Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43.712
Filtrar
1.
Vet Q ; 44(1): 1-8, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38946435

RESUMO

This study aimed to evaluate the effect of varying levels of sorghum-based diets as an alternative to maize in broiler nutrition. A total of 320 one-day-old male Ross 708 broiler chickens were randomly allocated to four treatment groups (5 pens per treatment and 16 birds per pen), comprising a control group with a basal diet and groups receiving sorghum-based diets with 20%, 40%, and 100% maize replacement. The overall weight gain was significantly (p < 0.0001) higher in the control group, followed by 20%, 40%, and 100% sorghum replacement. Additionally, overall feed intake was significantly (p < 0.01) higher in the 20% sorghum replacement group compared to the control and other groups. Broilers fed sorghum-based diets exhibited a significantly (p < 0.01) increased feed conversion ratio. Carcass characteristics showed no significant differences between broilers fed corn and sorghum; however, the digestibility of crude protein and apparent metabolizable energy significantly (p < 0.01) increased in the 20% sorghum-corn replacement compared to the 40% and 100% replacement levels. Ileal villus height and width did not differ among the corn-sorghum-based diets, regardless of the replacement percentage. Furthermore, among the cecal microbiota, Lactobacillus count was significantly (p < 0.041) higher in the 20% corn-sorghum diet compared to the 40% and 100% replacement levels. These findings suggest that replacing corn up to 20% of corn with sorghum in broiler diet positively impact growth performance, gut health, nutrient digestibility, and cecal microbiota in broilers. However, larger replacements (40% and 100%) may have negative implications for broiler production and health.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Dieta , Digestão , Microbioma Gastrointestinal , Sorghum , Zea mays , Animais , Galinhas/microbiologia , Galinhas/fisiologia , Ração Animal/análise , Masculino , Dieta/veterinária , Digestão/efeitos dos fármacos , Nutrientes , Distribuição Aleatória
2.
Appl Microbiol Biotechnol ; 108(1): 402, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951204

RESUMO

Delayed graft function (DGF) is a frequently observed complication following kidney transplantation (KT). Our prior research revealed dynamic shifts in salivary microbiota post-KT with immediate graft function (IGF), yet its behavior during DGF remains unexplored. Five recipients with DGF and 35 recipients with IGF were enrolled. Saliva samples were collected during the perioperative period, and 16S rRNA gene sequencing was performed. The salivary microbiota of IGFs changed significantly and gradually stabilized with the recovery of renal function. The salivary microbiota composition of DGFs was significantly different from that of IGFs, although the trend of variation appeared to be similar to that of IGFs. Salivary microbiota that differed significantly between patients with DGF and IGF at 1 day after transplantation were able to accurately distinguish the two groups in the randomForest algorithm (accuracy = 0.8333, sensitivity = 0.7778, specificity = 1, and area under curve = 0.85), with Selenomonas playing an important role. Bacteroidales (Spearman's r = - 0.4872 and p = 0.0293) and Veillonella (Spearmen's r = - 0.5474 and p = 0.0125) were significantly associated with the serum creatinine in DGF patients. Moreover, the significant differences in overall salivary microbiota structure between DGF and IGF patients disappeared upon long-term follow-up. This is the first study to investigate the dynamic changes in salivary microbiota in DGFs. Our findings suggested that salivary microbiota was able to predict DGF in the early stages after kidney transplantation, which might help the perioperative clinical management and early-stage intervention of kidney transplant recipients. KEY POINTS: • Salivary microbiota on the first day after KT could predict DGF. • Alterations in salivary taxa after KT are related to recovery of renal function.


Assuntos
Função Retardada do Enxerto , Transplante de Rim , Microbiota , RNA Ribossômico 16S , Saliva , Humanos , Transplante de Rim/efeitos adversos , Saliva/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Adulto , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética
3.
BMC Microbiol ; 24(1): 233, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951788

