flow cytometry. Interactions between miR-361-5p and MAP3K9 were confirmed through dual-luciferase reporting and bioinformatic scrutiny. Protein levels of MAP3K9, p-ERK1/2, p-NF-κB, MMP1, and MMP9 were analyzed by Western blots. RESULTS: IL21 levels were elevated, while miR-361-5p was reduced in the synovial fluid from arthritic rats compared to healthy rats. IL21 was shown to suppress miR-361-5p in chondrocytes leading to hindered cell proliferation and increased apoptosis. Western blots indicated that miR-361-5p curbed MAP3K9 expression, reducing MMP activity by attenuating the ERK1/2/NF-κB pathway in chondrocytes. CONCLUSION: IL21 upregulation and miR-361-5p downregulation characterize shoulder arthritis, resulting in MAP3K9 overexpression. This chain of molecular events boosts MMP expression in chondrocytes and exacerbates the condition's progression.


Assuntos
Condrócitos , MAP Quinase Quinase Quinases , MicroRNAs , Animais , Humanos , Masculino , Ratos , Apoptose/genética , Proliferação de Células/genética , Condrócitos/metabolismo , Progressão da Doença , Interleucinas/metabolismo , Interleucinas/genética , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Ratos Sprague-Dawley
2.
Anim Biotechnol ; 35(1): 2356110, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38804592

RESUMO

The inducing activation event of secondary hair follicle (SHF)-stem cells is considered a key biological process in the SHF regeneration, and the morphogenesis of cashmere fiber in cashmere goats. The miR-361-5p was essentially implicated in the induced activation of SHF-stem cells of cashmere goats, but its functional mechanisms are unclear. Here, we confirmed miR-361-5p was significantly downregulated in anagen SHF bugle of cashmere goats compared with that at telogen, and miR-361-5p expression was significantly lower in SHF-stem cells after activation than its counterpart before activation. Further, we found that miR-361-5p could negatively regulate the induced activation event of SHF-stem cells in cashmere goats. Mechanistically, through dual-luciferase reporter assays, miR-361-5p specifically bound with FOXM1 mRNA in SHF-stem cells of cashmere goats and negatively regulated the expression of FOXM1 gene. Also, through overexpression/knockdown analysis of FOXM1 gene, our results indicated that FOXM1 upregulated the expression of Wnt/ß-catenin pathway related genes in SHF-stem cells. Moreover, based on TOP/FOP-flash Wnt report assays, the knockdown of miR-361-5p promotes the Wnt/ß-catenin pathway activation through upregulating the FOXM1 expression in SHF-stem cells. Finally, we demonstrated that miR-361-5p negatively regulated the induced activation of SHF-stem cells through FOXM1 mediated Wnt/ß-catenin pathway in cashmere goats.


Assuntos
Proteína Forkhead Box M1 , Cabras , Folículo Piloso , MicroRNAs , Células-Tronco , Via de Sinalização Wnt , Animais , Cabras/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt/genética , Folículo Piloso/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Células-Tronco/fisiologia , Células-Tronco/metabolismo , Técnicas de Silenciamento de Genes
3.
J Transl Med ; 22(1): 499, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796415

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion injury (MIRI) is caused by reperfusion after ischemic heart disease. LncRNA Snhg1 regulates the progression of various diseases. N6-methyladenosine (m6A) is the frequent RNA modification and plays a critical role in MIRI. However, it is unclear whether lncRNA Snhg1 regulates MIRI progression and whether the lncRNA Snhg1 was modified by m6A methylation. METHODS: Mouse cardiomyocytes HL-1 cells were utilized to construct the hypoxia/reoxygenation (H/R) injury model. HL-1 cell viability was evaluated utilizing CCK-8 method. Cell apoptosis, mitochondrial reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were quantitated utilizing flow cytometry. RNA immunoprecipitation and dual-luciferase reporter assays were applied to measure the m6A methylation and the interactions between lncRNA Snhg1 and targeted miRNA or target miRNAs and its target gene. The I/R mouse model was constructed with adenovirus expressing lncRNA Snhg1. HE and TUNEL staining were used to evaluate myocardial tissue damage and apoptosis. RESULTS: LncRNA Snhg1 was down-regulated after H/R injury, and overexpressed lncRNA Snhg1 suppressed H/R-stimulated cell apoptosis, mitochondrial ROS level and polarization. Besides, lncRNA Snhg1 could target miR-361-5p, and miR-361-5p targeted OPA1. Overexpressed lncRNA Snhg1 suppressed H/R-stimulated cell apoptosis, mitochondrial ROS level and polarization though the miR-361-5p/OPA1 axis. Furthermore, WTAP induced lncRNA Snhg1 m6A modification in H/R-stimulated HL-1 cells. Moreover, enforced lncRNA Snhg1 repressed I/R-stimulated myocardial tissue damage and apoptosis and regulated the miR-361-5p and OPA1 levels. CONCLUSION: WTAP-mediated m6A modification of lncRNA Snhg1 regulated MIRI progression through modulating myocardial apoptosis, mitochondrial ROS production, and mitochondrial polarization via miR-361-5p/OPA1 axis, providing the evidence for lncRNA as the prospective target for alleviating MIRI progression.


Assuntos
Apoptose , MicroRNAs , Dinâmica Mitocondrial , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Camundongos , Apoptose/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Linhagem Celular , Masculino , Camundongos Endogâmicos C57BL , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Espécies Reativas de Oxigênio/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Sequência de Bases , Metilação , Potencial da Membrana Mitocondrial
4.
Indian J Clin Biochem ; 38(3): 338-350, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37234179

RESUMO

Breast carcinoma is a heterogeneous disease that affects millions of women worldwide. Wilms' tumor 1 (WT1) is an oncogene that promotes proliferation, metastasis and reduces apoptosis. MicroRNAs (miR) are short noncoding RNAs with a major role in cancer metastasis. In present study, we investigated the association of serum level of WT1 with oxidative stress and expression of miR-361-5p in breast cancer. Serum samples of 45 patients and of 45 healthy women analyzed for protein level of WT1, malondialdehyde (MDA), total oxidant status (TOS), and total antioxidant capacity (TAC). Serum and tissue expression of miR-361-5p in 45 tumor tissues and 45 paired non-tumor adjacent tissues and 45 serum samples of patients and healthy women analyzed by qRT-PCR. Protein levels of WT1 not significantly difference in serum of patients compared to healthy controls. Serum levels of MDA and TOS in patients were higher, but TAC level was lower than healthy controls (p < 0.001). There was a positive correlation between WT1 with MDA and TOS, and a negative correlation between WT1 with TAC in patients. miR-361-5p expression in tumor tissues and serum of patients was lower than non-tumor adjacent tissues and serum of healthy controls, respectively (p < 0.001). Moreover, there was a negative correlation between miR-361-5p and WT1 in patients. The positive correlation between WT1 with MDA and TOS and negative correlation between TAC and miR-361-5p suggests that this gene can play an important role in worse prognoses in breast cancer. Additionally, miR-361-5p may serve as an invasive biomarker for early detection of breast cancer.

5.
Am J Transl Res ; 15(3): 2191-2206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056821

RESUMO

BACKGROUND: COX10-AS1 belongs to the class of lncRNA and has been shown to influence carcinogenesis; however, its function and underlying mechanism in oral squamous cell carcinoma are still unclear (OSCC). METHOD: Western blotting, immunohistochemistry, and RT-PCR were used to identify gene expression. Cell invasion and migration were discovered using Transwell and Scratch-Wound analyses. The interaction between lncRNA and miRNA was examined using dual-luciferase and immunofluorescence assays. RESULTS: We discovered that COX10-AS1 was significantly downregulated in OSCC tissues when compared to matched noncancerous tissues, indicating a dismal prognosis for OSCC patients. By raising the expression of MMP-2/-9 and Snail and lowering the expression of E-cadherin, COX10-AS1 deletion increased OSCC cell invasion and migration. Next, three binding sites between COX10-AS1 and miR-361-5p were shown in the StarBase V2.0 database. Pearson's correlation analysis revealed a negative association between the expression of COX10-AS1 and that of miR-361-5p, and miR-361-5p transfection reduced COX10-AS1's influence on OSCC cell invasion and migration. Furthermore, COX10-AS1 favorably regulated SPRY1, a miR-361-5p target gene. CONCLUSION: Through the miR-361-5p/SPRY1 axis, COX10-AS1 can act as a tumor suppressor and is decreased in OSCC.

6.
Clin Exp Pharmacol Physiol ; 50(6): 431-442, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36732923

RESUMO

Paclitaxel (PTX) resistance is a key cause of chemotherapy failure in patients with triple negative breast cancer (TNBC). The aim of this study is to investigate the effect and mechanism of long non-coding RNA (lncRNA) on the PTX resistance of TNBC cells through autophagy. MDA-MB-231 cells are used to induce the PTX-resistant TNBC cell line MDA-MB-231.PR (MDR) by increasing dose intermittently. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the mRNA levels of phosphoinositide-3-kinase class 3 (PIK3C3), miR-361-5p and lncRNA PRKCQ-AS1 in the cells, and Western blot analysis was used to detect the protein expressions of PIK3C3, autophagy-related, drug-resistant and apoptosis-related genes. MDC staining detected the formation of autophagic vacuoles. The interactions between miR-361-5p and PIK3C3 and between lncRNA PRKCQ-AS1 and miR-361-5p were verified by dual-luciferase assay. Cell viability, apoptosis, migration and invasion were assessed by performing MTT, flow cytometry assay, and transwell assay. The mRNA level of miR-361-5p and the autophagy and drug resistance levels of TNBC PTX-resistant cells were significantly up-regulated. miR-361-5p could target autophagy-related gene PIK3C3, and overexpression of miR-361-5p could down-regulate PIK3C3 protein expression and autophagy level and PTX resistance of MDR cells. LncRNA PRKCQ-AS1 was selected through bioanalysis, and miR-361-5p could target lncRNA PRKCQ-AS1. In addition, lncRNA PRKCQ-AS1 level was up-regulated in TNBC PTX-resistant cells, and knockdown of lncRNA PRKCQ-AS1 could weaken autophagy and drug resistance level and could promote cell apoptosis. Overexpression of lncRNA PRKCQ-AS1 reversed the pro-apoptotic effect and down-regulation of autophagy and resistance levels was induced by miR-361-5p. In vivo experiments were performed to verify the role of lncRNA PRKCQ-AS1. We demonstrate that down-regulation of lncRNA PRKCQ-AS1 weakened PTX resistance and promoted cell apoptosis by miR-361-5p/PIK3C3 mediated autophagy.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/genética , Proteína Quinase C-theta/genética , Proteína Quinase C-theta/metabolismo , Paclitaxel/farmacologia , Proliferação de Células , Linhagem Celular Tumoral , Autofagia , RNA Mensageiro , Regulação Neoplásica da Expressão Gênica
7.
Exp Gerontol ; 174: 112127, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804517

RESUMO

Senescent cells are key regulators of ageing and age-associated disease. MicroRNAs (miRs) are a key component of the molecular machinery governing cellular senescence, with several known to regulate important genes associated with this process. We sought to identify miRs associated with both senescence and reversal by pinpointing those showing opposing directionality of effect in senescence and in response to senotherapy. Cellular senescence phenotypes were assessed in primary human endothelial cells following targeted manipulation of emergent miRNAs. Finally, the effect of conserved target gene knockdown on lifespan and healthspan was assessed in a C. elegans system in vivo. Three miRNAs (miR-5787, miR-3665 and miR-361-5p) demonstrated associations with both senescence and rejuvenation, but miR-361-5p alone demonstrated opposing effects in senescence and rescue. Treatment of late passage human endothelial cells with a miR-361-5p mimic caused a 14 % decrease in the senescent load of the culture. RNAi gene knockdown of conserved miR-361-5p target genes in a C. elegans model however resulted in adverse effects on healthspan and/or lifespan. Although miR-361-5p may attenuate aspects of the senescence phenotype in human primary endothelial cells, many of its validated target genes also play essential roles in the regulation or formation of the cytoskeletal network, or its interaction with the extracellular matrix. These processes are essential for cell survival and cell function. Targeting miR-361-5p alone may not represent a promising target for future senotherapy; more sophisticated approaches to attenuate its interaction with specific targets without roles in essential cell processes would be required.


Assuntos
Células Endoteliais , MicroRNAs , Animais , Humanos , Caenorhabditis elegans/genética , MicroRNAs/genética , Senescência Celular/genética , Interferência de RNA
8.
Anim Biosci ; 36(4): 555-569, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36397699

RESUMO

OBJECTIVE: The objective of this study was to investigate the effects of N6-Methyladenosine modification-circRNA-zinc finger protein 638 (m6A-circRNA-ZNF638) on the induced activation of secondary hair follicle (SHF) stem cells with its potential mechanisms in cashmere goats. METHODS: The m6A modification of ZNF638 was analyzed using methylation immunoprecipitation with real-time quantitative polymerase chain reaction technique in SHF stem cells. The effects of circRNA-ZNF638 on the induced activation of SHF stem cells in m6A dependence were evaluated through the overexpression of circRNA-ZNF638/its m6Adeficient mutants in circRNA-ZNF638 knockdown SHF stem cells. The competitive binding of miR-361-5p to circRNA-ZNF638/Wnt5a 3'- untranslated region was analyzed through Dual-luciferase reporter assay. RESULTS: The m6A-circRNA-ZNF638 had significantly higher transcription at anagen SHF bulge of cashmere goats compared with that at telogen, as well as it positively regulated the induced activation of SHF-stem cells in cashmere goats. Mechanismly, m6A-circRNA-ZNF638 sponged miR-361-5p to heighten the transcriptional expression of Wnt5a gene in SHFstem cells. We further demonstrated that the internal m6A modification within circRNAZNF638 is required for mediating the miR-361-5p/Wnt5a pathway to regulate the induced activation of SHF stem cells through an introducing of m6A-deficient mutant of circRNAZNF638. CONCLUSION: The circRNA-ZNF638 contributes the proper induced activation of SHF-stem cells in cashmere goats in m6A-dependent manner through miR-361-5p/Wnt5a axis.

