RESUMO
Secondary metabolites are bioactive compounds believed to contribute to the pharmacological properties of plants. MicroRNAs (miRNAs) are small non-coding RNA molecules involved in post-transcriptional regulation and are thought to play an important role in regulating secondary metabolism biosynthesis. Nevertheless, the extent of miRNA involvement in secondary metabolism remains minimal. Nigella sativa (black cumin/black seed) is a popular medicinal and culinary plant known for its pharmaceutical properties; however, its genomic information is scarce. In this study, next-generation sequencing (NGS) technology was employed to obtain the miRNA profile of N. sativa, and their involvement in secondary metabolite biosynthesis was explored. A total of 25,139,003 unique reads ranging from 16 to 40 nucleotides were attained, out of which 240 conserved and 34 novel miRNAs were identified. Moreover, 6083 potential target genes were recognized in this study. Several conserved and novel black cumin miRNAs were found to target enzymes involved in the terpenoid, diterpenoid, phenylpropanoid, carotenoid, flavonoid, steroid, and ubiquinone biosynthetic pathways, among others, for example, beta-carotene 3-hydroxylase, gibberellin 3 beta-dioxygenase, trimethyltridecatetraene synthase, carboxylic ester hydrolases, acetyl-CoA C-acetyltransferase, isoprene synthase, peroxidase, shikimate O-hydroxycinnamoyltransferase, etc. Furthermore, sequencing data were validated through qPCR by checking the relative expression of eleven randomly selected conserved and novel miRNAs (nsa-miR164d, nsa-miR166a, nsa-miR167b, nsa-miR171a, nsa-miR390b, nsa-miR396, nsa-miR159a, nsa-miRN1, nsa-miRN29, nsa-miRN32, and nsa-miRN34) and their expression patterns were found to be corroborated with the sequencing data. We anticipate that this work will assist in clarifying the implications of miRNAs in plant secondary metabolism and aid in the generation of artificial miRNA-based strategies to overproduce highly valuable secondary metabolites from N. sativa.
RESUMO
The pharmacological properties of plants lie in the content of secondary metabolites that are classified into different categories based on their biosynthesis, structures, and functions. MicroRNAs (miRNAs) are small non-coding RNA molecules that play crucial post-transcriptional regulatory roles in plants, including development and stress-response signaling; however, information about their involvement in secondary metabolism is still limited. Cumin is one of the most popular seeds from the plant Cuminum cyminum, with extensive applications in herbal medicine and cooking; nevertheless, no previous studies focus on the miRNA profile of cumin. In this study, the miRNA profile of C. cyminum and its association with the biosynthesis of secondary metabolites were determined using NGS technology. The sequencing data yielded 10,956,054 distinct reads with lengths ranging from 16 to 40 nt, of which 349 miRNAs were found to be conserved and 39 to be novel miRNAs. Moreover, this work identified 1959 potential target genes for C. cyminum miRNAs. It is interesting to note that several conserved and novel miRNAs have been found to specifically target important terpenoid backbone, flavonoid biosynthesis, and lipid/fatty acid pathways enzymes. We believe this investigation will aid in elucidating the implications of miRNAs in plant secondary metabolism.
RESUMO
INTRODUCTION: The aim of this is study was to analyse the expression of miR-193b, miR-378, miR-Let7-d, and miR-222 in human visceral adipose tissue (VAT), as well as their association with obesity, insulin resistance (IR), and their role in the regulation of genes controlling adipose tissue homeostasis, including adipocytokines, the phosphatase and tension homologue (PTEN), and tumour protein 53 (p53). MATERIAL AND METHODS: VAT was obtained from normal-weight (NW), overweight, and obese (OW/OB) subjects with and without IR. Stem-loop RT-qPCR was used to evaluate miRNA expression levels. miRTarBase 4.0, miRWalk, and DIANA-TarBase v8 were used for prediction of validated target gene of the miRNA analysed. A qPCR was used to evaluate PTEN, p53, leptin (LEP), and adiponectin (ADIPOQ) mRNA. RESULTS: miR-222 was lower in IR subjects, and miR-222 and miR-378 negatively correlated with HOMA-IR. PTEN and p53 are miR-222 direct targets according to databases. mRNA expression of PTEN and p53 was lower in OW/OB subjects with and without IR, compared to NW group and its levels positively associated with miR-222. Additionally, p53 and PTEN are positively associated with serum leptin levels. On the other hand, miR-193b and miR-378 negatively correlated with serum leptin but not with mRNA levels. Moreover, miR-Let-7d negatively correlated with serum adiponectin but not with adiponectin mRNA levels. CONCLUSIONS: Lower miR-222 levels are associated with IR, and PTEN and p53 expression; the implication of these genes in adipose tissue homeostasis needs more research.
Assuntos
Resistência à Insulina , MicroRNAs , Humanos , Leptina/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Resistência à Insulina/genética , Adiponectina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Gordura Intra-Abdominal/metabolismo , Tecido Adiposo/metabolismo , Obesidade , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismoRESUMO
Seed dormancy is a developmental checkpoint that prevents mature seeds from germinating under conditions that are otherwise favorable for germination. Temperature and light are the most relevant environmental factors that regulate seed dormancy and germination. These environmental cues can trigger molecular and physiological responses including hormone signaling, particularly that of abscisic acid and gibberellin. The balance between the content and sensitivity of these hormones is the key to the regulation of seed dormancy. Temperature and light tightly regulate the transcription of thousands of genes, as well as other aspects of gene expression such as mRNA splicing, translation, and stability. Chromatin remodeling determines specific transcriptional outputs, and alternative splicing leads to different outcomes and produces transcripts that encode proteins with altered or lost functions. Proper regulation of chromatin remodeling and alternative splicing may be highly relevant to seed germination. Moreover, microRNAs are also critical for the control of gene expression in seeds. This review aims to discuss recent updates on post-transcriptional regulation during seed maturation, dormancy, germination, and post-germination events. We propose future prospects for understanding how different post-transcriptional processes in crop seeds can contribute to the design of genotypes with better performance and higher productivity.
Assuntos
Germinação/genética , Dormência de Plantas/genética , Fenômenos Fisiológicos Vegetais/genética , Interferência de RNA , Sementes/genéticaRESUMO
Sex differences in the brain have prompted many researchers to investigate the underlying molecular actors, such as the glucocorticoid receptor (GR). This nuclear receptor controls gene expression, including microRNAs (miRNAs), in non-neuronal cells. Here, we investigated sex-biased effects of GR on hippocampal miRNA expression and neuronal morphology by generating a neuron-specific GR knockout mouse (Emx1-Nr3c1 -/-). The levels of 578 mature miRNAs were assessed using NanoString technology and, in contrast to males, female Emx1-Nr3c1 -/- mice showed a substantially higher number of differentially expressed miRNAs, confirming a sex-biased effect of GR ablation. Based on bioinformatic analyses we identified several transcription factors potentially involved in miRNA regulation. Functional enrichment analyses of the miRNA-mRNA interactions revealed pathways related to neuronal arborization and both spine morphology and density in both sexes. Two recognized regulators of dendritic morphology, CAMKII-α and GSK-3ß, increased their protein levels by GR ablation in female mice hippocampus, without changes in males. Additionally, sex-specific effects of GR deletion were observed on CA1 neuronal arborization and dendritic spine features. For instance, a reduced density of mushroom spines in apical dendrites was evidenced only in females, while a decreased length in basal dendrites was noted only in males. However, length and arborization of apical dendrites were reduced by GR ablation irrespective of the sex. Overall, our study provides new insights into the sex-biased GR actions, especially in terms of miRNAs expression and neuronal morphology in the hippocampus.
