Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36233871

RESUMO

Microbial induced carbonate precipitation (MICP) provides an alternative method to stabilize the soil. To further improve the reinforcement effect, this study aims to propose a strategy by incorporating the mixing MICP method with pretreatment procedure. A series of laboratory tests were performed to investigate the preparation parameters (including the moisture content and dry density of the soil, the concentration of urea and CaCl2 in cementation solution), the engineering properties, the CaCO3 distribution as well as the mineralogical and micro structural characteristics of pretreatment-mixing MICP reinforced soil (PMMRS). Based on the orthogonal experiment results, the optimum preparation parameters for PMMRS were determined. The UCS of PMMRS was more strongly dependent on the moisture content and concentration of CaCl2 than the concentration ratio of CaCl2 to urea. Moreover, it was testified that incorporation of pretreatment procedure improved the stabilization effect of traditional mixing MICP method on the clayed sand (CLS). The UCS of PMMRS specimen was increased by 198% and 78% for the pure CLS and the simple mixing MICP reinforced soil, respectively. Furthermore, the CaCO3 products generated consisted of the aragonite, calcite and vaterite, which distributed unevenly inside the specimen no matter the lateral or vertical direction. The reason for the uneven distribution might be that oxygen content varied with the regions in different directions, and hence affected the mineralization reaction. In addition, the mineralization reaction would affect the pore structure of the soil, which was highly related to the stabilization effect of MICP reinforced soil.

2.
Materials (Basel) ; 14(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430360

RESUMO

Microbial-induced calcite precipitation (MICP) has been a promising method to improve geotechnical engineering properties through the precipitation of calcium carbonate (CaCO3) on the contact and surface of soil particles in recent years. In the present experiment, water absorption and unconfined compressive strength (UCS) tests were carried out to investigate the effects of three different fiber types (glass fiber, polyester fiber, and hemp fiber) on the physical and mechanical properties of MICP-treated calcareous sand. The fibers used were at 0%, 0.10%, 0.15%, 0.20%, 0.25%, 0.30%, 0.35%, and 0.40% relative to the weight of the sand. The results showed that the failure strain and ductility of the samples could be improved by adding fibers. Compared to biocemented sand (BS), the water absorption of these three fiber-reinforced biocemented sands were, respectively, decreased by 11.60%, 21.18%, and 7.29%. UCS was, respectively, increased by 24.20%, 60.76%, and 6.40%. Polyester fiber produced the best effect, followed by glass fiber and hemp fiber. The optimum contents of glass fiber and polyester fiber were 0.20% and 0.25%, respectively. The optimum content of hemp fiber was within the range of 0.20-0.25%. Light-emitting diode (LED) microscope and scanning electron microscope (SEM) images lead to the conclusion that only a little calcite precipitation had occurred around the hemp fiber, leading to a poor bonding effect compared to the glass and polyester fibers. It was therefore suggested that polyester fiber should be used to improve the properties of biocemented sand.

3.
Front Microbiol ; 11: 1327, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612598

RESUMO

Microbially induced calcite precipitation (MICP) is an alternative to existing soil stabilization techniques for construction and erosion. As with any biologically induced process in soils or aquifers, it is important to track changes in the microbial communities that occur as a result of the treatment. Our research assessed how native microbial communities developed in response to injections of reactants (dilute molasses as a carbon source; urea as a source of nitrogen and alkalinity) that promoted MICP in a shallow aquifer. Microbial community composition (16S rRNA gene) and ureolytic potential (ureC gene copy numbers) were also measured in groundwater and artificial sediment. Aquifer geochemistry showed evidence of sulfate reduction, nitrification, denitrification, ureolysis, and iron reduction during the treatment. The observed changes in geochemistry corresponded to microbial community succession in the groundwater and this matched parallel geophysical and mineralogical evidence of calcite precipitation in the aquifer. We detected an increase in the number of ureC genes in the microbial communities at the end of the injection period, suggesting an increase in the abundance of microbes possessing this gene as needed to hydrolyze urea and stimulate MICP. We identify geochemical and biological markers that highlight the microbial community response that can be used along with geophysical and geotechnical evidence to assess progress of MICP.

4.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-626985

RESUMO

Aims: Microbial induced calcite precipitation (MICP) is a natural occurring biological process that employs the usage of ureolytic bacteria for a wide range of applications such as improving the mechanical properties of soils. The aim of this study was to isolate and identify local urease-producing bacteria from the limestone caves of Sarawak and characterise their specific urease activities. Methodology and results: Enrichment culture technique was used to isolate urease-producing bacteria. These local isolates were identified using phenotypic and molecular characterisation. Conductivity method and biomass (OD600) measurements were conducted to analyze and determine the specific urease activities of the local isolates. 16S rRNA gene sequence analysis identified the bacterial isolates as Sporosarcina pasteurii, Sporosarcina luteola and Bacillus lentus. Conclusion, significance and impact of study: This is the first study reporting the isolation and identification of urease-producing bacteria from Fairy and Wind Caves situated in Bau, Sarawak, Malaysia. The findings in this study suggest the bacterial isolates are capable of inducing calcite precipitation and serve as alternative microbial ureolytic agents.


Assuntos
Urease , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA