Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 807
Filtrar
1.
Front Microbiol ; 15: 1358582, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962118

RESUMO

Under a full straw returning system, the relationship between soil bacterial community diversity and straw decomposition, yield, and the combined application of slow-release nitrogen and urea remains unclear. To evaluate these effects and provide an effective strategy for sustainable agricultural production, a 2-year field positioning trial was conducted using maize as the research object. Six experimental treatments were set up: straw returning + no nitrogen fertilizer (S1N0), straw returning + slow-release nitrogen fertilizer:urea = 0:100% (S1N1), straw returning + slow-release nitrogen fertilizer:urea = 30%:70% (S1N2), straw returning + slow-release nitrogen fertilizer:urea = 60%:40% (S1N3), straw returning + slow-release nitrogen fertilizer:urea = 90%:10% (S1N4), and straw removal + slow-release nitrogen fertilizer:urea = 30%:70% (S0N2). Significant differences (p < 0.05) were observed between treatments for Proteobacteria, Acidobacteriota, Myxococcota, and Actinobacteriota at the jointing stage; Proteobacteria, Acidobacteriota, Myxococcota, Bacteroidota, and Gemmatimonadota at the tasseling stage; and Bacteroidota, Firmicutes, Myxococcota, Methylomirabilota, and Proteobacteria at the maturity stage. The alpha diversity analysis of the soil bacterial community showed that the number of operational taxonomic units (OTUs) and the Chao1 index were higher in S1N2, S1N3, and S1N4 compared with S0N2 at each growth stage. Additionally, the alpha diversity measures were higher in S1N3 and S1N4 compared with S1N2. The beta diversity analysis of the soil bacterial community showed that the bacterial communities in S1N3 and S1N4 were more similar or closely clustered together, while S0N2 was further from all treatments across the three growth stages. The cumulative straw decomposition rate was tested for each treatment, and data showed that S1N3 (90.58%) had the highest decomposition rate. At the phylum level, straw decomposition was positively correlated with Proteobacteria, Actinobacteriota, Myxococcota, and Bacteroidota but significantly negatively correlated with Acidobacteriota. PICRUSt2 function prediction results show that the relative abundance of bacteria in soil samples from each treatment differed significantly. The maize yield of S1N3 was 15597.85 ± 1477.17 kg/hm2, which was 12.80 and 4.18% higher than that of S1N1 and S0N2, respectively. In conclusion, a combination of slow-release nitrogen fertilizer and urea can enhance the straw decomposition rate and maize yield by improving the soil bacterial community and structure within a full straw returning system.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38967850

RESUMO

The synergistic remediation of heavy metal-contaminated soil by functional strains and biochar has been widely studied. However, the mechanisms by which urease-producing bacteria combine with pig manure biochar (PMB) to immobilize Cd and inhibit Cd absorption in vegetables are still unclear. In our study, the effects and mechanisms of PMB combined with the urease-producing bacterium TJ6 (TJ6 + PMB) on Cd adsorption were explored. The effects of TJ6 + PMB on the Cd content and pH of the leachate were also studied through a 56-day soil leaching experiment. Moreover, the effects of the complexes on Cd absorption and microbial mechanisms in lettuce were explored through pot experiments. The results showed that PMB provided strain TJ6 with a greater ability to adsorb Cd, inducing the generation of CdS and CdCO3, and thereby reducing the Cd content (71.1%) and increasing the pH and urease activity in the culture medium. TJ6 + PMB improved lettuce dry weight and reduced Cd absorption. These positive effects were likely due to (1) TJ6 + PMB increased the organic matter and NH4+ contents, (2) TJ6 + PMB transformed available Cd into residual Cd and decreased the Cd content in the leachate, and (3) TJ6 + PMB altered the structure of the rhizosphere bacterial and fungal communities in lettuce, increasing the relative abundances of Stachybotrys, Agrocybe, Gaiellales, and Gemmatimonas. These genera can promote plant growth, decompose organic matter, and release phosphorus. Interestingly, the fungal communities were more sensitive to the addition of TJ6 and PMB, which play important roles in the decomposition of organic matter and immobilization of Cd. In conclusion, this study revealed the mechanism by which urease-producing bacteria combined with pig manure biochar immobilize Cd and provided a theoretical basis for safe pig manure return to Cd-polluted farmland. This study also provides technical approaches and bacterial resources for the remediation of heavy metal-contaminated soil.