RESUMO
Epidemiological studies have shown a dramatic increase in the incidence and the prevalence of allergic diseases over the last several decades. Environmental triggers including risk factors (e.g., pollution), the loss of rural living conditions (e.g., farming conditions), and nutritional status (e.g., maternal, breastfeeding) are considered major contributors to this increase. The influences of these environmental factors are thought to be mediated by epigenetic mechanisms which are heritable, reversible, and biologically relevant biochemical modifications of the chromatin carrying the genetic information without changing the nucleotide sequence of the genome. An important feature characterizing epigenetically-mediated processes is the existence of a time frame where the induced effects are the strongest and therefore most crucial. This period between conception, pregnancy, and the first years of life (e.g., first 1000 days) is considered the optimal time for environmental factors, such as nutrition, to exert their beneficial epigenetic effects. In the current review, we discussed the impact of the exposure to bacteria, viruses, parasites, fungal components, microbiome metabolites, and specific nutritional components (e.g., polyunsaturated fatty acids (PUFA), vitamins, plant- and animal-derived microRNAs, breast milk) on the epigenetic patterns related to allergic manifestations. We gave insight into the epigenetic signature of bioactive milk components and the effects of specific nutrition on neonatal T cell development. Several lines of evidence suggest that atypical metabolic reprogramming induced by extrinsic factors such as allergens, viruses, pollutants, diet, or microbiome might drive cellular metabolic dysfunctions and defective immune responses in allergic disease. Therefore, we described the current knowledge on the relationship between immunometabolism and allergy mediated by epigenetic mechanisms. The knowledge as presented will give insight into epigenetic changes and the potential of maternal and post-natal nutrition on the development of allergic disease.
Assuntos
Epigênese Genética/imunologia , Hipersensibilidade , Fenômenos Fisiológicos da Nutrição do Lactente , Fenômenos Fisiológicos da Nutrição Materna , Feminino , Humanos , Recém-Nascido , GravidezRESUMO
MicroRNAs (miRNAs) are small noncoding RNA molecules that play crucial post-transcriptional regulatory roles in plants, including development and stress-response signaling. However, information about their involvement in secondary metabolism is still limited. Murraya koenigii is a popular medicinal plant, better known as curry leaves, that possesses pharmaceutically active secondary metabolites. The present study utilized high-throughput sequencing technology to investigate the miRNA profile of M. koenigii and their association with secondary metabolite biosynthesis. A total of 343,505 unique reads with lengths ranging from 16 to 40 nt were obtained from the sequencing data, among which 142 miRNAs were identified as conserved and 7 as novel miRNAs. Moreover, 6078 corresponding potential target genes of M. koenigii miRNAs were recognized in this study. Interestingly, several conserved and novel miRNAs of M. koenigii were found to target key enzymes of the terpenoid backbone and the flavonoid biosynthesis pathways. Furthermore, to validate the sequencing results, the relative expression of eight randomly selected miRNAs was determined by qPCR. To the best of our knowledge, this is the first report of the M. koenigii miRNA profile that may provide useful information for further elucidation of the involvement of miRNAs in secondary metabolism. These findings might be crucial in the future to generate artificial-miRNA-based, genetically engineered M. koenigii plants for the overproduction of medicinally highly valuable secondary metabolites.
RESUMO
As one of the most prevalent gastrointestinal diseases, gastric cancer (GC) is the second leading cause of cancer-related deaths worldwide. Since GC has no clinical manifestations in the early stage of the disease, most patients are detected in the later phases of disease and have an unfortunately lower chance of recovery. Circular RNAs (circRNAs), a novel category of non-coding RNAs (ncRNAs), are mainly engaged in the regulation of gene expression at the transcriptional and post-transcriptional levels. Numerous evidences have revealed that circRNAs play key roles in GC as they are involved in cell proliferation, growth, and apoptosis via modulating the expression of some target genes, miRNAs, and proteins. Many studies have addressed the impact of circRNA dysregulation on GC initiation, progression, and invasion via binding to miRNAs or RNA binding proteins. Moreover, changes in circRNA expression are associated with pathological and clinical features of GC highlighting their potentials as diagnostic or prognostic biomarkers in GC. In the current study, the recent findings on the significance of circRNAs in the development and progression of GC are reviewed. We focus on the implications of circRNAs as potential diagnostic or prognostic biomarkers in this malignancy.