9.
Ann Clin Lab Sci ; 52(6): 927-937, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36564072

RESUMO

OBJECTIVE: A growing body of evidence demonstrated that microRNAs (miRNAs) play a key role in sepsis-induced organ dysfunction. However, the mechanism of miR-361-5p in sepsis-induced myocardial injury remains to be clarified. METHODS: A mouse model of sepsis-induced myocardial injury was established using lipopolysaccharide (LPS). MiR-361-5p expression level was determined by quantitative reverse transcription-polymerase chain reaction (RT-qPCR). G protein-coupled receptor-4 (Lgr4), apoptosis-related proteins, and the Wnt signaling pathway-related proteins were determined by Western blotting. The relationship between miR-361-5p and Lgr4 was determined using dual-luciferase reporter (DLR) and RNA immunoprecipitation (RIP) assays. RESULTS: MiR-361-5p expression level was upregulated in the mouse model of sepsis-induced myocardial injury, while an opposite result was found for Lgr4 expression level. Knockdown of miR-361-5p protected the mouse model of sepsis-induced myocardial injury against inflammation and oxidative stress, and reduced cardiomyocyte (CM) apoptosis, which could be reversed by knockdown of Lgr4. The analysis of underlying mechanism revealed that miR-361-5p could target Lgr4 to modulate the activity of Wnt axis in CM apoptosis. CONCLUSION: MiR-361-5p could aggravate myocardial injury in LPS-induced septic mice by targeting Lgr4 to inhibit the Wnt axis.


Assuntos
Traumatismos Cardíacos , MicroRNAs , RNA Longo não Codificante , Sepse , Animais , Camundongos , Apoptose/genética , Bioensaio , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , Receptores Acoplados a Proteínas G/genética , Sepse/complicações , Sepse/genética , Via de Sinalização Wnt
10.
Genes (Basel) ; 13(11)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421815

RESUMO

Transforming growth factor ß (Tgf-ß), a pleiotropic cytokine, can enhance DNA repair in various cells, including cancer cells and neurons. The noncoding regulatory system plays an important role in Tgf-ß-mediated biological activities, whereas few studies have explored its role in DNA damage and repair. In this study, we suggested that Tgf-ß improved while its inhibitor LSKL impaired DNA repair and cell viability in UV-irradiated 661W cells. Moreover, RNA-seq was carried out, and a total of 106 differentially expressed (DE)-mRNAs and 7 DE-lncRNAs were identified between UV/LSKL and UV/ctrl 661W cells. Gene ontology and Reactome analysis confirmed that the DE-mRNAs were enriched in multiple DNA damaged- and repair-related biological functions and pathways. We then constructed a ceRNA network that included 3 lncRNAs, 19 miRNAs, and 29 mRNAs with a bioinformatics prediction. Through RT-qPCR and further functional verification, 2 Tgf-ß-mediated ceRNA axes (Gm20559-miR-361-5p-Oas2/Gbp7) were further identified. Gm20559 knockout or miR-361-5p mimics markedly impaired DNA repair and cell viability in UV-irradiated 661W cells, which confirms the bioinformatics results. In summary, this study revealed that Tgf-ß could reduce DNA damage in 661W cells, provided a Tgf-ß-associated ceRNA network for DNA damage and repair, and suggested that the molecular signatures may be useful candidates as targets of treatment for photoreceptor pathology.


Assuntos
MicroRNAs , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Crescimento Transformador beta/genética , Redes Reguladoras de Genes , Transcriptoma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Dano ao DNA/genética , Células Fotorreceptoras/metabolismo
11.
Pathol Res Pract ; 238: 154115, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36084427

