Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Sci Rep ; 14(1): 8101, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582868

RESUMO

Our objective in this study is to determine whether intra-articular injection of miRNA-1 can attenuate the progression of OA in rats by down regulating Ihh. Knee chondrocytes were isolated from male Sprague-Dawley rats aged 2-3 days. Second-generation chondrocytes were transfected with miR-1 mimic and empty vector with lipo3000 for 6 h and then stimulated with 10 ng/mL IL-1ß for 24 h. OA-related and cartilage matrix genes were quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Two-month-old male Sprague-Dawley rats were divided into three groups (n = 30?): sham operation group + 50 µL saline, anterior cruciate ligament transection (ACLT) group + 50 µL miR-1 agomir (concentration), and control group ACLT + 50 µL miR-1 agomir. Treatment was started one week after the operation. All animals were euthanized eight weeks after the operation. X-rays and micro-CT were used to detect imaging changes in the knee joints. FMT was used to monitor joint inflammation in vivo. Safranin O staining was used to detect morphological changes in articular cartilage. Immunohistochemistry was used to detect Col2, Col10, metalloproteinase-13 (MMP-13). RT-qPCR was used to detect gene changes includingmiR-1, Col2, Col10, MMP-13, Ihh, Smo, Gli1, Gli2, and Gli3. Overexpression of miR-1 in IL-1ß-stimulated chondrocytes reduced the levels of Ihh, MMP-13, and Col10 but increased the levels of Col2 and aggrecan. Intra-articular injection of miR-1 agomir reduced osteophyte formation, inflammation, and prevented cartilage damage. RT-qPCR results indicated that the miR-1 agomir increased articular cartilage anabolism and inhibited cartilage catabonism. miR-1 can attenuate the progression of OA by downregulating Ihh.


Assuntos
Cartilagem Articular , MicroRNAs , Osteoartrite , Ratos , Masculino , Animais , Proteínas Hedgehog , MicroRNAs/genética , MicroRNAs/uso terapêutico , Ratos Sprague-Dawley , Metaloproteinase 13 da Matriz/genética , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Condrócitos , Injeções Intra-Articulares , Inflamação , Modelos Animais de Doenças
2.
J Allergy Clin Immunol Glob ; 3(2): 100238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38550719

RESUMO

Background: Thymic stromal lymphopoietin (TSLP) orchestrates eosinophilic inflammation, which may increase during asthma exacerbations. In contrast, microRNA-1 (miR-1) inhibits TSLP-mediated eosinophil trafficking in lung endothelium. Whether the balance of TSLP and miR-1 levels determines the response to oral corticosteroids (OCSs) during the treatment of asthma exacerbations remains unknown. Objective: Our aim was to investigate the involvement of TSLP/miR-1 axis in inflammatory response to OCS treatment for asthma exacerbations. Methods: We measured the concentrations of TSLP and other inflammatory cytokines and miR-1 expression during acute asthma exacerbations treated with standard OCSs in a real-life setting. A total of 28 consecutive patients with acute asthma exacerbations treated with OCS (prednisolone 30 mg/d) for 1 week at the emergency department were studied prospectively. Steroid responders were identified by a significant reduction in blood eosinophil counts, whereas paradoxical responders (PRs) showed no markedly decreased or even increased absolute blood eosinophil counts after OCS treatment. Differential white blood cell counts, blood cytokine levels, and miR-1 expression within and between groups were compared before and after OCS treatment. The baseline cytokine concentrations in both groups were compared with those of patients with stable asthma. Results: OCS treatment significantly reduced TSLP levels in steroid responders, whereas this effect did not occur in PRs (P = .006 and P = .742, respectively). In contrast, miR-1 expression was unchanged in steroid responders in response to OCS, whereas it was markedly reduced in the PRs, despite higher expression at baseline than in patients with stable asthma, which may account for slower resolution of the exacerbation. Conclusions: In some asthmatic patients with acute exacerbations who do not suppress eosinophils after a course of OCS, there is a paradoxical decrease in plasma miR-1 level and increase in TSLP level versus in steroid responders, which may result in slower clinical recovery.