3.
Chemosphere ; : 142753, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971439

RESUMO

Providing many millions of rural households with decentralized sanitation facilities remains challenging. In undeveloped areas, cesspools have still been widely used due to technologically simple and low-cost. However, the influence of cesspools on the surrounding soil remains unclear. In this study, we investigated the influence of a 25-year-old household cesspool on soil physicochemical factors, microbial community composition and function, pathogens and antibiotic resistance genes (ARGs). Soil at the depth around the sewage liquid level (D70) was mostly disturbed where TOC, NO3-N and TP was increased to 16.8 g/kg, 18.2 mg/kg and 1.02 mg/kg respectively. Correspondingly, the element cycling genes of carbon fixation, methanotrophy, nitrogen fixation, ammonia oxidation, and nitrate reduction etc., were increased at D70. Notably, human derived pathogens such as Enterobacter, Salmonella, Pseudomonas aeruginosa, Klebsiella pneumoniae, Prevotella, and Vibrio were highly enriched by 5-10 folders in D70, indicating the potential health risk to human. Mantel tests suggested that EC, TP, pH, NH3-N and particularly NO3-N are important factors that influence the microbial community and element cycling genes in cesspool-affected soil. Overall, this study revealed the impact of household cesspool leakage on the surrounding soil and provided information for the selection and construction of basic sanitation facilities in poor regions.

4.
Bioresour Technol ; 407: 131094, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986885

RESUMO

Triclosan (TCS), a hydrophobic antibacterial agent, is extensive application in daily life. Despite a low biodegradability rate, its hydrophobicity results in its accumulation in waste-activated sludge (WAS) during domestic and industrial wastewater treatment. While anaerobic digestion is the foremost strategy for WAS treatment, limited research has explored the interphase migration behavior and impacts of TCS on WAS degradation during anaerobic digestion. This study revealed TCS migration between solid- and liquid-phase in WAS digestion. The solid-liquid distribution coefficients of TCS were negative for proteins and polysaccharides and positive for ammonium. High TCS levels promoted volatile-fatty-acid accumulation and reduced methane production. Enzyme activity tests and functional prediction indicated that TCS increased enzyme activity associated with acid production, in contrast to the inhibition of key methanogenic enzymes. The findings of the TCS migration behavior and its impacts on WAS anaerobic digestion provide an in-depth understanding of the evolution of enhanced TCS-removing technology.

5.
J Environ Manage ; 366: 121801, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39013314

RESUMO

Microplastics (MPs) are prevalent in diverse environmental settings, posing a threat to plants and animals in the water and soil and even human health, and eventually converged in wastewater treatment plants (WWTPs), threatening the stable operation of anaerobic ammonium oxidation (anammox). Consequently, a comprehensive summary of their impacts on anammox and the underlying mechanisms must be provided. This article reviews the sources and removal efficiency of MPs in WWTPs, as well as the influencing factors and mechanisms on anammox systems. Numerous studies have demonstrated that MPs in the environment can enter WWTPs via domestic wastewater, rainwater, and industrial wastewater discharges. More than 90% of these MPs are found to accumulate in the sludge following their passage through the treatment units of the WWTPs, affecting the characteristics of the sludge and the efficiency of the microorganisms treating the wastewater. The key parameters of MPs, encompassing concentration, particle size, and type, exert a notable influence on the nitrogen removal efficiency, physicochemical characteristics of sludge, and microbial community structure in anammox systems. It is noteworthy that extracellular polymer secretion (EPS) and reactive oxygen stress (ROS) are important impact mechanisms by which MPs exposure affects anammox systems. In addition, the influence of MPs exposure on the microbial community structure of anammox cells represents a crucial mechanism that demands attention. Future research endeavors will delve into additional crucial parameters of MPs, such as shape and aging, to investigate their effects and mechanisms on anammox. Furthermore, the effective mitigation strategies will also be developed. The paper provides a fresh insight to reveal the influences of MPs exposure on the anammox process and its influence mechanisms, and lays the groundwork for further exploration into the influence of MPs on anammox and potential mitigation strategies.

6.
Sci Total Environ ; : 174783, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009168

RESUMO

Vegetation restoration in metallic tailing reservoirs is imperative to restore the post-mining degraded ecosystems. Extracellular enzymes determine microbial resource acquisition in soils, yet the mechanisms controlling the enzyme activity and stoichiometry during vegetation restoration in metallic tailing reservoirs remain elusive. Here, we investigated the variations and drivers of C-, N- and P-acquiring enzymes together with microbial community along a 50-year vegetation restoration chronosequence in the China's largest vanadium titano-magnetite tailing reservoir. We found a parabolic pattern in the enzyme activity and efficiency along the chronosequence, peaking at the middle restoration stage (~30 years) with approximately six-fold increase relative to the initial 1-year site. The enzyme ratios of C:P and N:P decreased by 33 % and 68 % along the chronosequence, respectively, indicating a higher microbial demand of C and N at the early stage and a higher demand of P at the later stage. Soil nutrients directly determined the enzyme activities and stoichiometry, whereas microbial biomass and community structure regulated the temporal pattern of the enzyme efficiency. Surprisingly, increased heavy metal pollution imposed a positive effect on the enzyme efficiency indirectly by altering microbial community structure. This was evidenced by the increased microbial diversity and the conversion of copiotrophic to oligotrophic and stress-tolerant taxa along the chronosequence. Our findings provide new insights into microbial functioning in soil nutrient dynamics during vegetation restoration under increasing heavy metal pollution.

7.
Plants (Basel) ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891381

RESUMO

Clean tillage frequently causes the loss of soil nutrients and weakens microbial ecosystem service functions. In order to improve orchard soil nutrient cycling, enhance enzyme activities and microbial community structure in a "Jiro" sweet persimmon orchard, sod culture management was carried out to clarify the relationship among soil nutrient, microbial communities, and fruit yield and quality in persimmon orchard. The results showed that sod culture management increased the content of organic matter, total organic carbon, nitrogen, phosphorus, and potassium in the soil, thus improving soil fertility. Compared with clean tillage orchards, sod culture methods significantly increased soil enzyme activities and microbial biomass carbon (MBC) content. The abundance-based coverage estimator (ACE) and the simplest richness estimators (Chao l) indices of the bacterial community and all diversity and richness indices of the fungal community significantly increased in the sod culture orchard, which indicated that sod culture could increase the richness and diversity of the soil microbial community. The dominant bacterial phyla were Proteobacteria (32.21~41.13%) and Acidobacteria (18.76~23.86%), and the dominant fungal phyla were Mortierellomycota (31.11~83.40%) and Ascomycota (3.45~60.14%). Sod culture drove the composition of the microbial community to increase the beneficial microbiome. Correlation analyses and partial least squares path modeling (PLS-PM) comparative analyses showed that the soil chemical properties (mainly including soil organic matter content, total organic carbon content, total potassium content, and total nitrogen content), soil enzyme activities and soil microorganisms were strongly correlated with fruit yield and quality. Meanwhile, soil nutrient, soil enzyme, and soil microbes had also influenced each other. Our results showed that long-term ryegrass planting could improve soil fertility, enzyme activities, and microbial community compositions. Such changes might lead to a cascading effect on the fruit yield and quality of "Jiro" sweet persimmons.

8.
Environ Res ; 258: 119461, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909945

RESUMO

Microaerobic sludge bed systems could align with low-energy, reasonable carbon-nitrogen (C/N) ratio, and synchronous removal objectives during wastewater treatment. However, its ability to treat municipal wastewater (MW) with varying low C/N ratio, low NH4+ concentration, along with managing sludge bulking and loss are still unclear. Against this backdrop, this study investigated the performance of an Upflow Microaerobic Sludge Bed Reactor (UMSR) treating MW characterized by varying low C/N ratios and low NH4+ concentrations. The study also thoroughly examined associated sludge bulking and loss, pollutant removal efficiencies, sludge settleability, microbial community structures, functional gene variations, and metabolic pathways. Findings revealed that the effluent NH4+-N concentration gradually decreased to 0 mg/L with a decrease in the C/N ratio, whereas the effluent COD was unaffected by the influent, maintaining a concentration below 50 mg/L. Notably, TN removal efficiency reached 90% when C/N ratio was 3. The decrease in the C/N ratio (C/N ratio was 1) increased microbial community diversity, with abundances of AOB, AnAOB, aerobic denitrifying bacteria, and anaerobic digestion bacteria reaching 8.34%, 0.96%, 5.07%, and 9.01%, respectively. Microorganisms' metabolic pathways significantly shifted, showing increased carbohydrate and cofactor/vitamin metabolism and decreased amino acid metabolism and xenobiotic biodegradation. This study not only provides a solution for the effluent of different pre-capture carbon processes but also demonstrates the UMSR's capability in managing low C/N ratio municipal wastewater and emphasizes the critical role of microbial community adjustments and functional gene variations in enhancing nitrogen removal efficiency.

9.
J Hazard Mater ; 476: 135024, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38943882

RESUMO

The particle size distribution in tailings notably influences their physical properties and behavior. Despite this, our understanding of how the distribution of tailings particle sizes impacts in situ pollution and ecological remediation in in-situ environment remains limited. In this study, an iron tailings reservoir was sampled along a particle flow path to compare the pollution characteristic and microbial communities across regions with different particle sizes. The results revealed a gradual reduction in tailings particle size along the flow direction. The predominant mineral composition shifts from minerals such as albite and quartz to layered minerals. Total nitrogen, total organic carbon, and total metal concentrations increased, whereas the acid-generating potential decreased. The region with the finest tailings particle size exhibited the highest microbial diversity, featuring metal-resistant microorganisms such as KD4-96, Micrococcaceae, and Acidimicrobiia. Significant discrepancies were observed in tailings pollution and ecological risks across different particle sizes. Consequently, it is necessary to assess tailings reservoirs pollution in the early stages of remediation before determining appropriate remediation methods. These findings underscore that tailings particle distribution is a critical factor in shaping geochemical characteristics. The responsive nature of the microbial community further validated these outcomes and offered novel insights into the ecological remediation of tailings.

10.
PeerJ ; 12: e17452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903883

RESUMO

Background: Conventional biofilters, which rely on bacterial activity, face challenges in eliminating hydrophobic compounds, such as aromatic compounds. This is due to the low solubility of these compounds in water, which makes them difficult to absorb by bacterial biofilms. Furthermore, biofilter operational stability is often hampered by acidification and drying out of the filter bed. Methods: Two bioreactors, a bacterial biofilter (B-BF) and a fungal-bacterial coupled biofilter (F&B-BF) were inoculated with activated sludge from the secondary sedimentation tank of the Sinopec Yangzi Petrochemical Company wastewater treatment plant located in Nanjing, China. For approximately 6 months of operation, a F&B-BF was more effective than a B-BF in eliminating a gas-phase mixture containing benzene, toluene, ethylbenzene, and para-xylene (BTEp-X). Results: After operating for four months, the F&B-BF showed higher removal efficiencies for toluene (T), ethylbenzene (E), benzene (B), and para-X (p-Xylene), at 96.9%, 92.6%, 83.9%, and 83.8%, respectively, compared to those of the B-BF (90.1%, 78.7%, 64.8%, and 59.3%). The degradation activity order for B-BF and F&B-BF was T > E > B > p-X. Similarly, the rates of mineralization for BTEp-X in the F&B-BF were 74.9%, 66.5%, 55.3%, and 45.1%, respectively, which were higher than those in the B-BF (56.5%, 50.8%, 43.8%, and 30.5%). Additionally, the F&B-BF (2 days) exhibited faster recovery rates than the B-BF (5 days). Conclusions: It was found that a starvation protocol was beneficial for the stable operation of both the B-BF and F&B-BF. Community structure analysis showed that the bacterial genus Pseudomonas and the fungal genus Phialophora were both important in the degradation of BTEp-X. The fungal-bacterial consortia can enhance the biofiltration removal of BTEp-X vapors.


Assuntos
Bactérias , Derivados de Benzeno , Reatores Biológicos , Filtração , Fungos , Xilenos , Xilenos/metabolismo , Xilenos/química , Filtração/métodos , Fungos/metabolismo , Derivados de Benzeno/metabolismo , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Biodegradação Ambiental , Tolueno/metabolismo , Benzeno/metabolismo , China , Biofilmes
11.
Chemosphere ; 362: 142644, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901698

RESUMO

Understanding the microbial community structure of sludge is crucial for improving the design, operation and optimisation of full-scale wastewater treatment plants (WWTPs). This study aimed to have a comprehensive comparison of microbial communities between aerobic granular sludge and flocculent sludge from two full-scale sequential batch reactors-based WWTPs with nutrient removal for the first time. To better understand key functional bacteria such as polyphosphate accumulating bacteria (PAOs), competitive bacteria such as glycogen accumulating bacteria (GAOs) and nitrifying bacteria for both nitrogen and phosphorus removal, another two full-scale WWTPs with only carbon (C) removal and C and nitrogen (N) removal were compared too. It was found that the richness and diversity of the microbial population in sludge increased with pollutant removal from only C, C and N, to C,N, P removal. For C, N P removal, granule structure led to a more diverse and rich microbial community structure than flocculent structure. Although more abundant nitrifying bacteria were enriched in granular sludge than flocculent sludge, the abundance of total putative PAOs was equivalent. However, the most typical putative PAOs such as Tetrasphaera and Candidatus Accumulibacter seemed to be more correlated with biological phosphorus removal performance, which might be more proper to be used as an indication for P removal potential. The higher abundance of GAOs in flocculent sludge with better phosphorus removal performance might suggest that further investigation is needed to understand the functions of GAOs. In addition, the equivalent abundances of PAOs in the WWTPs with only C removal and with C, N, and P removal, respectively, indicate that many newly reported putative PAOs might not contribute to P removal. This study provides insight into the microbial communities and functional bacteria in aerobic granular sludge and flocculent sludge in full-scale SBRs, which can provide microbes-informed optimisation of reactor operation for better nutrient removal.

12.
Microorganisms ; 12(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38930555

RESUMO

Salt-tolerant aerobic granular sludge(AGS) was successfully cultivated under the dual stress of tetracycline and 2.5% salinity, resulting in an average particle size of 435.0 ± 0.5 and exhibiting a chemical oxygen demand(COD) removal rate exceeding 80%, as well as excellent sedimentation performance. The analysis of metagenomics technology revealed a significant pattern of succession in the development of AGS. The proportion of Oleiagrimonas, a type of salt-tolerant bacteria, exhibited a gradual increase and reached 38.07% after 42 days, which indicated that an AGS system based on moderate halophilic bacteria was successfully constructed. The expression levels of targeted genes were found to be reduced across the entire AGS process and formation, as evidenced by qPCR analysis. The presence of int1 (7.67 log10 gene copies g-1 in 0 d sludge sample) enabled microbes to horizontally transfer ARGs genes along the AGS formation under the double pressure of TC and 2.5% salinity. These findings will enhance our understanding of ARG profiles and the development in AGS under tetracycline pressure, providing a foundation for guiding the use of AGS to treat hypersaline pharmaceutical wastewater.

13.
Microorganisms ; 12(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930572

RESUMO

This study analyzed the effects of benzoic acid (BA) on the physicochemical properties and microbial community structure of perilla rhizosphere soil. The analysis was based on high-throughput sequencing technology and physiological and biochemical detection. The results showed that with the increase in BA concentration, soil pH significantly decreased, while the contents of total nitrogen (TN), alkaline nitrogen (AN), available phosphorus (AP), and available potassium (AK) significantly increased. The activities of soil conversion enzymes urease and phosphatase significantly increased, but the activities of catalase and peroxidase significantly decreased. This indicates that BA can increase soil enzyme activity and improve nutrient conversion; the addition of BA significantly altered the composition and diversity of soil bacterial and fungal communities. The relative abundance of beneficial bacteria such as Gemmatimonas, Pseudolabrys, and Bradyrhizobium decreased significantly, while the relative abundance of harmful fungi such as Pseudogymnoascus, Pseudoeurotium, and Talaromyces increased significantly. Correlation analysis shows that AP, AN, and TN are the main physicochemical factors affecting the structure of soil microbial communities. This study elucidates the effects of BA on the physicochemical properties and microbial community structure of perilla soil, and preliminarily reveals the mechanism of its allelopathic effect on the growth of perilla.

14.
Bioresour Technol ; 406: 131026, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917910

RESUMO

A bioelectrochemical upflow anaerobic sludge blanket (BE-UASB) was constructed and compared with the traditional UASB to investigate the role of bioelectrocatalysis in modulating methanogenesis and sulfidogensis involved within anaerobic treatment of high-sulfate methanolic wastewater (COD/SO42- ratio ≤ 2). Methane production rate for BE-UASB was 1.4 times higher than that of the single UASB, while SO42- removal stabilized at 16.7%. Bioelectrocatalysis selectively enriched key functional anaerobes and stimulated the secretion of extracellular polymeric substances, especially humic acids favoring electron transfer, thereby accelerating the electroactive biofilms development of electrodes. Methanomethylovorans was the dominant genus (35%) to directly convert methanol to CH4. Methanobacterium as CO2 electroreduction methane-producing archaea appeared only on electrodes. Acetobacterium exhibited anode-dependence, which provided acetate for sulfate-reducing bacteria (norank Syntrophobacteraceae and Desulfomicrobium) through synergistic coexistence. This study confirmed that BE-UASB regulated the microbial ecology to achieve efficient removal and energy recovery of high-sulfate methanolic wastewater.

15.
Biology (Basel) ; 13(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38927276

RESUMO

Utilizing and improving the productivity of reclaimed land are highly significant for alleviating the problem of food production shortage in China, and the integrated rice-frog farming model can improve soil fertility. However, there are few studies on the use of integrated rice-frog farming technology to improve the fertility of reclaimed land and increase its efficiency in food production. Therefore, this study was conducted to evaluate the effects of the rice-frog co-cropping mode on the soil fertility and microbial diversity of reclaimed land. A rice monoculture group (SF), low-density rice-frog co-cropping group (SD, 5000 frogs/mu, corresponds to 8 frogs/m2), and high-density rice-frog co-cropping group (SG, 10,000 frogs/mu, corresponds to 15 frogs/m2) were established and tested. The contents of total nitrogen, soil organic matter, available potassium, and available phosphorus of the soil in the SG group were significantly higher than those in the SF group (p < 0.05) in the mature stage of rice. Compared with the SF group, the SD and SG groups improved the soil microbial diversity and changed the structure of the microbial community. This study indicates that compared with the rice monoculture mode, the rice-frog co-cropping pattern can improve the soil fertility, as well as microbial diversity, of reclaimed land.

16.
Sci Total Environ ; 946: 174085, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908596

RESUMO

Coalbed methane (CBM) presents a promising energy source for addressing global energy shortages. Nonetheless, challenges such as low gas production from individual wells and difficulties in breaking gels at low temperatures during extraction hinder its efficient utilization. Addressing this, we explored native microorganisms within coal seams to degrade guar gum, thereby enhancing CBM production. However, the underlying mechanisms of biogenic methane production by synergistic biodegradation of lignite and guar gum remain unclear. Research results showed that the combined effect of lignite and guar gum enhanced the production, yield rate and concentration of biomethane. When the added guar gum content was 0.8 % (w/w), methane production of lignite and guar gum reached its maximum at 561.9 mL, which was 11.8 times that of single lignite (47.3 mL). Additionally, guar gum addition provided aromatic and tryptophan proteins and promoted the effective utilization of CC/CH and OCO groups on the coal surface. Moreover, the cooperation of lignite and guar gum accelerated the transformation of volatile fatty acids into methane and mitigated volatile fatty acid inhibition. Dominant bacteria such as Sphaerochaeta, Macellibacteroides and Petrimonas improved the efficiency of hydrolysis and acidification. Electroactive microorganisms such as Sphaerochaeta and Methanobacterium have been selectively enriched, enabling the establishment of direct interspecies electron transfer pathways. This study offers valuable insights for increasing the production of biogenic CBM and advancing the engineering application of microbial degradation of guar gum fracturing fluid. Future research will focus on exploring the methanogenic capabilities of lignite and guar gum in in-situ environments, as well as elucidating the specific metabolic pathways involved in their co-degradation.

17.
J Environ Manage ; 363: 121444, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852403

RESUMO

Waste activated sludge (WAS) and meat processing waste (MPW) were acted as co-substrates in anaerobic co-digestion (AcD), and biochemical methane potential (BMP) test was carried out to investigate the methane production performances. Microbial community structure and metabolic pathways analyses were conducted by 16S rRNA high-throughput sequencing and functional prediction analysis. BMP test results indicated that AcD of 70% WAS+30% MPW and 50% WAS+50% MPW (VS/VS) could significantly improve methane yield to 371.05 mL/g VS and 599.61 mL/g VS, respectively, compared with WAS acting as sole substrate (191.87 mL/g VS). The results of microbial community analysis showed that Syntrophomonas and Petrimonas became the dominant bacteria genera, and Methanomassiliicoccus and Methanobacterium became the dominant archaea genera after MPW addition. 16S functional prediction analysis results indicated that genes expression of key enzymes involved in syntrophic acetate oxidation (SAO), hydrogenotrophic and methylotrophic methanogenesis were up-regulated, and acetoclastic methanogenesis was inhibited after MPW addition. Based on these analyses, it could be inferred that SAO combined with hydrogenotrophic and methylotrophic methanogenesis was the dominant pathway for organics degradation and methane production during AcD. These findings provided systematic insights into the microbial community changes and metabolic pathways during AcD of WAS and MPW.


Assuntos
Metano , Esgotos , Esgotos/microbiologia , Anaerobiose , Metano/metabolismo , Redes e Vias Metabólicas , RNA Ribossômico 16S , Bactérias/metabolismo , Bactérias/genética , Carne , Archaea/metabolismo , Archaea/genética
18.
J Hazard Mater ; 475: 134939, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889466

RESUMO

Dense non-aqueous-phase liquids (DNAPLs) represent one of the most hazardous contaminants of groundwater, posing health risks to humans. Radon is generally used to trace DNAPLs; however, external factors, such as rainfall or stream water, can influence its efficacy. To overcome these limitations, this study pioneered the integration of radon and microbial community structures to explore DNAPL tracing and natural attenuation in the context of seasonal variations for human health risk assessments. The results showed that a radon tracer can estimate DNAPL saturation in the source zone, especially during the dry season when radon deficiency predominates. However, samples exhibited mixing effects during the wet season because of local precipitation. Moreover, bioremediation and low health risks were observed in the plume boundary zone, indicating that microbial dechlorination was a predominant factor determining these risks. The abnormal patterns of radon observed during the wet season can be elucidated by examining microbiological communities. Consequently, a combined approach employing radon and microbial analysis is advocated for the boundary zone, albeit with a less intensive management strategy, compared with that for the source zone. This novel coupling method offers a theoretical and practical foundation for managing DNAPL-contaminated groundwater.