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers, and has an extremely poor prognosis. Our previous study confirmed that the microRNA miR-361-5p inhibited the proliferation, metastasis, invasiveness, and epithelial-to-mesenchymal transition (EMT) process of HCC by targeting the transcription factor Twist1. Long non-coding RNAs (lncRNAs) are key regulators of processes such as cell differentiation, inflammation, tumor formation, and immune escape. However, the underlying interactions between the lncRNA LINC00992, miR-361-5p, and Twist1 in HCC progression is still elusive. In the current study, the DIANA-lncBase database was used to identify regulatory genes upstream of miR-361-5p. Reverse transcription-quantitative PCR (RT-qPCR) was used to quantify the expression of the genes encoding LINC00992, miR-361-5p, and Twist1 in HCC cells. The cell counting kit-8 (CCK-8) was used to measure HCC cell proliferation and Transwell was used to measure HCC cell migration and invasion. The dual-luciferase reporter assay and RNA pull-down assay were performed to examine the interaction between LINC00992 and miR-361-5p. Western blotting was used to detect the levels of Twist1 protein. The result confirmed that, among three lncRNAs tested, miR-361-5p was the one most significantly affected by LINC00992. RT-qPCR revealed that LINC00992 was highly expressed in HCC tissues and cells. The follow-up results showed that the expression of LINC00992 and miR-361-5p in HCC tissues were closely correlated with the rate of metastasis or recurrence of the HCC patients. Our result showed that the expression of miR-361-5p was lower in the LINC00992 (+) group than in the LINC00992 (-) group. CCK-8 and Transwell showed that LINC00992 promoted HCC cell proliferation, migration, and invasion, whereas dual-luciferase reporter assay and RNA pull-down assay showed that LINC00992 combined with miR-361-5p to act as a miRNA decoy in HCC. RT-qPCR and Western blotting confirmed that LINC00992 upregulated the expression of the Twist1 gene in HCC cells by downregulating expression of miR-361-5p. CCK-8 and Transwell assays confirmed that LINC00992 promoted the proliferation, metastasis, and invasiveness of HCC cells by downregulating miR-361-5p levels and consequently upregulating Twist1 expression, implying that these three elements may be promising targets for HCC therapy.

12.
Autoimmunity ; 55(5): 310-317, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608340

RESUMO

OBJECTIVES: This study is aimed to explore the key role of miR-361-5p in fibroblast-like synovial (FLS) cells of rheumatoid arthritis (RA) and explore the underlying mechanism. METHODS: First, we performed RT-qPCR to evaluate the expression of miR-361-5p in both synovial tissues of RA patients and cultured RA-FLS cells. Then CCK-8 assay, EdU staining, Western blot, flow cytometry, and ELISA were conducted to estimate the influence of inhibiting miR-361-5p on RA-FLS cells. Moreover, we used bioinformatics analysis to predict the potential targets of miR-361-5p and perform a dual luciferase report assay for verification. Finally, rescue experiments were performed to prove the role of miR-361-5p/Zinc Finger And BTB Domain Containing 10 (ZBTB10) in the proliferation, cell cycle, and apoptosis of RA-FLS. RESULTS: We find that the expression of miR-361-5p is increased in both RA tissues and cultured RA-FLS cells. The inhibition of miR-361-5p can not only inhibit proliferation, arrest the cell cycle in G1/G0 phase, and increase apoptosis, but also reduce the inflammatory factors secreted by RA-FLS cells. In addition, ZBTB10 is a direct target for miR-361-5p, over-expression of ZBTB10 reverses the effect of miR-361-5p in RA-FLS. CONCLUSIONS: MiR-361-5p promotes the progression of rheumatoid arthritis by targeting ZBTB10.Key pointsThe influences of miR-361-5p on RA-FLS cells.


Assuntos
Artrite Reumatoide , MicroRNAs , Proteínas Repressoras , Sinoviócitos , Apoptose/genética , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Proliferação de Células/genética , Células Cultivadas , Fibroblastos/metabolismo , Humanos , MicroRNAs/metabolismo , Proteínas Repressoras/metabolismo , Sinoviócitos/metabolismo
13.
Int J Gen Med ; 15: 4937-4948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592536