3.
Adv Biol (Weinh) ; 8(3): e2300573, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38149527

RESUMO

The present study aims to analyze the role of microRNA-1 in the regulation of skeletal muscle loss under hypobaric hypoxia (HH). Male Sprague Dawley rats (n = 10) weighing 230-250 g are divided into two groups, control and HH exposure for 7 days at 25 000 ft. After the hypoxia exposure, the animals are sacrificed and hindlimb skeletal muscles are excised for further analysis. Studies found the potential role of miR-1 (myomiR) as a biomarker under different atrophic conditions. Prolonged exposure to HH leads to enhanced expression of miR-1 in skeletal muscle as compared to unexposed controls. The Bioinformatics approach is used to identify the validated targets and the biological processes of miR-1. The target prediction tools identify PAX3 and HSP70 as major targets for miR-1. Exposure to HH significantly reduces PAX3 and HSP70 expression during 7 days of HH exposure, which further enhances the activity of FOXO3, MSTN, and ATROGIN known for the progression of skeletal muscle atrophy in relation to control rats. This study indicates the increased expressions of miR-1 and reduced expression of PAX3 and HSP70 lead to impaired myogenesis in skeletal muscle under HH. Further, enhanced expression of muscle degradation genes such as FOXO3, MSTN, and ATROGIN under HH exposure causes skeletal muscle protein loss.


Assuntos
MicroRNAs , Músculo Esquelético , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Atrofia Muscular/genética , Proteínas de Choque Térmico HSP70/genética , Hipóxia/genética , MicroRNAs/genética
4.
Kaohsiung J Med Sci ; 39(7): 732-739, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37306210

RESUMO

Acute pancreatitis (AP) is an inflammatory disorder of the pancreas that can be complicated by intestinal mucosal barrier dysfunction (SAP&IBD). The current study sought to examine the diagnostic efficacy of miR-1-3p and T-synthase mRNA in SAP&IBD patients. First, SAP patients were assigned to SAP&IBD and SAP groups. Serum miR-1-3p expression and T-synthase mRNA expression patterns in peripheral blood B lymphocytes were measured using RT-qPCR. Pearson tests, ROC curve analysis, and multivariate logistic regression were used to analyze the correlation between miR-1-3p/T-synthase mRNA and clinical data, their diagnostic efficiency, and independent risk factors for SAP&IBD patients, respectively. The results showed that serum miR-1-3p in the SAP&IBD group was elevated, and T-synthase mRNA expression in peripheral blood B lymphocytes was diminished. Additionally, serum miR-1-3p expression in SAP&IBD patients was negatively correlated with T-synthase mRNA expression, and positively correlated with their Ranson score, CRP, IL-6, DAO, and D-Lactate levels. Meanwhile, T-synthase mRNA level was negatively correlated with IL-6, DAO, and D-Lactate levels. Both, serum miR-1-3p, T-synthase mRNA, and their combination were found to exhibit diagnostic efficiency for SAP&IBD patients, and were independently associated with IBD in SAP patients. Collectively, our findings suggest that miR-1-3p and T-synthase serve as independent risk factors for SAP&IBD patients and can aid the diagnosis of IBD in SAP patients.


Assuntos
Gastroenteropatias , Doenças Inflamatórias Intestinais , MicroRNAs , Pancreatite , Humanos , MicroRNAs/metabolismo , Pancreatite/diagnóstico , Pancreatite/genética , RNA Mensageiro/genética , Doença Aguda , Interleucina-6 , Lactatos
5.
Int J Parasitol ; 53(11-12): 637-649, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37355197

RESUMO

Eggs laid by mature female schistosomes are primarily responsible for the pathogenesis of schistosomiasis and critical for transmission. Consequently, elucidating the mechanism of sexual maturation as well as egg production may lead to new strategies for the control of schistosomiasis. MicroRNAs (miRNAs) are involved in multiple biological processes including reproduction in many organisms, yet their roles have not been well characterized in schistosomes. Here, we investigated microRNA-1 (miR-1), which was downregulated gradually in both male and female Schistosoma japonicum after they reached sexually maturity. The expression of miR-1, as shown with quantitative reverse transcription PCR (qRT-PCR), was lower in the reproductive organs of adult females compared with the somatic tissues. Overexpression of miR-1 in adult worms destroyed the morphological architecture of reproductive organs and reduced the subsequent oviposition, which may be due to the activation of apoptosis pathways. Through in silico analysis, 34 potential target genes of miR-1 were identified, including five ribosomal protein genes, called rp-s13, rp-l7ae, rp-l14, rp-l11 and rp-s24e. In vitro dual-luciferase reporter gene assays and miRNA overexpression experiments further validated that these ribosomal protein genes were directly regulated by miR-1. In contrast to the gene expression of miR-1, qRT-PCR and in situ hybridization experiments demonstrated these ribosomal protein genes were enriched in the sexual organs of adult females. Using RNA interference to silence the ribosomal protein genes in different developmental stages in a mouse model system, we demonstrated that these miR-1 target genes not only participated in the reproductive development of S. japonicum, but also were required for the growth and survival of the parasite in the early developmental stages. Taken together, our data suggested that miR-1 may affect the growth, reproduction and oviposition of S. japonicum by targeting the ribosomal protein genes, which provides insights for exploration of new anti-schistosome strategies.


Assuntos
Fenômenos Biológicos , MicroRNAs , Schistosoma japonicum , Esquistossomose Japônica , Esquistossomose , Camundongos , Animais , Feminino , Masculino , MicroRNAs/genética , Proteínas Ribossômicas/genética , Reprodução , Esquistossomose Japônica/parasitologia
6.
Front Genet ; 14: 1192799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229187

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous and deadly disease characterized by uncontrolled expansion of malignant blasts. Altered metabolism and dysregulated microRNA (miRNA) expression profiles are both characteristic of AML. However, there is a paucity of studies exploring how changes in the metabolic state of the leukemic cells regulate miRNA expression leading to altered cellular behavior. Here, we blocked pyruvate entry into mitochondria by deleting the Mitochondria Pyruvate Carrier (MPC1) gene in human AML cell lines, which decreased Oxidative Phosphorylation (OXPHOS). This metabolic shift also led to increased expression of miR-1 in the human AML cell lines tested. AML patient sample datasets showed that higher miR-1 expression correlates with reduced survival. Transcriptional and metabolic profiling of miR-1 overexpressing AML cells revealed that miR-1 increased OXPHOS, along with key metabolites that fuel the TCA cycle such as glutamine and fumaric acid. Inhibition of glutaminolysis decreased OXPHOS in miR-1 overexpressing MV4-11 cells, highlighting that miR-1 promotes OXPHOS through glutaminolysis. Finally, overexpression of miR-1 in AML cells exacerbated disease in a mouse xenograft model. Together, our work expands current knowledge within the field by uncovering novel connections between AML cell metabolism and miRNA expression that facilitates disease progression. Further, our work points to miR-1 as a potential new therapeutic target that may be used to disrupt AML cell metabolism and thus pathogenesis in the clinic.

7.
Funct Integr Genomics ; 23(2): 78, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36881338

RESUMO

This paper was to uncover the mechanism of circular RNA Argonaute 2 (circAGO2) in colorectal cancer (CRC) progression. The expression of circAGO2 was detected in CRC cells and tissues, and the relationship between clinicopathological features of CRC and circAGO2 level was evaluated. The growth and invasion of CRC cells and subcutaneous xenograft of nude mice were measured to evaluate the effect of circAGO2 on CRC development. Bioinformatics databases were applied to analyze levels of retinoblastoma binding protein 4 (RBBP4) and heat shock protein family B 8 (HSPB8) in cancer tissues. The relevance of circAGO2 and RBBP4 expression and the relationship between RBBP4 and HSPB8 during histone acetylation were assessed. The targeting relationship between miR-1-3p and circAGO2 or RBBP4 was predicted and confirmed. The effects of miR-1-3p and RBBP4 on biological functions of CRC cells were also verified. CircAGO2 was upregulated in CRC. CircAGO2 promoted the growth and invasion of CRC cells. CircAGO2 competitively bound to miR-1-3p and regulated RBBP4 expression, thus inhibiting HSPB8 transcription by promoting histone deacetylation. Silencing circAGO2 enhanced miR-1-3p expression and reduced RBBP4 expression, while suppression of miR-1-3p downgraded levels of miR-1-3p, up-regulated RBBP4, and facilitated cell proliferation and invasion in the presence of silencing circAGO2. RBBP4 silencing decreased RBBP4 expression and reduced proliferation and invasion of cells where circAGO2 and miR-1-3p were silenced. CircAGO2 overexpression decoyed miR-1-3p to increase RBBP4 expression, which inhibited HSPB8 transcription via histone deacetylation in HSPB8 promoter region, promoting proliferation and invasion of CRC cells.


Assuntos
Neoplasias Colorretais , Proteínas de Choque Térmico , MicroRNAs , RNA Circular , Animais , Humanos , Camundongos , Neoplasias Colorretais/genética , Proteínas de Choque Térmico/genética , Histonas , Camundongos Nus , MicroRNAs/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , RNA Circular/genética , Chaperonas Moleculares/genética
8.
Anticancer Res ; 43(1): 7-18, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585203

RESUMO

BACKGROUND/AIM: Glioblastoma (GBM) is the most common and most lethal type of cancer of the central nervous system in adults. Despite aggressive treatment, which is based on surgical resection, if possible, followed by radiation and chemotherapy, a high recurrence rate and therapy resistance is observed. Thus, additional innovative therapies are urgently needed to improve the poor median survival of only 15 months. Treatment of solid tumours with non-invasive physical plasma (NIPP) represents such a novel and innovative anticancer procedure. MATERIALS AND METHODS: In this study, we investigated the effect of NIPP, an ionized argon gas, on the in vitro growth of human GBM cell lines, LN-18 and U-87 MG. Proliferation was measured by live cell count. Subsequently, proliferative factors were analysed at the level of nucleic acids (polymerase chain reaction) and proteins (western blotting). RESULTS: For both GBM lines, a treatment time-dependent decrease in growth was observed compared to controls. Additionally, NIPP treatment resulted in reduced rates of AKT serine/threonine kinase 1 (AKT1) and extracellular-regulated kinase 1/2 ERK1/2 expression, whereas expression of p21, proliferating cell nuclear antigen, and heat-shock proteins 90α and 90ß was not affected. In both cell lines, a strong increase in expression of tumour-suppressive microRNA-1 (miR-1) was detected after exposure to NIPP. CONCLUSION: Our results demonstrated that NIPP is able to efficiently attenuate growth of GBM cells and suggest AKT1, ERK1/2 and miR-1 to be pivotal factors of NIPP-modulated cellular signalling. Translated into the clinical setting, NIPP may represent a promising option for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Humanos , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Transdução de Sinais , MicroRNAs/uso terapêutico , Proteínas , Linhagem Celular Tumoral , Proliferação de Células
9.
Transl Cancer Res ; 11(11): 4126-4136, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36523292

RESUMO

Background: Connexin (CX) 43 makes glioblastoma resistant to temozolomide, the first-line chemotherapy drug. However, targeting CX43 is very difficult because the mechanisms underlying CX43-mediated resistance remain unclear. CX43 is highly expressed in glioblastoma, which is closely associated with poor prognosis and chemotherapy resistance. The present study was to analyze the mechanism of microRNA (miR)-1 in regulating the proliferation and invasion of glioma cells. Methods: The effects of knockdown of miR-1 on the growth of glioma cell lines were observed by establishing blank, miR-1 inhibitor, and miR-1 mimic groups. Cell proliferation was detected using a Cell Counting Kit-8 (CCK-8) assay, cell apoptosis was detected by flow cytometry, and protein expression was detected by western blot. We used the Student's t-test to assess continuous data between the two groups and the Kruskal-Wallis test was adopted for multiple group comparisons. Results: Compared with the mimics normal control (NC) group, the apoptosis rate of the miR-1-3p mimics group was decreased, while that of the miR-1-3p inhibitor group was increased compared to the inhibitor NC group. In addition, the miR-1-3p mimics model of U251 cells exerted an inhibitory effect on the invasion ability of cells, whereas the miR-1-3p inhibitor model of U251 cells showed an invasion-promoting effect. The dual-luciferase assay showed that miR-1-3p had a targeted relationship with the CX43 gene. Conclusions: Down-regulation of CX43 expression by miR-1 inhibited the infiltration and growth of glioma cells and further promoted the apoptosis of glioma cells by regulating CX43 expression.

10.
FASEB J ; 36(10): e22561, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36125044

RESUMO

Previous studies have found microRNA-1 (miR-1) and hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) may be involved in the pathogenesis of thyroid hormone (TH) induced cardiac hypertrophy. However, little is known about the role of miR-1 and HCN2 in thyroid stimulation hormone (TSH)-induced cardiac dysfunction. In order to investigate the molecular mechanisms of TSH induced cardiac dysfunction and the role of miR-1/HCN2 in that process, we evaluated the expression of miR-1a/HCN2 in the ventricular myocardium of hypothyroid mice and in TSH-stimulated H9c2 cardiomyocytes. Our data revealed that hypothyroidism mice had smaller hearts, ventricular muscle atrophy, and cardiac contractile dysfunction compared with euthyroid controls. The upregulation of miR-1a and downregulation of HCN2 were found in ventricular myocardium of hypothyroid mice and TSH-stimulated H9c2 cardiomyocytes, indicating that miR-1a and HCN2 may be involved in TSH-induced cardiac dysfunction. We also found that the regulation of miR-1a and HCN2 expression and HCN2 channel activity by TSH requires TSHR, while the regulation of HCN2 expression and HCN2 channel function by TSH requires miR-1a. Thus, our data revealed the potential mechanism of TSH-induced cardiac dysfunction and might shed new light on the pathological role of miR-1a/HCN2 in hypothyroid heart disease.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Hipotireoidismo , MicroRNAs , Canais de Potássio/metabolismo , Animais , Cardiomegalia/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/genética , Camundongos , MicroRNAs/genética , Hormônios Tireóideos , Tireotropina/metabolismo
11.
Cytokine ; 156: 155922, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35660716

RESUMO

E2F8 can modulate development and progression of various cancers including cervical cancer, breast cancer and hepatocellular carcinoma. But its mechanism in lung adenocarcinoma (LUAD) remains underexplored. In this study, we conducted a series of experiments including qRT-PCR, western blot, CCK-8, scratch healing assay, Transwell, and flow cytometry. Through these assays, we confirmed the notable overexpression of E2F8 in LUAD and its promoting effects on LUAD cell proliferation, migration and invasion. Subsequently, microRNA-1-3p that was negatively associated with E2F8 expression was identified through bioinformatics analysis. qRT-PCR was then carried out for quantification of microRNA-1-3p expression, which displayed low microRNA-1-3p expression in LUAD cells. In addition, dual-luciferase reporter gene assay was utilized for validating the targeted relationship between microRNA-1-3p and E2F8. The results denoted that microRNA-1-3p could bind to the promoter region of E2F8. Finally, the results of rescue experiment revealed that microRNA-1-3p negatively modulated E2F8 level. It regulated NF-κB pathway to repress LUAD cell proliferative, migratory, and invasive properties, lead to cell cycle arrest in G0/G1 phase, and enhance cell apoptosis level. This study unraveled that microRNA-1-3p/E2F8 constrained LUAD malignant progression through NF-κB pathway, which may provide possible targets for LUAD diagnosis and treatment.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Hepáticas , Neoplasias Pulmonares , MicroRNAs , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/genética , Proteínas Repressoras
12.
Mol Biol Rep ; 49(5): 3675-3684, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35179668

RESUMO

BACKGROUND: DSH-20, the active ingredient of Salvia miltiorrhiza flower extract, is used to treat cardiovascular diseases. However, its mechanism of action remains unclear. Herein, we investigated the intervention of DSH-20 in H2O2-induced oxidative damage and apoptosis in cardiomyocytes. METHODS AND RESULTS: H2O2 was used to induce oxidative damage and apoptosis in H9c2 cardiomyocytes. Based on concentration gradient studies, we found that 62.5 µg/mL DSH-20 significantly reduced reactive oxygen species and lactate dehydrogenase levels and increased superoxide dismutase levels. DSH-20 also alleviated the apoptosis rate, the changes in mRNA of apoptosis-related genes (Bcl-2, BAX, and Caspase-3) and miR-1 expression. Moreover, transfection of miR-1 mimics aggravated oxidative damage and apoptosis, whereas DSH-20 alleviated these effects. CONCLUSIONS: DSH-20 reduced H2O2-induced oxidative damage and apoptosis in H9c2 cardiomyocytes likely by downregulating miR-1 expression.


Assuntos
MicroRNAs , Salvia miltiorrhiza , Apoptose , Flores/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo
13.
Cell Signal ; 91: 110245, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35017014

RESUMO

Adaptation of gene expression is one of the most fundamental response of cardiomyocytes to hypertrophic stimuli. G3bp1, an RNA binding protein with site-specific endoribonuclease activity regulates the processing of pre-miR-1 stem-loop, and thus levels of cardiomyocyte -enriched mature miR-1. Here, we examine the role of G3bp1 in regulating gene expression in quiescent cardiomyocytes and those undergoing growth-factor induced hypertrophy. Further, we determine if these changes are facilitated through G3bp1-mediated regulation of miR-1 in these cardiomyocytes. Using isolated cardiomyocytes with knockdown of endogenous G3bp1, we performed high throughput RNA sequencing to determine the change in cardiac transcriptome. Then, using gain and loss of function approach for both, G3bp1 and miR-1, alone or in combination we examine the G3bp1-miR-1 signaling in regulating gene expression and Endothelin (ET-1) -induced cardiomyocyte hypertrophy. We show that knockdown of endogenous G3bp1 results in inhibition of genes involved in calcium handling, cardiac muscle contraction, action potential and sarcomeric structure. In addition, there is inhibition of genes that contribute to hypertrophic and dilated cardiomyopathy development. Conversely, an increase is seen in genes that negatively regulate the Hippo signaling, like Rassf1 and Arrdc3, along with inflammatory genes of TGF-ß and TNF pathways. Knockdown of G3bp1 restricts ET-1 induced cardiomyocyte hypertrophy. Interestingly, concurrent silencing of G3bp1 and miR-1 rescues the change in gene expression and inhibition of hypertrophy seen with knockdown of G3bp1 alone. Similarly, expression of exogenous G3bp1 reverses the miR-1 induced inhibition of gene expression. Intriguingly, expression of Gfp tagged G3bp1 results in perinuclear accumulations of G3bp1-Gfp, resembling Stress Granules. Based on our results, we conclude that G3bp1 through its regulation of mature miR-1 levels plays a critical role in regulating the expression of essential cardiac-enriched genes and those involved in development of cardiomyocyte hypertrophy.


Assuntos
MicroRNAs , Cardiomegalia/genética , Cardiomegalia/metabolismo , Células Cultivadas , DNA Helicases/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo
14.
Mol Med ; 28(1): 9, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090386

RESUMO

BACKGROUND: Sepsis is a troublesome syndrome that can cause intestinal injury and even high mortality rates. Omega-3 fatty acids (FAs) are known to protect against intestinal damage. Accordingly, the current study set out to explore if omega-3 FAs could affect sepsis-induced intestinal injury with the involvement of the microRNA (miR)-1-3p/Notch3-Smad axis. METHODS: First, cecal ligation and perforation (CLP) was performed to establish septic mouse models in C57BL/6J mice, and mouse intestinal epithelial MODE-K cells were induced by lipopolysaccharide (LPS) to establish sepsis cell models. The CLP-induced septic mice or LPS-exposed cells were subjected to treatment with Omega-3 FAs and activin (Smad signaling activator), miR-1-3p inhibitor and over-expressed/short hairpin RNA (oe-/sh)-Notch3 to explore their roles in inflammation, intestinal oxidative stress and cell apoptosis. A dual-luciferase reporter gene assay was further performed to verify the regulatory relationship between miR-1-3p and Notch3. RESULTS: Omega-3 FAs inhibited CLP-induced intestinal injury and ameliorated LPS-induced intestinal epithelial cell injury by down-regulating miR-1-3p, as evidenced by decreased levels of tumor necrosis factor-α, interleukin-1ß (IL-1ß) and IL-6, in addition to diminished levels of reactive oxygen species, malondialdehyde levels and superoxide dismutase activity. Furthermore, miR-1-3p could down-regulate Notch3, which inactivated the Smad pathway. CONCLUSION: Collectively, our findings indicated that omega-3 FAs elevate the expression of Notch3 by down-regulating miR-1-3p, and then blocking the Smad pathway to alleviate intestinal epithelial inflammation and oxidative stress injury caused by sepsis.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Regulação da Expressão Gênica , Enteropatias/etiologia , Enteropatias/metabolismo , MicroRNAs/genética , Receptor Notch3/genética , Sepse/complicações , Animais , Biomarcadores , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Enteropatias/diagnóstico , Enteropatias/terapia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Modelos Biológicos , Estresse Oxidativo , Receptor Notch3/metabolismo , Sepse/etiologia , Transdução de Sinais , Proteínas Smad
15.
Adv Pharm Bull ; 11(4): 719-727, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34888219

RESUMO

Purpose: Myocardial infarction (MI), known as a multifactorial disease, remains the predominant cause of mortality and sudden deaths annually. The current study aimed to measure the expression of microRNA-1 and microRNA-221-3p in MI patients. Methods: In the current study, 100 healthy controls (with no history of heart disease) and 200 patients with MI were selected. Patients were divided into two groups based on angiography results: normal (no significant artery stenosis) and primary percutaneous coronary intervention (primary PCI, significant artery stenosis). The levels of microRNA-1 and microRNA-221-3p were quantified using real-time quantitative polymerase chain reaction. The correlation between levels of microRNAs and the common cardiac markers were analyzed statistically. Results: In comparison to fold change, microRNA-1 elevations were 8.5-fold in normal patients and 60-fold in patients with primary PCI; while microRNA-221-3p levels were 210- fold higher in primary PCI and 31.31-fold higher in normal cases compared with the healthy controls. Receiver operating characteristic analysis showed that the area under the curve (AUC) for circulating microRNA-1 and microRNA-221 were 0.903 and 0.958 in normal patients and 0.927 and 0.985 in primary PCI patients (p < 0.0001), respectively. Pearson correlation (ρ) analysis showed that circulation of microRNA-1 correlated with serum levels of cardiac troponin I (CTnI) (ρ =0.24), creatinine (ρ =0.34), creatinine kinase-myocardial band (CK-MB) (ρ =0.31), and microRNA-221-3p was significantly correlated with serum levels of CTnI (ρ =0.6), creatinine (ρ =0.41), and CK-MB (ρ =0.37), (P < 0.0001). Conclusion: The study underscored the potential of microRNA-1 and microRNA-221-3p as informative biomarkers and positively correlated with artery stenosis in MI.

16.
Bioengineered ; 12(2): 12905-12916, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34957910

RESUMO

We investigated the expression levels of microRNA-1 (miRNA-1) and microRNA-21 (miRNA-21) in the atrial tissues of patients with atrial fibrillation (AF) and the molecular mechanism of action in atrial remodeling. Patients with valvular heart disease were selected as the subjects. The ultrastructure, degree of myocardial fibrosis, apoptosis index (AI), expression of microRNA-1, expression of microRNA-21, and mRNA of TIMP-1, MMP-9, BCL-2, and Bax of patients were compared and analyzed in each group. The results showed that the degree of myocardial fibrosis and AI in patients with AF of the same age were extremely higher than those of patients with sinus rhythm (SR) (P < 0.01). Patients with AF showed much higher messenger RNA (mRNA) levels of mini-mental Parkinson 9 (MMP9) and Bax and obvious lover mRNA levels of tissue inhibitors of metalloproteinase 1 (TIMP-1) and Bcl-2 compared with patients with sinus rhythm (SR) (P < 0.05). It indicated that the expression of miRNA-1 in the AF patients was markedly down-regulated, and that miRNA-21 was up-regulated. This showed that microRNA-1 and microRNA-21 were involved in the molecular remodeling of aging AF through the regulation of primers, which would provide a critical basis for diagnosis and treatment of aging AF.


Assuntos
Envelhecimento/genética , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Idoso , Feminino , Fibrose , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Átrios do Coração/ultraestrutura , Humanos , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Miocárdio/patologia , Miocárdio/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
17.
Rep Biochem Mol Biol ; 10(2): 183-196, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34604408

RESUMO

BACKGROUND: MicroRNA expression signature and reactive oxygen species (ROS) production have been associated with the development of cardiovascular diseases (CVDs). This study aimed to evaluate oxidative stress, inflammation, apoptosis, and the expression of miRNA-208a and miRNA-1 in cardiovascular patients. METHODS: The study population included four types of patients (acute coronary syndromes (ACS), myocardial infarction (MI), arrhythmia, and heart failure (HF)), with 10 people in each group, as well as a control group. Quantitative real-time PCR was performed to measure mir-208 and miR-1 expression, the mRNAs of inflammatory mediators (TNFα, iNOS/eNOS), and apoptotic factors (Bax and Bcl2). XOX, MDA, and antioxidant enzymes (CAT, SOD, and GPx) were measured by ZellBio GmbH kits by an ELISA Reader. RESULTS: The results showed significant decreases in the activity of antioxidant enzymes (CAT, SOD, and Gpx) and a significant increase in the activity of the MDA and XOX in cardiovascular patients. Significant increases in IL-10, iNos, iNOS / eNOS, and TNF-α in cardiovascular patients were also observed. Also, a significant increase in the expression of miR-208 (HF> arrhythmia> ACS> MI) and a significant decrease in the expression of miR-1 (ACS> arrhythmia> HF> MI) were found in all four groups in cardiovascular patients. CONCLUSION: The results showed increases in oxidative stress, inflammation, apoptotic factors, and in the expression of miR-208a in a variety of cardiovascular patients (ACS, MI, arrhythmia, and HF). It is suggested that future studies determine the relationships that miR-1, miR-208, and oxidative stress indices have with inflammation and apoptosis.

18.
Aging (Albany NY) ; 13(8): 11470-11490, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33864447

RESUMO

BACKGROUNDS: A major side effect of statin, a widely used drug to treat hyperlipidemia, is skeletal myopathy through cell apoptosis. The aim of this study is to investigate the roles of microRNA in statin-induced injury. METHODS: Apolipoprotein E knockout (ApoE-/-) mice were administered with simvastatin (20 mg/kg/day) for 8 weeks. Exercise capacity was evaluated by hanging grid test, forelimb grip strength, and running tolerance test. RESULTS: In cultured skeletal muscle cells, statin increased the levels of miR-1a but decreased the levels of mitogen-activated protein kinase kinase kinase 1 (MAP3K1) in a time or dose dependent manner. Both computational target-scan analysis and luciferase gene reporter assay indicated that MAP3K1 is the target gene of miR-1a. Statin induced cell apoptosis of skeletal muscle cells, but abolished by downregulating of miR-1a or upregulation of MAP3K1. Further, the effects of miR-1a inhibition on statin-induced cell apoptosis were ablated by MAP3K1 siRNA. In ApoE-/- mice, statin induced cell apoptosis of skeletal muscle cells and decreased exercise capacity in mice infected with vector, but not in mice with lentivirus-mediated miR-1a gene silence. CONCLUSION: Statin causes skeletal injury through induction of miR-1a excessive expression to decrease MAP3K1 gene expression.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , MAP Quinase Quinase Quinase 1/genética , MicroRNAs/metabolismo , Fibras Musculares Esqueléticas/patologia , Doenças Musculares/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hiperlipidemias/tratamento farmacológico , Camundongos , Camundongos Knockout para ApoE , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , Fibras Musculares Esqueléticas/efeitos dos fármacos , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/patologia , Condicionamento Físico Animal , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Sinvastatina/efeitos adversos , Regulação para Cima/efeitos dos fármacos
19.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(2): 136-142, 2021 Apr 01.
Artigo em Chinês | MEDLINE | ID: mdl-33834667

RESUMO

OBJECTIVES: This study aims to construct endogenous exosomes abundantly loaded with miR-1 and investigate the role of exosome-mediated microRNA-1 (miR-1) delivery on CAL-27 cell proliferation. METHODS: Exosomes secreted by miR-1-overexpressing HEK293 cells (miR1-EXO) were purified via ultracentrifugation and subjected to transmission electron microscopy, nanoparticle analysis, Western blot analysis, and quantitative polymerase chain reaction (qPCR). CAL-27 cells were cocultured with exosomes secreted by HEK293 cells (CON-EXO) and miR1-EXO and equivalent phosphate buffer saline. The intracellular transport of exosomes was measured by using immunofluorescence, the expression of miR-1 and its target gene MET were investigated via qPCR, CAL-27 cell proliferation was measured through MTT assay, and cell cycle state was determined by applying flow cytometry. RESULTS: Electron microscopy revealed that miR1-EXO and CON-EXO were spherical or cup-shaped with an average diameter of approximately 110 nm. The well-known exosome markers CD9, Tsg101, and Alix were enriched. The expression of miR-1 in miR1-EXO was higher than that in CON-EXO (285.80±14.33 vs 1.00±0.06, P<0.000 1). After coculture with CAL-27 cells, miR1-EXO was internalized and unloaded miR-1 into CAL-27 cells. After coculture with miR1-EXO, the expression of miR-1 in CAL-27 cells was upregulated, whereas that of MET, the target gene of miR-1, was suppressed and the proliferation of CAL-27 cells was inhibited significantly. Normal oral keratinocyte cell proliferation was negligibly affected after coculture with miR1-EXO. CONCLUSIONS: Exosomes secreted from miR1-EXO cells could load abundant miR-1. Exosomal miR-1 delivered into CAL-27 cells by using miR1-EXO suppressed the expression of MET mRNA and inhibited cell proliferation.


Assuntos
Exossomos , MicroRNAs , Ciclo Celular , Proliferação de Células , Células HEK293 , Humanos
20.
Exp Ther Med ; 21(4): 379, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33680101

RESUMO

The neural crest is one of the key features of craniofacial development. MicroRNA-1 (miR-1) is a single-stranded noncoding RNA that serves an important role in embryonic development. However, the function of miR-1 in neural crest cells (NCCs) is unknown. Therefore, to evaluate the role of miR-1 in NCC development, a miR-1 mutant zebrafish was generated in the current study. Mouse NCCs were isolated from the first branchial arch of embryos at gestational day E9.5, and miR-1 was silenced using a miR-1 inhibitor. To the best of our knowledge, the present study was the first to report that homozygous zebrafish lacking miR-1 exhibited developmental defects in NCC-derived craniofacial bones, heart, melanocytes and iridophores. These defects may be caused by an increase in apoptosis of NCCs during their migration and differentiation in embryonic development. Moreover, the apoptosis analysis and western blotting results demonstrated that this effect was modulated via the mitochondrial apoptosis pathway, and miR-1 inhibited NCC apoptosis by modulating this pathway. These results collectively suggested that miR-1 in NCCs may be essential for craniofacial development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...