Assuntos
Água Subterrânea , Radônio , Estações do Ano , Poluentes Radioativos da Água , Água Subterrânea/microbiologia , Água Subterrânea/química , Radônio/análise , Medição de Risco , Poluentes Radioativos da Água/análise , Microbiologia da Água , Humanos , Biodegradação Ambiental
19.
Int J Biol Macromol ; 273(Pt 1): 132877, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848847

RESUMO

In this study, 16S rDNA high-throughput sequencing, Fourier transform infrared spectroscopy, and two-dimensional correlation spectroscopy techniques were used to analyze the mechanisms driving the sequence of degradation of gummy substances by the microbial community and hydrolytic enzymes during the flax dew degumming process. The results revealed that the inoculation of combined bacteria induced quorum sensing, modulated hydrolytic enzyme production, and reshaped the community structure. Lignin-degraded genera (Pseudomonas and Sphingobacterium) were enriched, and the relative abundances of pectin- and cellulose-degraded genera (Chryseobacterium) decreased in the early degumming stages. Hemicellulose-degraded genera (Brevundimonas) increased over the degumming time. Moreover, the abundance of lignin hydrolytic enzymes improved in the early stages, while the abundance of pectin hydrolytic enzymes increased at the end of degumming. Various types of functional bacteria taxa changed the sequence of substance degradation. Electron scanning microscopy and differential scanning calorimetry results indicated that the degumming, facilitated by the inoculation of combined bacteria, was nearly completed by 21 d. The fibers exhibited smoother and more intact properties, along with higher thermal stability, as indicated by a melting temperature of 71.54 °C. This study provides a reference for selecting precise degumming bacterial agents to enhance degumming efficiency.


Assuntos
Bactérias , Linho , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Linho/microbiologia , Lignina/metabolismo , Lignina/química , Hidrólise , Espectroscopia de Infravermelho com Transformada de Fourier , Filogenia , RNA Ribossômico 16S/genética , Pectinas/metabolismo , Celulose/metabolismo
20.
Environ Res ; 257: 119250, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38844031

RESUMO

Aquatic ecosystems are being increasingly polluted by microplastics (MPs), which calls for an understanding of how MPs affect microbially driven biogenic element cycling in water environments. A 28-day incubation experiment was conducted using freshwater lake water added with three polymer types of MPs (i.e., polyethylene, polypropylene, polystyrene) separately or in combination at a concentration of 1 items/L. The effects of various MPs on microbial communities and functional genes related to carbon, nitrogen, phosphorus, and sulfur cycling were analyzed using metagenomics. Results showed that Sphingomonas and Novosphingobium, which were indicator taxa (genus level) in the polyethylene treatment group, made the largest functional contribution to biogenic element cycling. Following the addition of MPs, the relative abundances of genes related to methane oxidation (e.g., hdrD, frhB, accAB) and denitrification (napABC, nirK, norB) increased. These changes were accompanied by increased relative abundances of genes involved in organic phosphorus mineralization (e.g., phoAD) and sulfate reduction (cysHIJ), as well as decreased relative abundances of genes involved in phosphate transport (phnCDE) and the SOX system. Findings of this study underscore that MPs, especially polyethylene, increase the potential of greenhouse gas emissions (CO2, N2O) and water pollution (PO43-, H2S) in freshwater lakes at the functional gene level.


Assuntos
Gases de Efeito Estufa , Lagos , Metagenômica , Microplásticos , Poluentes Químicos da Água , Lagos/microbiologia , Lagos/química , Gases de Efeito Estufa/análise , Microplásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Poluição da Água/análise , Microbiota/efeitos dos fármacos , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...