RESUMO

Background: Cervical cancer is the fourth most frequent malignancy among women globally, with approximately 604,000 new cases and 341,000 deaths per year. Necroptosis is a newly discovered mechanism of cell death involved in biological behaviors of cancer. Methods: LASSO Cox regression analysis was conducted to construct a prognostic necroptosis-related signature. lncRNA-miRNA-mRNA regulatory axis was constructed with a ceRNA network. qRT-PCR was performed to verify our result. Results: A total of 54 necroptosis-related genes were differentially expressed in cervical cancer (all p < 0.05). We also summarized genetic mutation landscape of necroptosis-related genes in cervical cancer. We then developed a necroptosis-related prognostic signature including 13 necroptosis-related genes (ATRX, AXL, DDX58, IDH1, ITPK1, MAP3K7, SLC39A7, TARDBP, TNF, TNFRSF1A, TNFRSF1B, TNFSF10, TRIM11) for cervical cancer. Cervical cancer patients with high riskscore had a poor overall survival (HR = 2.128, p = 0.00194) with an AUC of 0.725, 0.763 and 0.637 in 3-year, 5-year, and 10-year ROC curve. Consensus clustering analysis revealed that all cervical cancer cohort could be divided into three subtypes, which was correlated with different prognosis and immune infiltration (p < 0.05). A PPI network revealed TNF as the hub gene and TNF expression was correlated with immune infiltration (all p < 0.05), microsatellite instability (p < 0.012) and drug sensitivity (p < 0.05). The ceRNA network was performed and identified a lncRNA NUTM2B-AS1/miR-361-5p/TNF regulatory axis for cervical cancer. qRT-PCR result also suggested that TNF was upregulated in cervical cancer (p < 0.001) and associated with a poor overall survival (p = 0.007). Univariate and multivariate analysis demonstrated TNF expression, lymph node metastasis and clinical stage were prognosis factors of cervical cancer patients (p < 0.05). Conclusion: We developed a necroptosis-related prognostic signature including 13 necroptosis-related genes for cervical cancer. Moreover, we also identified a lncRNA NUTM2B-AS1/miR-361-5p/TNF regulatory axis, which may play a vital role in the progression of cervical cancer. Further studies should be conducted to verify these results.

14.
Biochem Genet ; 60(6): 1946-1962, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35181843

RESUMO

Ovarian cancer (OC) progression is related to many functional molecules, including circular RNAs (circRNAs). Hsa_circ_0061140 (circ_0061140) promoted cell growth and metastasis in OC. The aim of this study was to explore a specific functional mechanism of circ_0061140. Reverse transcription-quantitative polymerase chain reaction was performed for expression analysis of circ_0061140, microRNA-361-5p (miR-361-5p), and Ras-like protein in rat brain 1A (RAB1A). Cell proliferation was determined using Cell Counting Kit-8 assay, EdU assay, and colony formation assay. The migration and invasion were assessed through transwell assay. Tube formation assay was used for angiogenesis analysis. Cell apoptosis was evaluated using flow cytometry. The protein levels of epithelial-to-mesenchymal transition (EMT) markers and RAB1A were detected via western blot. Target analysis was performed by dual-luciferase reporter assay and RNA immunoprecipitation assay. In vivo research was conducted using xenograft model. The circ_0061140 level was upregulated in OC samples and cells. Downregulation of circ_0061140 impeded proliferation, migration, invasion, EMT, and angiogenesis of OC cells. Circ_0061140 directly interacted with miR-361-5p to act as a miRNA sponge. The miR-361-5p inhibition reversed the si-circ_0061140-induced anti-tumor function in OC cells. RAB1A was a downstream target of miR-361-5p, and miR-361-5p served as a tumor repressor in OC via inhibiting the level of RAB1A. Circ_0061140 could increase the RAB1A expression by sponging miR-361-5p in OC cells. Circ_0061140 also facilitated tumorigenesis in vivo through targeting the miR-361-5p/RAB1A axis. All results demonstrated that circ_0061140 promoted OC development by inhibiting miR-361-5p to upregulate the expression of RAB1A.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Circular , Proteínas rab1 de Ligação ao GTP , Animais , Feminino , Humanos , Movimento Celular , Proliferação de Células , MicroRNAs/genética , Neoplasias Ovarianas/genética , RNA Circular/genética , Proteínas rab1 de Ligação ao GTP/genética
15.
Int J Chron Obstruct Pulmon Dis ; 16: 2741-2753, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675500

RESUMO

PURPOSE: Chronic obstructive pulmonary disease (COPD), a progressive and irreversible respiratory disease, becomes the third leading cause of death and results in enormous economic burden on healthcare costs and productivity loss worldwide by 2020. Thus, it is urgent to develop effective anti-COPD drugs. MATERIALS AND METHODS: In the present study, two published GEO profiles were used to re-analyze and ascertain the relationships between circulating miRNAs and bronchial epithelial cells (BECs) mRNAs in COPD. The microRNA levels of miR-361-5p and miR-196-5p in plasma of COPD patients and healthy volunteers were detected by qRT-PCR. Next, the effects of γ-sitosterol (GS) on the expression of miR-361-5p and miR-196-5p and cell proliferation were investigated in BEC and H292 cell lines. Finally, whether specific miRNA-mRNA pathways involved in the effect of GS on BECs was assayed using Western Blot, real-time PCR and immunofluorescence. RESULTS: miR-196-5p and miR-361-5p were, respectively, up- and down-regulated in COPD patients compared with healthy controls. Luciferase assays demonstrated that miR-361-5p and miR-196-5p were, respectively, targeting abca1 and arhgef12 3'UTR in BEAS-2B cells. GS significantly suppressed miR-196-5p and promoted miR-361-5p levels in BEAS-2B cells and inhibited BECs proliferation in vitro. GS promoted miR-361-5p expression, which inhibited BCAT1 mRNA and protein levels and weaken mTOR-pS6K pathway, resulted in anti-proliferation in BEAS-2B cells. In addition, RhoA was activated by ARHGEF12 due to the inhibitory effect of miR-196-5p on arhgef12-3'UTR which was partially abolished by GS suppressing miR-196-5p expression. Activated RhoA further activated ROCK1-PTEN pathway and finally inhibited mTOR pathway, resulting in induced BECs proliferation. The anti-proliferation effect of GS was not observed in H292 cells. CONCLUSION: These findings indicate that miR-361-5p/abca1 and miR-196-5p/arhgef12 axis mediated GS inducing dual anti-proliferation effects on BECs.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Transportador 1 de Cassete de Ligação de ATP/genética , Células Epiteliais , Humanos , MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Sitosteroides , Transaminases , Quinases Associadas a rho
16.
Biochem Biophys Res Commun ; 583: 7-13, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34715498

RESUMO

Rheumatoid arthritis (RA) is an inflammatory disease that causes hyperplasia of synovial tissue and cartilage destruction. This research was to investigate the effects of lncRNA GAS5/miR-361-5p/PDK4 on rheumatoid arthritis. By qRT-PCR, GAS5 and PDK4 were found to be overexpressed in synovial tissue, fibroblast-like synoviocytes of RA patients and LPS-induced chondrocytes, while the miR-361-5p expression was significantly reduced. GAS5 overexpression resulted in a decrease in the proliferation and Bcl-2 protein expression, and an increase in the Bax protein level. On the contrary, miR-361-5p sponged by GAS5 could accelerate chondrocyte proliferation, inhibit apoptosis. PDK4 targeted by miR-361-5p could inhibit RA, and partially eliminated the effect of miR-361-5p on RA. Our study suggested that GAS5 suppressed RA by competitively adsorbing miR-361-5p to modulate PDK4 expression.

17.
Metab Brain Dis ; 36(8): 2359-2368, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34581931

RESUMO

It has been reported that microRNAs (miRNAs) play essential roles in cerebral ischemia and reperfusion (I/R) injury. This study aimed to explore the role of miR-361-5p in oxygen-glucose deprivation/re-oxygenation-induced neuronal injury in vitro. Cerebral I/R injury cell model was established by using PC12 cells exposed to oxygen-glucose deprivation/re-oxygenation (OGD/R). The expression of miR-361-5p and SQSTM1 was evaluated by qRT-PCR or western blot. Neuronal apoptosis was detected by flow cytometry, and cell viability was assessed by CCK-8 assay. The effects of miR-361-5p on the release of LDH and the levels of MDA, SOD, and GSH-Px were investigated by respective detection kits. Dual-luciferase reporter assay and RIP assay were performed to determine the interaction between miR-361-5p and SQSTM1. Rescue experiments were performed to evaluate the function of miR-361-5p and SQSTM1. MiR-361-5p was significantly upregulated, and SQSTM1 was significantly downregulated in OGD/R-stimulated PC12 cells. MiR-361-5p could directly interact with SQSTM1 and negatively regulated it. Inhibition of miR-361-5p efficiently inhibited OGD/R-induced apoptosis and attenuated OGD/R-induced growth defect in PC12 cells. In addition, SQSTM1 overexpression partially attenuates the apoptosis and promoted the viability of OGD/R-treated PC12 cells, which were aggravated by miR-361-5p mimics. Our study demonstrated that miR-361-5p promotes OGD/R-induced neuronal injury via regulating SQSTM1 in PC12 cells.


Assuntos
MicroRNAs , Traumatismo por Reperfusão , Animais , Apoptose , Glucose/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Oxigênio/metabolismo , Ratos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo
18.
Cancer Biol Ther ; 22(5-6): 381-391, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34369270

