Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Saudi J Biol Sci ; 31(5): 103975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38544953

RESUMO

Aim: The primary factor causing chronic renal failure is diabetic nephropathy (DN) worldwide. However, the current biomarkers for DN have limited diagnostic utility. Thus, this work aimed to clarify the implications of microRNA-200a (miR-200a) and microRNA-132 (miR-132) and their correlation with NF-κB (nuclear factor- kappa beta), and, TNF-α (tumor necrosis factor -alpha) signaling to identify biomarkers able to distinguish late-stage from early- stage DN. Methods: Fifty healthy controls, and 271 type 2 diabetic (T2D) patients (166 male plus 105 female) were enrolled. Participants were stratified into seven groups according to along with the estimated glomerular filtration rate (eGFR), glycated hemoglobin (HbA1c%), healthy controls, diabetes without DN (G1), diabetes with mild renal impairment (G2), and four DN grades (G3a, G3b, G4, and G5). Results: Compared to healthy controls, the DN groups exhibited linear increases in serum miR-200a, TNF-α, NF-κB, matrix metalloproteinase (MMP-9) and interleukin-6 (IL-6) levels and reductions in miR-132 serum expression. Among the patients, NF-κB and TNF-α produced a negative correlation with miR-132, while, positive correlation has been discovered with miR-200-a. The operating characteristic of the receiver curve (ROC), proved that, miR-200a also miR-132 had good diagnostic performance in distinguishing early from advanced DN. Conclusion: MiR-200a as well as miR-132 expression levels, and their correlations with NF-κB/TNF-alpha signaling, were able to differentiate between DN patients with lower eGFR, suggesting their utility as diagnostic and prognostic biomarkers.

2.
Biomed Pharmacother ; 170: 116029, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128185

RESUMO

MicroRNA-132 (miR-132) is a highly conserved molecule that plays a crucial regulatory role in central nervous system (CNS) disorders. The expression levels of miR-132 exhibit variability in various neurological disorders and have been closely linked to disease onset and progression. The expression level of miR-132 in the CNS is regulated by a diverse range of stimuli and signaling pathways, including neuronal migration and integration, dendritic outgrowth, and complexity, synaptogenesis, synaptic plasticity, as well as inflammation and apoptosis activation. The aberrant expression of miR-132 in various central neurodegenerative diseases has garnered widespread attention. Clinical studies have revealed altered miR-132 expression levels in both chronic and acute CNS diseases, positioning miR-132 as a potential biomarker or therapeutic target. An in-depth exploration of miR-132 holds the promise of enhancing our understanding of the mechanisms underlying CNS diseases, thereby offering novel insights and strategies for disease diagnosis and treatment. It is anticipated that this review will assist researchers in recognizing the potential value of miR-132 and in generating innovative ideas for clinical trials related to CNS degenerative diseases.


Assuntos
Doenças do Sistema Nervoso Central , MicroRNAs , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/genética , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo
3.
Addict Health ; 14(3): 214-217, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36544981

RESUMO

Background: Addiction is a personal and social problem worldwide, and has physical and psychological effects on consumers' health. Recently, miRNAs have been described as noninvasive biomarkers. Currently, methamphetamine abuse (MA) is mainly diagnosed by chromatography. This study aimed to investigate the expression and diagnostic value of miR-127 and miR-132 in blood samples of patients with MA and non-user healthy controls. Methods: A total of 60 patients with MA (case group) and 60 non-user healthy individuals (control group) were selected from Tabriz, East Azerbaijan, Iran. Peripheral blood was obtained and total RNA was extracted. Then, cDNA synthesis was performed and miR-127 and miR-132 expression was evaluated using real time polymerase chain reaction (PCR) method. Findings: The results of this study demonstrated that miR-127 was significantly lower (0.042-fold change) in patients with MA than in the control group (P<0.05). However, miR-132 was significantly higher (7.1-fold change) in patients with MA than in the control group (P<0.05). Conclusion: In general, expression of miR-127 and miR-132 may alter in patients with MA. Further studies are needed to identify underlying molecular mechanisms in patients with MA.

4.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(1): 143-149, 2022 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-35249882

RESUMO

OBJECTIVE: To explore the expression of microRNA-132 (miR-132) and its potential role in the development of atherosclerosis (AS). METHODS: Thirty AS samples and 30 samples of normal peripheral vessels were collected from atherosclerotic patients undergoing peripheral angiostomy in our hospital for detecting the expression level of miR-132 using RT-qPCR. The expression of miR-132 in human umbilical vein endothelial cells (HUVEC) was up-regulated by liposome transfection, and intracellular reactive oxygen species (ROS), localization relationship between ROS and mitochondria, functional changes of mitochondrial reactive oxygen superoxide species (mtROS), mitochondrial membrane potential (MMP) and opening of mitochondrial permeability transition pore (mPTP) were analyzed by flow cytometry and laser confocal microscopy. The activity of mitochondrial redox respiratory chain complex (type I, II, III, IV and V) in HUVECs was detected using ELISA, and the expression levels of key iron death proteins were detected with Western blotting. RESULTS: RT-qPCR results showed that miR-132 was significantly up-regulated in atherosclerotic plaques compared with normal vascular samples (P < 0.001). Compared with control HUVECs, HUVECs overexpressing miR-132 showed a significantly increased level of intracellular ROS (P < 0.001), and most of ROS was colocalized with mitochondria. HUVECs overexpressing miR-132 also showed significantly decreased MMP (P < 0.001) and obviously increased mtROS (P < 0.001) and opening of mPTP (P < 0.001), which led to mitochondrial REDOX respiratory chain stress disorder. The key iron death protein GPX4 was significantly down-regulated and the oxidized protein NOX4 was significantly increased in miR-132-overexpressing HUVECs (P < 0.001). CONCLUSION: MiR-132 promotes atherosclerosis by inducing mitochondrial oxidative stress-mediated ferroptosis, which may serve as a promising therapeutic target for AS.


Assuntos
Aterosclerose , Ferroptose , MicroRNAs , Apoptose , Aterosclerose/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Potencial da Membrana Mitocondrial , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
5.
Diabetes Metab Syndr Obes ; 15: 345-358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153496

RESUMO

PURPOSE: Diabetic retinopathy (DR), the leading cause of blindness among working adults, is an urgent public health problem as diabetes mellitus (DM) is increasing at an alarming rate. Hyperglycemia-induced endothelial dysfunction is the principal contributing factor leading to the development of microangiopathy. Altered levels of microRNA (miR), the negative regulator of protein-coding genes, have been observed and considered to be markers for DR. Present study aimed to find out whether miR levels in plasma could be effective biomarkers to differentiate between type 2 diabetes mellitus (T2DM) with non-proliferative retinopathy (NPDR) from T2DM with no-DR (DNR). METHODS: We recruited 50 T2DM subjects comprising 31 NPDR and 19 DNR individuals. Surrogate markers of systemic oxidative stress and vascular endothelial growth factor (VEGF) were measured in plasma. Levels of miR-126 and miR-132 were determined in plasma and vitreous fluid using real-time PCR. RESULTS: We observed that levels of miR-126 and miR-132 were decreased in NPDR subjects in comparison to DNR. Plasma levels of miRs were inversely correlated with secreted levels of VEGF and oxidative stress marker. The levels of these miRs showed discriminating ability between NPDR and DNR. CONCLUSION: Circulating miRs 126 and 132 in plasma or vitreous may serve as biomarkers for early diabetic retinopathy risk prediction, provided validated in a larger cohort and other forms of retinal vasculopathy or retinopathy in the future.

6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-936296

RESUMO

OBJECTIVE@#To explore the expression of microRNA-132 (miR-132) and its potential role in the development of atherosclerosis (AS).@*METHODS@#Thirty AS samples and 30 samples of normal peripheral vessels were collected from atherosclerotic patients undergoing peripheral angiostomy in our hospital for detecting the expression level of miR-132 using RT-qPCR. The expression of miR-132 in human umbilical vein endothelial cells (HUVEC) was up-regulated by liposome transfection, and intracellular reactive oxygen species (ROS), localization relationship between ROS and mitochondria, functional changes of mitochondrial reactive oxygen superoxide species (mtROS), mitochondrial membrane potential (MMP) and opening of mitochondrial permeability transition pore (mPTP) were analyzed by flow cytometry and laser confocal microscopy. The activity of mitochondrial redox respiratory chain complex (type I, II, III, IV and V) in HUVECs was detected using ELISA, and the expression levels of key iron death proteins were detected with Western blotting.@*RESULTS@#RT-qPCR results showed that miR-132 was significantly up-regulated in atherosclerotic plaques compared with normal vascular samples (P < 0.001). Compared with control HUVECs, HUVECs overexpressing miR-132 showed a significantly increased level of intracellular ROS (P < 0.001), and most of ROS was colocalized with mitochondria. HUVECs overexpressing miR-132 also showed significantly decreased MMP (P < 0.001) and obviously increased mtROS (P < 0.001) and opening of mPTP (P < 0.001), which led to mitochondrial REDOX respiratory chain stress disorder. The key iron death protein GPX4 was significantly down-regulated and the oxidized protein NOX4 was significantly increased in miR-132-overexpressing HUVECs (P < 0.001).@*CONCLUSION@#MiR-132 promotes atherosclerosis by inducing mitochondrial oxidative stress-mediated ferroptosis, which may serve as a promising therapeutic target for AS.


Assuntos
Humanos , Apoptose , Aterosclerose/genética , Ferroptose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Potencial da Membrana Mitocondrial , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
7.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34769292

RESUMO

The growth hormone (GH)-insulin-like growth factor-1 (IGF1) endocrine axis is a central player in normal growth and metabolism as well as in a number of pathologies, including cancer. The GH-IGF1 hormonal system, in addition, has emerged as a major determinant of lifespan and healthspan. Laron syndrome (LS), the best characterized entity under the spectrum of the congenital IGF1 deficiencies, results from mutation of the GH receptor (GHR) gene, leading to dwarfism, obesity and other defects. Consistent with the key role of IGF1 in cellular proliferation, epidemiological studies have shown that LS patients are protected from cancer development. While reduced expression of components of the GH-IGF1 axis is associated with enhanced longevity in animal models, it is still unknown whether LS is associated with an increased lifespan. MicroRNAs (miRs) are endogenous short non-coding RNAs that regulate the expression of complementary mRNAs. While a number of miRs involved in the regulation of IGF components have been identified, no previous studies have investigated the differential expression of miRs in congenital IGF1 deficiencies. The present study was aimed at identifying miRs that are differentially expressed in LS and that might account for the phenotypic features of LS patients, including longevity. Our genomic analyses provide evidence that miR-132-3p was highly expressed in LS. In addition, we identified SIRT1, a member of the sirtuin family of histone deacetylases, as a target for negative regulation by miR-132-3p. The data was consistent with the notion that low concentrations of IGF1 in LS lead to elevated miR-132-3p levels, with ensuing reduction in SIRT1 gene expression. The impact of the IGF1-miR-132-3p-SIRT1 loop on aging merits further investigation.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Síndrome de Laron/genética , MicroRNAs/genética , Sirtuína 1/genética , Regulação para Cima , Regiões 3' não Traduzidas , Adulto , Estudos de Casos e Controles , Linhagem Celular , Proliferação de Células , Feminino , Humanos , Longevidade , Pessoa de Meia-Idade
8.
Exp Ther Med ; 22(6): 1396, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34650644