Assuntos
RNA Circular/fisiologia , Neoplasias Gástricas/metabolismo , Apoptose/genética , Autoantígenos/metabolismo , Proliferação de Células/genética , Progressão da Doença , Mucosa Gástrica/metabolismo , Regulação Neoplásica da Expressão Gênica , Marcadores Genéticos , Humanos , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Prognóstico , RNA Circular/biossíntese , RNA Circular/classificação , Transdução de Sinais/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologiaRESUMO
BACKGROUND: Physical exercise is an essential factor in preventing and treating metabolic diseases by promoting systemic benefits throughout the body. The molecular factors involved in this process are poorly understood. Micro RNAs (miRNAs) are small non-coding RNAs that inhibit mRNA transcription. MiRNAs, which can participate in the benefits of exercise to health, circulate in plasma in extracellular particles (EP). Horses that undergo endurance racing are an excellent model to study the impact of long-duration/low intensity exercise in plasma EP miRNAs. OBJECTIVES: To evaluate the effects of 160 km endurance racing on horse plasma extracellular particles and their miRNA population. STUDY DESIGN: Cohort study. METHODS: We collected plasma from five Arabian horses during five time-points of an endurance ride. Extracellular particles were purified from plasma and characterised by electron microscopy, resistive pulse sensing (qNano) and western blotting. Small RNAs were purified from horse plasma EP, and sequencing was performed. RESULTS: Endurance racing increased EP concentration and average diameter compared to before the race. Western blotting showed a high concentration of extracellular vesicles proteins 2 hours after the race, which returned to baseline 15 hours after the race. MicroRNA differential expression analysis revealed increasing levels of eca-miR-486-5p during and after the race, and decreasing levels of eca-miR-9083 after the end. CONCLUSIONS: This study adds new data about the variation in plasma EP concentrations after long-distance exercise and brings new insights about the roles of exercise-derived EP miRNAs during low-intensity endurance exercise.
Assuntos
MicroRNAs , Condicionamento Físico Animal , Animais , Estudos de Coortes , Cavalos , MicroRNAs/genética , Resistência Física , PlasmaRESUMO
microRNAs (miRNAs) are highly conserved, short (~ 21-nucleotide), endogenous, non-coding RNA molecules that play major roles in post-transcriptional silencing by guiding target mRNA cleavage or translational inhibition. In this study, applying high-stringent genome-wide computational-based approaches, a total of 28 putative miRNAs belonging to 17 miRNA families were identified from an antioxidant-rich medicinal plant passion fruit (Passiflora edulis). Inter-tissue (leaves and fruits) and inter-varietal (yellow and purple fruit varieties) quantitative study of six putative passion fruit miRNAs (ped-miR160, ped-miR164, ped-miR166, ped-miR393, ped-miR394, and ped-miR398) showed differential expression. Using psRNATarget tool, a total of 25 potential target proteins of the characterized passion fruit miRNAs were also identified. Most of the target proteins identified in this study, including SQUAMOSA promoter binding, Class III HD-Zip, NAC, Scarecrow, APETALA2, Auxin response factor, MYB, and superoxide dismutase, were found to be involved in development, metabolism, and defense/stress response signaling.
RESUMO
OBJECTIVES: High incidence and case fatality of unstable angina (UA) is, to a large extent, a consequence of the lack of highly sensitive and specific non-invasive markers. Circulating microRNAs (miRNAs) have been widely recommended as potential biomarkers for numerous diseases. In the present study, we characterized distinctive miRNA expression profiles in patients with stable angina (SA), UA, and normal coronary arteries (NCA), and identified promising candidates for UA diagnosis. METHODS: Serum was collected from patients with SA, UA, and NCA who visited the Department of Cardiovascular Diseases of the Meizhou People's Hospital. Small RNA sequencing was carried out on an Illumina HiSeq 2500 platform. miRNA expression in different groups of patients was profiled and then confirmed based on that in an independent set of patients. Functions of differentially expressed miRNAs were predicted using gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis. RESULTS: Our results indicated that circulating miRNA expression profiles differed between SA, UA, and NCA patients. A total of 36 and 161 miRNAs were dysregulated in SA and UA patients, respectively. miRNA expression was validated by reverse transcription quantitative polymerase chain reaction. CONCLUSION: The results suggest that circulating miRNAs are potential biomarkers of UA.
Assuntos
Humanos , Masculino , Feminino , Angina Instável , Sequência de Bases , Biomarcadores , Perfilação da Expressão Gênica , MicroRNA CirculanteRESUMO
Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3'-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy.