Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1396116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040911

RESUMO

Veterinary medications are constantly being used for the diagnosis, treatment, and prevention of diseases in livestock. However, untreated veterinary drug active compounds are interminably discharged into numerous water bodies and terrestrial ecosystems, during production procedures, improper disposal of empty containers, unused medication or animal feed, and treatment procedures. This exhaustive review describes the different pathways through which veterinary medications enter the environment, discussing the role of agricultural practices and improper disposal methods. The detrimental effects of veterinary drug compounds on aquatic and terrestrial ecosystems are elaborated with examples of specific veterinary drugs and their known impacts. This review also aims to detail the mechanisms by which microbes degrade veterinary drug compounds as well as highlighting successful case studies and recent advancements in microbe-based bioremediation. It also elaborates on microbial electrochemical technologies as an eco-friendly solution for removing pharmaceutical pollutants from wastewater. Lastly, we have summarized potential innovations and challenges in implementing bioremediation on a large scale under the section prospects and advancements in this field.

2.
Bioelectrochemistry ; 159: 108741, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38810323

RESUMO

Greywater reuse has emerged as a promising solution for addressing water shortages. However, greywater needs treatment before reuse to meet the required water quality standards. Conventional wastewater treatment technologies are unsuitable for recreating highly decentralized domestic greywater. This study evaluated bioelectrochemical reactors (BERs) with granular activated carbon (GAC) as a sustainable alternative for developing decentralized and low-cost biological treatment systems. BERs using GAC as the anode material and conventional GAC biofilters (BFs) for synthetic greywater treatment were operated in batch mode for 110 days in two stages: (i) with polarized anodes at -150 mV vs. Ag/AgCl and (ii) as a microbial fuel cell with an external resistance of 1 kΩ. Anode polarization produced an electrosorption effect, increasing the ion removal of the BERs. Power production during the operation and cyclic voltammetry tests of the extracted granules revealed electrochemically active biofilm development on the BERs. Although low power density (0.193 ± 0.052 µW m-3) was observed in BERs, they showed a similar performance in sCOD removal (BER = 91.6-89.6 %; BF = 96.2-93.2 %) and turbidity removal (BER = 81-82 %; BF = 30-62 %) to BFs that used 50 % aeration. Additionally, scanning electron microscopy of sampled granules showed higher biomass formation in BER granules than in BF granules, suggesting a higher contribution of sessile (vs. planktonic) cells to the treatment. Thus, the results highlight the synergistic removal effect of the GAC-based BER. The scalable design presented in this study represents a proof-of-concept for developing BERs to use in decentralized greywater treatment systems.


Assuntos
Reatores Biológicos , Carvão Vegetal , Purificação da Água , Carvão Vegetal/química , Purificação da Água/métodos , Fontes de Energia Bioelétrica/microbiologia , Eletrodos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Biofilmes , Técnicas Eletroquímicas/métodos
3.
Bioelectrochemistry ; 158: 108711, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38626620

RESUMO

Addressing the simultaneous removal of multiple coexisting groundwater contaminants poses a significant challenge, primarily because of their different physicochemical properties. Indeed, different chemical compounds may necessitate establishing distinct, and sometimes conflicting, (bio)degradation and/or removal pathways. In this work, we investigated the concomitant anaerobic treatment of toluene and copper in a single-chamber bioelectrochemical cell with a potential difference of 1 V applied between the anode and the cathode. As a result, the electric current generated by the bioelectrocatalytic oxidation of toluene at the anode caused the abiotic reduction and precipitation of copper at the cathode, until the complete removal of both contaminants was achieved. Open circuit potential (OCP) experiments confirmed that the removal of copper and toluene was primarily associated with polarization. Analogously, abiotic experiments, at an applied potential of 1 V, confirmed that neither toluene was oxidized nor copper was reduced in the absence of microbial activity. At the end of each experiment, both electrodes were characterized by means of a comprehensive suite of chemical and microbiological analyses, evidencing a highly selected microbial community competent in the biodegradation of toluene in the anodic biofilm, and a uniform electrodeposition of spherical Cu2O nanoparticles over the cathode surface.