RESUMO

Cutaneous squamous cell carcinoma (CSCC) is one of the most malignant tumors worldwide. It has been validated that matrix metallopeptidase 1 (MMP1) expression was obviously up-regulated in CSCC tissues. However, its specific role in CSCC is still unclear. RT-qPCR analysis and western blot assays were used to measure the mRNA and protein expressions, respectively. MTT and colony formation assays were conducted to assess proliferative ability. Transwell assays were adopted to evaluate migratory and invasive abilities. Flow cytometry and caspase-3/8/9 activity assays were carried out to evaluate cell apoptosis. Relevant mechanism experiments were finally performed to delineate molecular relationship among genes. We found that the expression of MMP1 was up-regulated in CSCC cells, and knockdown of MMP1 suppressed cell proliferation and invasion in CSCC. Subsequently, miR-361-5p was validated to target MMP1. Moreover, miR-361-5p was proved to be sponged by nuclear paraspeckle assembly transcript 1 (NEAT1) in CSCC. We further demonstrated that NEAT1 could activate Wnt pathway to affect cell proliferation and invasion. Finally, miR-361-5p inhibition rescued the suppressing effects of NEAT1 depletion on cell proliferation, invasion as well as Wnt pathway in CSCC. In summary, MMP1 regulated by NEAT1/miR-361-5p axis facilitated CSCC malignant behaviors via Wnt pathway activation.


Assuntos
Carcinoma de Células Escamosas , MicroRNAs , RNA Longo não Codificante , Neoplasias Cutâneas , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinase 1 da Matriz/genética , MicroRNAs/genética , Paraspeckles , Neoplasias Cutâneas/genética , Via de Sinalização Wnt
19.
Bioorg Chem ; 113: 104978, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052737

RESUMO

Osteoarthritis (OA) is a chronic disease featured by joint hyperplasia, deterioration of articular cartilage, and progressive degeneration. Abnormal expression of microRNAs (miRNAs) has been found to be implicated in the pathological process of OA. In this study, the role of miR-361-5p transferred by exosomes derived from human bone mesenchymal stem cells (hBMSCs) in OA was investigated. The expression of Asp-Glu-Ala-Asp-box polypeptide 20 (DDX20) and miR-361-5p in interleukin-1ß (IL-1ß)-treated chondrocytes was determined by reverse transcription quantitative polymerase chain reaction. DDX20 was knocked down by transfection of short hairpin RNA targeting DDX20, and the effects of DDX20 downregulation on IL-1ß-induced damage of chondrocytes were detected. The interaction between DDX20 and miR-361-5p was tested by luciferase report assay. hBMSCs-derived exosomes loaded with miR-361-5p were co-incubated with chondrocytes followed by detection of cell viability, proliferation and inflammatory response. An OA rat model was established to further explore the role of miR-361-5p in vivo. Western blot, luciferase reporter and immunofluorescence staining assays were used to evaluate the activation of the nuclear factor kappa-B (NF-κB) signaling pathway. We found that DDX20 was upregulated, while miR-361-5p was underexpressed in IL-1ß-treated chondrocytes. Downregulation of DDX20 inhibits levels of matrix metalloproteinases (MMPs) and suppresses inflammation induced by IL-1ß. Mechanistically, miR-361-5p was verified to directly target DDX20. In addition, hBMSC-derived exosomes-transferred miR-361-5p alleviates chondrocyte damage and inhibits the NF-κB signaling pathway via targeting DDX20. Inhibition of NF-κB signaling reverses the effect of overexpressed DDX20 on IL-1ß-induced chondrocyte damage. Moreover, exosomal miR-361-5p alleviates OA damage in vivo. Overall, hBMSC-derived exosomal miR-361-5p alleviates OA damage by targeting DDX20 and inactivating the NF-κB signaling pathway.


Assuntos
Proteína DEAD-box 20/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Animais , Modelos Animais de Doenças , Humanos , MicroRNAs/genética , Ratos , Ratos Wistar , Transdução de Sinais
20.
J Biochem ; 169(5): 601-611, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-33481008

RESUMO

In recent years, the role of circular RNAs (circRNAs) in tumours has attracted widespread attention. Some circRNAs have been reported to play a role in triple-negative breast cancer (TNBC). However, circRNAs have rarely been reported in terms of TNBC resistance. This study aimed to clarify that circGFRA1 affects the sensitivity of TNBC cells to paclitaxel (PTX) by the miR-361-5p/TLR4 pathway. Compared with the non-PTX-resistant TNBC cell line MDA-MB-231, the expression of circGFRA1 in the PTX-resistant TNBC cell line MDA-MB-231.PR was significantly increased. The small hairpin RNA-mediated circGFRA1 knockdown inhibited the resistance of TNBC cells to PTX. RNA pull-down assay and luciferase reporter gene assay confirmed the binding between circGFRA1 and miR-361-5p and between miR-361-5p and TLR4. It has been proven that circGFRA1 knockdown can inhibit the resistance of TNBC cells to PTX by promoting the expression of miR-361-5p, and subsequently reduce the expression of TLR4.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Paclitaxel/farmacologia , RNA Circular/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Circular/genética , RNA Neoplásico/genética , Transdução de Sinais/genética , Receptor 4 Toll-Like/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...