RESUMO

In previous studies, miR-132 and miR-223 were considered to be involved in cellular and pathological processes of diseases. However, the role of early diagnosis and prognosis evaluation in sepsis-induced cardiomyopathy (SIC) remains unknown. The present study aimed to explore the diagnostic value of combined detection of miR-132 and miR-223 for SIC and their correlation with creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumor necrosis factor α (TNF-α), and interleukin-6 (IL)-6. SIC patients (n=80) admitted to Tianjin Medical University General Hospital were assigned to the research group (RG), while 60 healthy participants receiving physical examinations at the same period were assigned to the control group (CG). Serum expression profiles of miR-132 and miR-223 were detected by the RT-qPCR. CK-MB and cTnI were assessed using chemiluminescence assay, and TNF-α and IL-6 by enzyme-linked immunosorbent assay (ELISA). Serum miR-132 and miR-223 levels were significantly lower in the RG than in the CG (P<0.001). The sensitivity and specificity for the diagnosis of SIC were 82.50 and 71.67% for miR-132, 95.00 and 61.67% for miR-223, as well as 86.25 and 86.67% for miR-132 combined with miR-223. Serum miR-132 and miR-223 levels were significantly higher in the survivor group than in the deceased group (P<0.001). The sensitivity and specificity for the prognosis of SIC were 85.96 and 65.22% for miR-132 combined with miR-223. Serum miR-132 and miR-223 were negatively correlated with serum CK-MB, cTnI, TNF-α, and IL-6 (P<0.001). miR-132 combined with miR-223 can be used for early diagnosis and prognostic evaluation of SIC, and the two are correlated with CK-MB, cTnI, TNF-α, and IL-6.

9.
Genomics ; 113(6): 3644-3652, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34400241

RESUMO

OBJECTIVE: Some studies have implied the damaging effect of sevoflurane (sevo) on cognitive function in Alzheimer's disease (AD). This research was conducted to explore the effect of microRNA (miR)-132/forkhead-box A1 (FOXA1) axis on cognitive ability of sevo-treated AD rats. METHODS: The condensed-matter Aß1-40-induced AD rats were injected with miR-132- or FOXA1-related plasmids, followed by inhalation with 3% sevo. Then, the cognitive functions of AD rats were assessed. miR-132 and FOXA1 levels in hippocampal tissues of AD rats, and their interaction were identified. RESULTS: miR-132 expression was reduced and FOXA1 mRNA and protein levels were elevated in AD rats. miR-132 targeted FOXA1. Sevo treatment impaired cognitive function in AD rats. Elevated miR-132 or inhibited FOXA1 attenuated sevo-mediated injury in AD rats. Overexpressed FOXA1 rescued the effect of elevated miR-132 in AD rats with sevo treatment. CONCLUSION: Up-regulated miR-132 reduces the cognition-damaging effect of sevo on AD rats by inhibiting FOXA1.


Assuntos
Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Apoptose , Cognição , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Sevoflurano/farmacologia
10.
Mol Ther Nucleic Acids ; 25: 155-167, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34458001

RESUMO

microRNAs (miRs) are small regulatory RNAs that are frequently deregulated in liver disease. Liver fibrosis is characterized by excessive scarring caused by chronic inflammatory processes. In this study, we determined the functional role of miR-132 using a locked nucleic acid (LNA)-anti-miR approach in liver fibrosis. A significant induction in miR-132 levels was found in mice treated with CCl4 and in patients with fibrosis/cirrhosis. Inhibition of miR-132 in mice with LNA-anti-miR-132 caused decreases in CCl4-induced fibrogenesis and inflammatory phenotype. An attenuation in collagen fibers, α SMA, MCP1, IL-1ß, and Cox2 was found in LNA-anti-miR-132-treated mice. CCl4 treatment increased caspase 3 activity and extracellular vesicles (EVs) in control but not in anti-miR-132-treated mice. Inhibition of miR-132 was associated with augmentation of MMP12 in the liver and Kupffer cells. In vivo and in vitro studies suggest miR-132 targets SIRT1 and inflammatory genes. Using tumor cancer genome atlas data, an increase in miR-132 was found in hepatocellular carcinoma (HCC). Increased miR-132 levels were associated with fibrogenic genes, higher tumor grade and stage, and unfavorable survival in HCC patients. Therapeutic inhibition of miR-132 might be a new approach to alleviate liver fibrosis, and treatment efficacy can be monitored by observing EV shedding.

11.
J Cell Mol Med ; 25(16): 7783-7795, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160889

RESUMO

Cognitive dysfunction is one of the complications of diabetes. Unfortunately, there is no effective methods to block its progression currently. One of the pathophysiological mechanisms is synaptic protein damage and neuronal signal disruption because of glucose metabolism disorder. Dystroglycan protein, located in the post-synaptic membrane of neurons, links the intracellular cytoskeleton with extracellular matrix. Abnormal expression of dystroglycan protein affects neuronal biological functions and leads to cognitive impairment. However, there are no relevant studies to observe the changes of ß-dystroglycan protein in diabetes rat brain and in primary neurons under high glucose exposure. Our data demonstrated the alterations of cognitive abilities in the diabetic rats; ß-dystroglycan protein degradation occurred in hippocampal and cortical tissues in diabetic rat brain. We further explored the mechanisms underlying of this phenomenon. When neurons are exposed to high glucose environment in long-term period, microRNA-132 (miR-132) would be down-regulated in neurons. Matrix Metalloproteinases-9 (MMP-9) mRNA, as a target of miR-132, could be up-regulated; higher expression and overlay activity of MMP-9 protein could increase ß-DG protein degradation. In this way, ß-DG degradation may affect structure and functions among the synapses, which related to cognition decline. It may provide some theoretical basis for elucidating the molecular mechanism of diabetes-induced cognitive dysfunction.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Distroglicanas/metabolismo , Glucose/toxicidade , Hipocampo/patologia , Metaloproteinase 9 da Matriz/metabolismo , MicroRNAs/genética , Neurônios/patologia , Animais , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Metaloproteinase 9 da Matriz/genética , MicroRNAs/administração & dosagem , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteólise , Ratos , Ratos Sprague-Dawley , Edulcorantes/toxicidade
12.
J Am Coll Cardiol ; 77(23): 2923-2935, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34112319

RESUMO

BACKGROUND: Pathological cardiac hypertrophy is a result of afterload-increasing pathologies including untreated hypertension and aortic stenosis. It features progressive adverse cardiac remodeling, myocardial dysfunction, capillary rarefaction, and interstitial fibrosis often leading to heart failure. OBJECTIVES: This study aimed to establish a novel porcine model of pressure-overload-induced heart failure and to determine the effect of inhibition of microribonucleic acid 132 (miR-132) on heart failure development in this model. METHODS: This study developed a novel porcine model of percutaneous aortic constriction by implantation of a percutaneous reduction stent in the thoracic aorta, inducing progressive remodeling at day 56 (d56) after pressure-overload induction. In this study, an antisense oligonucleotide specifically inhibiting miR-132 (antimiR-132), was regionally applied via intracoronary injection at d0 (percutaneous transverse aortic constriction induction) and d28. RESULTS: At d56, antimiR-132 treatment diminished cardiomyocyte cross-sectional area (188.9 ± 2.8 vs. 258.4 ± 9.0 µm2 in untreated hypertrophic hearts) and improved global cardiac function (ejection fraction 48.9 ± 1.0% vs. 36.1 ± 1.7% in control hearts). Moreover, at d56 antimiR-132-treated hearts displayed less increase of interstitial fibrosis compared with sham-operated hearts (Δsham 1.8 ± 0.5%) than control hearts (Δsham 10.8 ± 0.6%). Of note, cardiac platelet and endothelial cell adhesion molecule 1+ capillary density was higher in the antimiR-132-treated hearts (647 ± 20 cells/mm2) compared with in the control group (485 ± 23 cells/mm2). CONCLUSIONS: The inhibition of miR-132 is a valid strategy in prevention of heart failure progression in hypertrophic heart disease and may be developed as a treatment for heart failure of nonischemic origin.


Assuntos
Antagomirs/administração & dosagem , Doenças da Aorta/complicações , Cardiomegalia/tratamento farmacológico , MicroRNAs/antagonistas & inibidores , Remodelação Ventricular/efeitos dos fármacos , Animais , Aorta Torácica/cirurgia , Cardiomegalia/complicações , Cardiomegalia/diagnóstico , Constrição , Constrição Patológica/complicações , Vasos Coronários , Modelos Animais de Doenças , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Injeções Intra-Arteriais , MicroRNAs/genética , MicroRNAs/metabolismo , Stents/efeitos adversos , Suínos , Resultado do Tratamento
13.
Mol Med Rep ; 24(1)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34036381

RESUMO

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that the data shown in Fig. 5 and 6 were the same as those featured in another paper by different authors. Owing to the fact that the contentious data in the above article were already under consideration for publication elsewhere prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they agreed with the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [the original article was published in Molecular Medicine Reports 11: 3601­3608, 2015; DOI: 10.3892/mmr.2015.3222].

14.
Hum Cell ; 34(4): 1051-1065, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33997944

RESUMO

MicroRNAs are a group of short non-coding RNAs (miRNAs), which are epigenetically involved in gene expression and other cellular biological processes and can be considered as potential biomarkers for cancer detection and support for treatment management. This review aims to amass the evidence to reach the molecular mechanism and clinical significance of miR-132 in different types of cancer. Dysregulation of miR-132 level in various types of malignancies, including hepatocellular carcinoma, breast cancer, colorectal cancer, gastric cancer, lung cancer, prostate cancer, osteosarcoma, pancreatic cancer, and ovarian cancer have reported, significantly decrease in its level, which can be indicated to its function as a tumor suppressor. miR-132 is involved in cell proliferation, migration, and invasion through cell cycle pathways, such as PI3K, TGFß or hippo signaling pathways, or on oncogenes such as Ras, AKT, mTOR, glycolysis. miR-132 could be potentially a candidate as a valuable biomarker for prognosis in various cancers. Through this study, we proposed that miR-132 can potentially be a candidate as a prognostic marker for early detection of tumor development, progression, as well as metastasis.


Assuntos
Biomarcadores Tumorais , Carcinogênese/genética , Carcinogênese/patologia , MicroRNAs , Neoplasias/genética , Neoplasias/patologia , Ciclo Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , Humanos , MicroRNAs/fisiologia , Invasividade Neoplásica/genética , Neoplasias/diagnóstico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas ras/metabolismo
15.
Front Cell Dev Biol ; 9: 570451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644040

RESUMO

Spinal cord ischemia-reperfusion (SCIR) injury is a serious complication of open surgical and endovascular aortic procedures. MicroRNA-132-3p (miR-132-3p) has been reported to be involved in the progression of various diseases, but its role in SCIR injury is unclear. Thus, we aimed in this study to investigate the mechanism of miR-132-3p in SCIR injury and explore its pathway as a therapeutic target for SCIR injury. We first constructed a SCIR injury rat model and documented motor function in the model. Reverse transcription quantitative polymerase chain reaction (RT-qPC)R and Western blot analysis were used to detect the expression of miR-132-3p and mitogen-activated protein kinase kinase kinase 3 (MEKK3) in SCIR injury rats. The interaction between miR-132-3p and MEKK3 was identified by dual-luciferase reporter gene assay. Then, the effects of miR-132-3p and MEKK3 on macrophage M1 polarization were evaluated in vitro and in vivo by altering their expression in macrophages of SCIR injury rats, with treatments altering the nuclear factor-kappaB (NF-κB) and c-Jun N-terminal kinase (JNK)/p38 signaling pathways using SP600125, SB203580, or PDTC. The SCIR injury rats had a high Tarlov score and low miR-132-3p expression along with high MEKK3 expression. miR-132-3p could directly bind to MEKK3, and that macrophage M1 polarization and inflammation could be inhibited by overexpression of miR-132-3p through downregulating MEKK3 and inactivating the NF-κB and p38/JNK signaling pathways. Besides, increased miR-132-3p expression could decrease the injured rat Tarlov score. Overall, our study demonstrated that miR-132-3p can suppress M1 polarization of macrophages and alleviate SCIR injury by blocking the MEKK3-dependent activation of the NF-κB and p38/JNK signaling pathway. Thus, miR-132-3p and its downstream pathways may be useful targets to alleviate the symptoms of SCIR injury.

16.
Nanomedicine ; 34: 102375, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33617970

RESUMO

MicroRNA132 (miR132) negatively regulates the differentiation of mouse embryonic stem cells (ESCs) into dopaminergic (DAergic) neurons; in contrast, antisense oligonucleotide against miR132 (miR132-ASO) effectively blocks the activity of endogenous miR132 and thereafter promotes the differentiation of DAergic neurons. However, it is difficult for miR132-ASO to enter cells without a suitable delivery system. Tetrahedral DNA nanostructures (TDNs), as a new type of DNA-based nanocarrier, have great potential in biomedical applications and even have been reported to promote stem cell differentiation. In this study, we developed functional multivalent DNA nanostructures by appending miR132-ASO motifs to three-dimensional TDNs (miR132-ASO-TDNs). Our data clearly revealed that miR132-ASO-TDNs exposure can promote the differentiation of ESCs into DAergic neurons as well as elevate DA release from differentiated DAergic neurons. MiR132-ASO-TDNs could serve as a novel biofunctional nanomaterial to improve the efficiency of DAergic neurons differentiation. Our findings may also provide a new approach for stem cell therapy against neurodegenerative diseases.


Assuntos
Diferenciação Celular/efeitos dos fármacos , DNA/química , Neurônios Dopaminérgicos/efeitos dos fármacos , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Conformação de Ácido Nucleico , RNA Antissenso/farmacologia , Animais , Linhagem Celular , Neurônios Dopaminérgicos/citologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia
17.
Aging (Albany NY) ; 13(10): 14469-14481, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154189

RESUMO

The present study aims to elucidate the potential therapeutic role of lncRNA XIST in gastric cancer through regulation of microRNA-132 (miR-132) and paxillin (PXN) expression. The study employed 65 gastric cancer tissue specimens and SGC7901 cell lines. Our results demonstrated that expression of lncRNA XIST and PXN was significantly elevated while the expression of miR-132 was significantly reduced in gastric cancer tissues. Dual-luciferase, RNA pull-down and RIP assays demonstrated that lncRNA XIST up-regulated the PXN expression by competitively binding to miR-132. Moreover, silencing of lncRNA XIST and up-regulation of miR-132 could suppress tumor formation ability, cell proliferation and migration, but enhanced apoptosis in gastric cancer. However, the overexpression of PXN achieved the opposite tumor-promotive effect. Meanwhile, rescue experiments suggested that silencing of lncRNA XIST could reverse the tumor-promotive effect exerted by either miR-132 inhibitor or PXN. Taken together, the present study demonstrates lncRNA XIST as a novel oncogenic lncRNA in gastric cancer, highlighting its therapeutic role in this disease.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Paxilina/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Feminino , Gastrectomia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , Estômago/patologia , Estômago/cirurgia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/cirurgia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncol Lett ; 20(6): 385, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33154782

RESUMO

5-Fluorouracil (5-FU)-based chemotherapy is the first-line option for patients with advanced colorectal cancer (CRC). However, the development of chemoresistance is the primary cause of treatment failure. Halofuginone (HF), a small molecule alkaloid derived from febrifugine, has been demonstrated to exert strong anti-proliferative effects. However, to the best of our knowledge, whether HF inhibits the progression of 5-FU-resistant human CRC HCT-15/FU cells, and the underlying mechanisms, remain unknown. In the present study, the effects of HF on HCT-15/FU cells were assessed in vitro. The results revealed that HF inhibited HCT-15/FU cell viability as demonstrated by the MTT and colony formation assays. Following treatment of HCT-15/FU cells with HF, the migratory and invasive capacities of the cells were significantly decreased. MicroRNA (miRNA/miR)-sequencing data, subsequent miRNA trend analysis and reverse transcription-quantitative PCR all demonstrated that miR-132-3p expression was increased following treatment with HF in a dose-dependent manner. Western blot analysis indicated that following treatment with HF, the expression levels of proteins associated with proliferation, invasion and metastasis in cells were markedly downregulated. These results suggested that HF inhibited the proliferation, invasion and migration of HCT-15/FU cells by upregulating the expression levels of miR-132-3p. Therefore, miR-132-3p may serve as a molecular marker, which may be used to predict CRC resistance to 5-FU, and HF may serve as a novel clinical treatment for 5-FU-resistant CRC.

19.
Brain Res ; 1748: 147057, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32898508

RESUMO

C5a is a crucial terminal effector of the C cascade, mostly involved in pain and neuroinflammatory conditions. DF3016A is a novel potent and selective C5a receptor (C5aR) inhibitor that crosses the blood-brain barrier (BBB) and may have pharmacological properties. We have previously demonstrated a protective effect of DF3016A on injured primary cortical neurons by oxygen-glucose deprivation-reoxygenation (OGD/R) model to mimic the neuroinflammatory process. Here, we investigated the molecular pathway and factors involved in the neuroprotection previously reported. Our findings show that DF3016A protects against the neuroinflammatory insult by activating brain-derived neurotrophic factor (BDNF) transcription pathway, which involves methyl CpG-binding protein 2 (MeCP2) and microRNA-132 (miR-132) regulatory factors, both required in nociceptive signaling and neuroinflammation. Further in vivo investigations will confirm the functionality of the DF3016A molecule as a therapeutic resource in neuroinflammation and pain injuries.


Assuntos
Isquemia Encefálica/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Inativadores do Complemento/farmacologia , Neurônios/efeitos dos fármacos , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
20.
J Cell Mol Med ; 24(21): 12750-12764, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32965772

RESUMO

The effects of mesenchymal stem cells (MSCs) on different types of diseases are controversial, and the inner mechanisms remain unknown, which retards the utilization of MSCs in disease therapy. In this study, we aimed to elucidate the mechanisms of MSCs-extracellular vesicles (EVs) carrying transforming growth factor-beta 1 (TGF-ß1) in M2 polarization in mouse macrophages via the microRNA-132 (miR-132)/E3 ubiquitin ligase myc binding protein 2 (Mycbp2)/tuberous sclerosis complex 2 (TSC2) axis. Mouse MSCs were isolated for adipogenic and osteogenic induction, followed by co-culture with mouse macrophages RAW264.7. Besides, mouse macrophages RAW264.7 were co-cultured with MSCs-EVs in vitro, where the proportion of macrophages and inflammation were detected by flow cytometry and ELISA. The experimental data revealed that MSCs-EVs promoted M2 polarization of macrophages, and elevated interleukin (IL)-10 expression and inhibited levels of IL-1ß, tumour necrosis factor (TNF)-α and IL-6. MSC-EV-treated macrophages RAW264.7 increased TGF-ß1 expression, thus elevating miR-132 expression. MiR-132 directly bound to Mycbp2, as confirmed by luciferase activity assay. Meanwhile, E3 ubiquitin ligase Mycbp2 could ubiquitinate TSC2 protein. Furthermore, silencing TGF-ß1 inhibited M2 polarization of MSC-EV-treated macrophages. Taken conjointly, this study provides evidence reporting that MSC-secreted EVs carry TGF-ß1 to promote M2 polarization of macrophages via modulation of the miR-132/Mycbp2/TSC2 axis.


Assuntos
Polaridade Celular/genética , Vesículas Extracelulares/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima/genética , Animais , Sequência de Bases , Separação Celular , Regulação para Baixo/genética , Células HEK293 , Humanos , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Modelos Biológicos , Fenótipo , Proteólise , Células RAW 264.7 , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...