Assuntos
Cobre , Eletrodos , Água Subterrânea , Tolueno , Poluentes Químicos da Água , Tolueno/química , Tolueno/metabolismo , Cobre/química , Água Subterrânea/química , Água Subterrânea/microbiologia , Poluentes Químicos da Água/metabolismo , Anaerobiose , Biodegradação Ambiental , Técnicas Eletroquímicas/métodos , Oxirredução , Biofilmes , Purificação da Água/métodos , Fontes de Energia Bioelétrica/microbiologia
4.
J Hazard Mater ; 469: 133878, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447365

RESUMO

Microbial reductive dechlorination of organohalogenated pollutants is often limited by the scarcity of electron donors, that can be overcome with microbial electrochemical technologies (METs). In this study, polarized electrodes buried in marine sediment microcosms were investigated to stimulate PCB reductive dechlorination under potentiostatic (-0.7 V vs Ag/AgCl) and galvanostatic conditions (0.025 mA·cm-2-0.05 mA·cm-2), using graphite rod as cathode and iron plate as sacrificial anode. A single circuit and a novel two antiparallel circuits configuration (2AP) were investigated. Single circuit polarization impacted the sediment pH and redox potential (ORP) proportionally to the intensity of the electrical input and inhibited PCB reductive dechlorination. The effects on the sediment's pH and ORP, along with the inhibition of PCB reductive dechlorination, were mitigated in the 2AP system. Electrodes polarization stimulated sulfate-reduction and promoted the enrichment of bacterial clades potentially involved in sulfate-reduction as well as in sulfur oxidation. This suggested the electrons provided were consumed by competitors of organohalide respiring bacteria and specifically sequestered by sulfur cycling, which may represent the main factor limiting the applicability of METs for stimulating PCB reductive dechlorination in marine sediments.


Assuntos
Microbiota , Bifenilos Policlorados , Bifenilos Policlorados/análise , Biodegradação Ambiental , Bactérias , Sedimentos Geológicos/microbiologia , Eletrodos , Sulfatos , Enxofre , Cloro
5.
Bioresour Technol ; 389: 129809, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797801

RESUMO

The mounting threat of global warming, fuelled by industrialization and anthropogenic activities, is undeniable. In 2017, atmospheric carbon dioxide (CO2), the primary greenhouse gas, exceeded 410 ppm for the first time. Shockingly, on April 28, 2023, this figure surged even higher, reaching an alarming 425 ppm. Even though extensive research has been conducted on developing efficient carbon capture and storage technologies, most suffer from high costs, short lifespans, and significant environmental impacts. Recently, the use of engineered nanomaterials (ENM), particularly in microbial electrochemical technologies (METs), has gained momentum owing to their appropriate physicochemical properties and catalytic activity. By implementing ENM, the MET variants like microbial electrosynthesis (MES) and photosynthetic microbial fuel cells (pMFC) can enhance carbon capture efficiency with simultaneous bioenergy production and wastewater treatment. This review provides an overview of ENMs' role in carbon capture within MES and pMFC, highlighting advancements and charting future research directions.


Assuntos
Fontes de Energia Bioelétrica , Gases de Efeito Estufa , Nanoestruturas , Tecnologia , Dióxido de Carbono/química
6.
Sci Total Environ ; 903: 166082, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544438

RESUMO

Microbial electrochemical technologies are promising for simultaneous energy recovery and wastewater treatment. Although the inhibitory effects of emerging pollutants, particularly micro/nanoplastics (MPs/NPs), on conventional wastewater systems have been extensively studied, the current understanding of their impact on microbial electrochemical systems is still quite limited. Microplastics are plastic particles ranging from 1 µm to 5 mm. However, nanoplastics are smaller plastic particles ranging from 1 to 100 nm. Due to their smaller size and greater surface area, they can penetrate deeper into biofilm structures and cell membranes, potentially disrupting their integrity and leading to changes in biofilm composition and function. This study first reports the impact of polystyrene nanoplastics (PsNPs) on syntrophic anode microbial communities in a microbial electrolysis cell. Low concentrations of PsNPs (50 and 250 µg/L) had a minimal impact on current density and hydrogen production. However, 500 µg/L of PsNPs decreased the maximum current density and specific hydrogen production rate by ∼43 % and ∼48 %, respectively. Exposure to PsNPs increased extracellular polymeric substance (EPS) levels, with a higher ratio of carbohydrates to proteins, suggesting a potential defense mechanism through EPS secretion. The downregulation of genes associated with extracellular electron transfer was observed at 500 µg/L of PsNPs. Furthermore, the detrimental impact of 500 µg/L PsNPs on the microbiome was evident from the decrease in 16S rRNA gene copies, microbial diversity, richness, and relative abundances of key electroactive and fermentative bacteria. For the first time, this study presents the inhibitory threshold of any NPs on syntrophic electroactive biofilms within a microbial electrochemical system.

7.
Chemosphere ; 338: 139467, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37437617

RESUMO

Subsurface co-contamination by multiple pollutants can be challenging for the design of bioremediation strategies since it may require promoting different and often antagonistic degradation pathways. Here, we investigated the simultaneous degradation of toluene and chloroform (CF) in a continuous-flow anaerobic bioelectrochemical reactor. As a result, 47 µmol L-1 d-1 of toluene and 60 µmol L-1 d-1 of CF were concurrently removed, when the anode was polarized at +0.4 V vs. Standard Hydrogen Electrode (SHE). Analysis of the microbial community structure and key functional genes allowed to identify the involved degradation pathways. Interestingly, when acetate was supplied along with toluene, to simulate the impact of a readily biodegradable substrate on process performance, toluene degradation was adversely affected, likely due to competitive inhibition effects. Overall, this study proved the efficacy of the developed bioelectrochemical system in simultaneously treating multiple groundwater contaminants, paving the way for the application in real-world scenarios.


Assuntos
Água Subterrânea , Microbiota , Poluentes Químicos da Água , Biodegradação Ambiental , Tolueno/química , Clorofórmio , Anaerobiose , Água Subterrânea/química , Poluentes Químicos da Água/química
8.
Water Res ; 242: 120279, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451189

RESUMO

Research on electroactive microorganisms (EAM) often focuses either on their physiology and the underlying mechanisms of extracellular electron transfer or on their application in microbial electrochemical technologies (MET). Thermodynamic understanding of energy conversions related to growth and activity of EAM has received only a little attention. In this study, we aimed to prove the hypothesized restricted energy harvest of EAM by determining biomass yields by monitoring growth of acetate-fed biofilms presumably enriched in Geobacter, using optical coherence tomography, at three anode potentials and four acetate concentrations. Experiments were concurrently simulated using a refined thermodynamic model for EAM. Neither clear correlations were observed between biomass yield and anode potential nor acetate concentration, albeit the statistical significances are limited, mainly due to the observed experimental variances. The experimental biomass yield based on acetate consumption (YX/ac = 37 ± 9 mgCODbiomass gCODac-1) was higher than estimated by modeling, indicating limitations of existing growth models to predict yields of EAM. In contrast, the modeled biomass yield based on catabolic energy harvest was higher than the biomass yield from experimental data (YX/cat = 25.9 ± 6.8 mgCODbiomass kJ-1), supporting restricted energy harvest of EAM and indicating a role of not considered energy sinks. This calls for an adjusted growth model for EAM, including, e.g., the microbial electrochemical Peltier heat to improve the understanding and modeling of their energy metabolism. Furthermore, the reported biomass yields are important parameters to design strategies for influencing the interactions between EAM and other microorganisms and allowing more realistic feasibility assessments of MET.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Biomassa , Transporte de Elétrons , Biofilmes , Acetatos/metabolismo , Termodinâmica , Eletrodos , Geobacter/metabolismo
9.
Environ Sci Ecotechnol ; 15: 100253, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36896143

RESUMO

It has been recently suggested that Alcaligenes use a previously unknown pathway to convert ammonium into dinitrogen gas (Dirammox) via hydroxylamine (NH2OH). This fact alone already implies a significant decrease in the aeration requirements for the process, but the process would still be dependent on external aeration. This work studied the potential use of a polarised electrode as an electron acceptor for ammonium oxidation using the recently described Alcaligenes strain HO-1 as a model heterotrophic nitrifier. Results indicated that Alcaligenes strain HO-1 requires aeration for metabolism, a requirement that cannot be replaced for a polarised electrode alone. However, concomitant elimination of succinate and ammonium was observed when operating a previously grown Alcaligenes strain HO-1 culture in the presence of a polarised electrode and without aeration. The usage of a polarised electrode together with aeration did not increase the succinate nor the nitrogen removal rates observed with aeration alone. However, current density generation was observed along a feeding batch test representing an electron share of 3% of the ammonium removed in the presence of aeration and 16% without aeration. Additional tests suggested that hydroxylamine oxidation to dinitrogen gas could have a relevant role in the electron discharge onto the anode. Therefore, the presence of a polarised electrode supported the metabolic functions of Alcaligenes strain HO-1 on the simultaneous oxidation of succinate and ammonium.

10.
FEMS Microbiol Rev ; 47(2)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36941122

RESUMO

Power-to-X (P2X) technologies will play a more important role in the conversion of electric power to storable energy carriers, commodity chemicals and even food and feed. Among the different P2X technologies, microbial components form cornerstones of individual process steps. This review comprehensively presents the state-of-the-art of different P2X technologies from a microbiological standpoint. We are focusing on microbial conversions of hydrogen from water electrolysis to methane, other chemicals and proteins. We present the microbial toolbox needed to gain access to these products of interest, assess its current status and research needs, and discuss potential future developments that are needed to turn todays P2X concepts into tomorrow's technologies.


Assuntos
Eletrólise , Hidrogênio , Hidrogênio/metabolismo
11.
Environ Sci Technol ; 57(6): 2584-2594, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36731122

RESUMO

The combination of anaerobic digestion (AD) and microbial electrochemical technologies (METs) offers different opportunities to increase the efficiency and sustainability of AD processes. However, methanogenic archaea and/or particles may partially hinder combining MET and AD processes. Furthermore, it is unclear if the applied anode potential affects the activity and efficiency of electroactive microorganisms in AD-MET combinations as it is described for more controlled experimental conditions. In this study, we confirm that 6-week-old Geobacter spp. dominated biofilms are by far more active and stable in AD-effluents than 3-week-old Geobacter spp. dominated biofilms. Furthermore, we show that the biofilms are twice as active at -0.2 V compared to 0.4 V, even under challenging conditions occurring in AD-MET systems. Paired-end amplicon sequencing at the DNA level using 16S-rRNA and mcrA gene shows that hydrogenotrophic methanogens incorporate into biofilms immersed in AD-effluent without any negative effect on biofilm stability and electrochemical activity.


Assuntos
Fontes de Energia Bioelétrica , Geobacter , Anaerobiose , Biofilmes , Eletrodos
12.
Sci Total Environ ; 856(Pt 2): 159088, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36181799

RESUMO

In the developed world, individuals spend most of their time indoors. Poor Indoor Air Quality (IAQ) has a wide range of effects on human health. The burden of disease associated with indoor air accounts for millions of premature deaths related to exposure to Indoor Air Pollutants (IAPs). Among them, CO2 is the most common one, and is commonly used as a metric of IAQ. Indoor CO2 concentrations can be significantly higher than outdoors due to human metabolism and activities. Even in presence of ventilation, controlling the CO2 concentration below the Indoor Air Guideline Values (IAGVs) is a challenge, and many indoor environments including schools, offices and transportation exceed the recommended value of 1000 ppmv. This is often accompanied by high concentration of other pollutants, including bio-effluents such as viruses, and the importance of mitigating the transmission of airborne diseases has been highlighted by the COVID-19 pandemic. On the other hand, the relatively high CO2 concentration of indoor environments presents a thermodynamic advantage for direct air capture (DAC) in comparison to atmospheric CO2 concentration. This review aims to describe the issues associated with poor IAQ, and to demonstrate the potential of indoor CO2 DAC to purify indoor air while generating a renewable carbon stream that can replace conventional carbon sources as a building block for chemical production, contributing to the circular economy.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos , Dióxido de Carbono/análise , Carbono , Pandemias , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental
13.
Trends Biotechnol ; 41(4): 484-496, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36192248

RESUMO

The need for sustainable technological solutions for wastewater management at different scales has led to the emergence of several promising integrated bioelectrochemical technologies in the past decade. A thorough assessment of these technologies is imperative to understand their practical implementation feasibility and to identify the key challenges to prioritise the research and development work. Our multicriteria-based assessment reveals that the integrated technologies are efficient for wastewater treatment in terms of normalised land footprint [(0.31-1.39 m2/population equivalent (PE))] - and energy consumption (0.18-1.49 kWH/m3) as compared to the conventional biotechnologies, and suggests that they have potential for real-world application. Specifying the boundaries according to their treatment capabilities and scale-up potential besides niche application sites or geographical locations is required to expedite their transition to the real-world wastewater management sector.


Assuntos
Águas Residuárias , Purificação da Água , Eliminação de Resíduos Líquidos , Biotecnologia
15.
Water Res ; 226: 119270, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323204

RESUMO

Biomethane as a sustainable, alternative, and carbon-neutral renewable energy source to fossil fuels is highly needed to alleviate the global energy crisis and climate change. The conventional anaerobic digestion (AD) process for biomethane production from waste(water) streams has been widely employed while struggling with a low production rate, low biogas qualities, and frequent instability. The electric-biologically hybrid microbial electrochemical anaerobic digestion system (MEC-AD) prospects more stable and robust biomethane generation, which facilitates complex organic substrates degradation and mediates functional microbial populations by giving a small input power (commonly voltages < 1.0 V), mainly enhancing the communication between electroactive microorganisms and (electro)methanogens. Despite numerous bioreactor tests and studies that have been conducted, based on the MEC-AD systems, the integrated microbial fingerprints, and cooperation, accelerating substrate degradation, and biomethane production, have not been fully summarized. Herein, we present a comprehensive review of this novel developing biotechnology, beginning with the principles of MEC-AD. First, we examine the fundamentals, configurations, classifications, and influential factors of the whole system's performances (reactor types, applied voltages, temperatures, conductive materials, etc.,). Second, extracellular electron transfer either between diverse microbes or between microbes and electrodes for enhanced biomethane production are analyzed. Third, we further conclude (electro)methanogenesis, and microbial interactions, and construct ecological networks of microbial consortia in MEC-AD. Finally, future development and perspectives on MEC-AD for biomethane production are proposed.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Biocombustíveis , Eletricidade
16.
J Environ Manage ; 323: 116294, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261994

RESUMO

Municipal and industrial wastewater discharges in coastal and marine environments are of major concern due to their high carbon and nitrogen loads and the resulted phenomenon of eutrophication. Bioelectrochemical reactors (BERs) for simultaneous nitrogen and carbon removal have gained attention owing to their cost efficiency and versatility, as well as the possibility of electrochemical enrich specific groups. This study presented a scalable two-chamber BERs using graphite granules as electrode material. BERs were inoculated and operated for 37 days using natural seawater with high concentrations of ammonium and acetate. The BERs demonstrated a maximum current density of 0.9 A m-3 and removal rates of 7.5 mg NH4+-N L-1 d-1 and 99.5 mg L-1 d-1 for total organic carbon (TOC). Removals observed for NH4+-N and TOC were 96.2% and 68.7%, respectively. The results of nutrient removal (i.e., ammonium, nitrate, nitrite and TOC) and microbial characterization (i.e., next-generation sequencing of the 16S rRNA gene and fluorescence in situ hybridization) showed that BERs operated with a poised cathode at -260 mV (vs. Ag/AgCl) significantly enriched nitrifying microorganisms in the anode and denitrifying microorganisms and planctomycetes in the cathode. Interestingly, the electrochemical enrichment did not increase the total number of microorganisms in the formed biofilms but controlled their composition. Thus, this work shows the first successful attempt to electrochemically enrich marine nitrifying and denitrifying microorganisms and presents a technique to accelerate the start-up process of BERs to remove dissolved inorganic nitrogen and total organic carbon from seawater.


Assuntos
Compostos de Amônio , Grafite , Nitrogênio/química , Desnitrificação , Nitrificação , Águas Residuárias , Carbono , Nitratos , Reatores Biológicos , RNA Ribossômico 16S , Nitritos , Hibridização in Situ Fluorescente , Água do Mar
17.
Sci Total Environ ; 850: 157919, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964739

RESUMO

Biodegradation of aromatic hydrocarbons in anoxic contaminated environments is typically limited by the lack of bioavailable electron acceptors. Microbial electrochemical technologies (METs) are able to provide a virtually inexhaustible electron acceptor in the form of a solid electrode. Recently, we provided first experimental evidence for the syntrophic degradation of toluene in a continuous-flow bioelectrochemical reactor known as the "bioelectric well". Herein, we further analyzed the structure and function of the electroactive toluene-degrading microbiome using a suite of chemical, electrochemical, phylogenetic, proteomic, and functional gene-based analyses. The bioelectric well removed 83 ± 7 % of the toluene from the influent with a coulombic efficiency of 84 %. Cyclic voltammetry allowed to identify the formal potentials of four putative electron transfer sites, which ranged from -0.2 V to +0.1 V vs. SHE, consistent with outer membrane c-type cytochromes and pili of electroactive Geobacter species. The biofilm colonizing the surface of the anode was indeed highly enriched in Geobacter species. On the other hand, the planktonic communities thriving in the bulk of the reactor harbored aromatic hydrocarbons degraders and fermentative propionate-producing microorganisms, as revealed by phylogenetic and proteomic analyses. Most likely, propionate, acetate or other VFAs produced in the bulk liquid from the degradation of toluene were utilized as substrates by the electroactive biofilm. Interestingly, key-functional genes related to the degradation of toluene were found both in the biofilm and in the planktonic communities. Taken as a whole, the herein reported results highlight the importance of applying a comprehensive suite of techniques to unravel the complex cooperative metabolisms occurring in METs.


Assuntos
Geobacter , Hidrocarbonetos Aromáticos , Acetatos/metabolismo , Biofilmes , Citocromos/metabolismo , Eletrodos , Geobacter/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Filogenia , Propionatos/metabolismo , Proteômica , Tolueno/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-35206599

RESUMO

For many years, the world's coastal marine ecosystems have received industrial waste with high nitrogen concentrations, generating the eutrophication of these ecosystems. Different physicochemical-biological technologies have been developed to remove the nitrogen present in wastewater. However, conventional technologies have high operating costs and excessive production of brines or sludge which compromise the sustainability of the treatment. Microbial electrochemical technologies (METs) have begun to gain attention due to their cost-efficiency in removing nitrogen and organic matter using the metabolic capacity of microorganisms. This article combines a critical review of the environmental problems associated with the discharge of the excess nitrogen and the biological processes involved in its biogeochemical cycle; with a comparative analysis of conventional treatment technologies and METs especially designed for nitrogen removal. Finally, current METs limitations and perspectives as a sustainable nitrogen treatment alternative and efficient microbial enrichment techniques are included.


Assuntos
Desnitrificação , Nitrogênio , Reatores Biológicos , Ecossistema , Nitrogênio/metabolismo , Águas Residuárias
19.
Bioresour Technol ; 347: 126663, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35017088

RESUMO

Electroactive microorganisms (EAMs) use extracellular electron transfer (EET) processes to access insoluble electron donors or acceptors in cellular respiration. These are used in developing microbial electrochemical technologies (METs) for biosensing and bioelectronics applications and the valorization of liquid and gaseous wastes. EAMs from extreme environments can be useful to overcome the existing limitations of METs operated with non-extreme microorganisms. Studying extreme EAMs is also necessary to improve understanding of respiratory processes involving EET. This article first discusses the advantages of using extreme EAMs in METs and summarizes the diversity of EAMs from different extreme environments. It is followed by a detailed discussion on their use as biocatalysts in various bioprocessing applications via bioelectrochemical systems. Finally, the challenges associated with operating METs under extreme conditions and promising research opportunities on fundamental and applied aspects of extreme EAMs are presented.


Assuntos
Fontes de Energia Bioelétrica , Extremófilos , Eletrodos , Transporte de Elétrons , Ambientes Extremos
20.
Chemosphere ; 286(Pt 3): 131850, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426281

RESUMO

Microbial electrochemical technologies (METs) have become a widely studied technology in recent years due to the need for sustainable biotechnologies. The scope of this work is the development of a mechanistic biokinetic model, based on first principles and a robust thermodynamic basis, to provide a theoretical accurate description of a MET system that would treat water contaminated with nitrate, the most common aquifer water pollutant, in absence of external electron donors. The model aims at describing the complex processes occurring including the competition between bioelectroactive and non-bioelectroactive reactions as well as the dynamics and kinetics of multiple bioelectrochemical reactions (both in series and in parallel) taking place in the same electrode. The bioelectrochemical denitrification of groundwater was then evaluated using the model as a case study. The evaluation focused on theoretical removal rates and energy expenditure, as well as the effect of key design parameters on the system's performance. The model successfully described how changes in the applied voltage and/or hydraulic retention time may impact the performance in terms of removal rate and effluent quality. The theoretical results also predict that the impact of electrode area is potentially more significant on the energy efficiency rather than on the effluent quality.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Desnitrificação , Elétrons , Nitratos/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...