RESUMO

BACKGROUND: Inflammatory Bowel Diseases (IBD) are a major public health issue with unclear aetiology. Changes in the composition and functionality of the intestinal microbiota are associated with these pathologies, including the depletion of strict anaerobes such as Feacalibacterium prausnitzii. Less evidence is observed for depletion in other anaerobes, among which bifidobacteria. This study characterized the taxonomic and functional diversity of bifidobacteria isolated from the human intestinal microbiota in active and non-active IBD patients by a culturomics approach and evaluated if these bifidobacteria might be used as probiotics for gut health. RESULTS: A total of 341 bifidobacteria were isolated from the intestinal microbiota of IBD patients (52 Crohn's disease and 26 ulcerative colitis patients), with a high proportion of Bifidobacterium dentium strains (28% of isolated bifidobacteria). In ulcerative colitis, the major species identified was B. dentium (39% of isolated bifidobacteria), in active and non-active ulcerative colitis. In Crohn's disease, B. adolescentis was the major species isolated from non-active patients (40%), while similar amounts of B. dentium and B. adolescentis were found in active Crohn's disease patients. The relative abundance of B. dentium was increased with age, both in Crohn's disease and ulcerative colitis and active and non-active IBD patients. Antibacterial capacities of bifidobacteria isolated from non-active ulcerative colitis against Escherichia coli LF82 and Salmonella enterica ATCC 14028 were observed more often compared to strains isolated from active ulcerative colitis. Finally, B. longum were retained as strains with the highest probiotic potential as they were the major strains presenting exopolysaccharide synthesis, antibacterial activity, and anti-inflammatory capacities. Antimicrobial activity and EPS synthesis were further correlated to the presence of antimicrobial and EPS gene clusters by in silico analysis. CONCLUSIONS: Different bifidobacterial taxonomic profiles were identified in the microbiota of IBD patients. The most abundant species were B. dentium, mainly associated to the microbiota of ulcerative colitis patients and B. adolescentis, in the intestinal microbiota of Crohn's disease patients. Additionally, the relative abundance of B. dentium significantly increased with age. Furthermore, this study evidenced that bifidobacteria with probiotic potential (antipathogenic activity, exopolysaccharide production and anti-inflammatory activity), especially B. longum strains, can be isolated from the intestinal microbiota of both active and non-active Crohn's disease and ulcerative colitis patients.


Assuntos
Bifidobacterium , Microbioma Gastrointestinal , Probióticos , Humanos , Bifidobacterium/isolamento & purificação , Bifidobacterium/classificação , Bifidobacterium/genética , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Doenças Inflamatórias Intestinais/microbiologia , Adulto Jovem , Idoso , Colite Ulcerativa/microbiologia , Doença de Crohn/microbiologia , Filogenia , Fezes/microbiologia , RNA Ribossômico 16S/genética , Fenótipo , Adolescente , Antibacterianos/farmacologia
4.
Lipids Health Dis ; 23(1): 207, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951816

RESUMO

BACKGROUND: Ketogenic diets are increasingly popular for addressing obesity, but their impacts on the gut microbiota and metabolome remain unclear. This paper aimed to investigate how a ketogenic diet affects intestinal microorganisms and metabolites in obesity. METHODS: Male mice were provided with one of the following dietary regimens: normal chow, high-fat diet, ketogenic diet, or high-fat diet converted to ketogenic diet. Body weight and fat mass were measured weekly using high-precision electronic balances and minispec body composition analyzers. Metagenomics and non-targeted metabolomics data were used to analyze differences in intestinal contents. RESULTS: Obese mice on the ketogenic diet exhibited notable improvements in weight and body fat. However, these were accompanied by a significant decrease in intestinal microbial diversity, as well as an increase in Firmicutes abundance and a 247% increase in the Firmicutes/Bacteroidetes ratio. The ketogenic diet also altered multiple metabolic pathways in the gut, including glucose, lipid, energy, carbohydrate, amino acid, ketone body, butanoate, and methane pathways, as well as bacterial secretion and colonization pathways. These changes were associated with increased intestinal inflammation and dysbiosis in obese mice. Furthermore, the ketogenic diet enhanced the secretion of bile and the synthesis of aminoglycoside antibiotics in obese mice, which may impair the gut microbiota and be associated with intestinal inflammation and immunity. CONCLUSIONS: The study suggest that the ketogenic diet had an unfavorable risk-benefit trade-off and may compromise metabolic homeostasis in obese mice.


Assuntos
Dieta Hiperlipídica , Dieta Cetogênica , Microbioma Gastrointestinal , Metagenômica , Obesidade , Dieta Cetogênica/efeitos adversos , Animais , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/etiologia , Dieta Hiperlipídica/efeitos adversos , Metagenômica/métodos , Metabolômica/métodos , Disbiose/microbiologia , Disbiose/metabolismo , Camundongos Endogâmicos C57BL , Metaboloma , Peso Corporal
5.
J Anim Sci Biotechnol ; 15(1): 89, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38951898

RESUMO

BACKGROUND: Sows commonly experience insulin resistance in late gestation and lactation, causing lower feed intake and milk production, which can lead to higher mortality rates in newborn piglets. The probiotic Lactobacillus rhamnosus GG (LGG) is known to improve insulin resistance. However, whether supplementing LGG can improve insulin sensitivity in sows and enhance lactation performance, particularly the early survival of offspring remains unclear. Hence, we explored the effects and mechanisms of supplementing LGG during late gestation and lactation on sow insulin sensitivity, lactation performance, and offspring survival. In total, 20 sows were randomly allocated to an LGG (n = 10) and control group (n = 10). RESULTS: In sows, LGG supplementation significantly improved insulin sensitivity during late gestation and lactation, increased feed intake, milk production and colostrum lactose levels in early lactation, and enhanced newborn piglet survival. Moreover, LGG treatment significantly reshaped the gut microbiota in sows, notably increasing microbiota diversity and enriching the relative abundance of insulin sensitivity-associated probiotics such as Lactobacillus, Bifidobacterium, and Bacteroides. Serum metabolite and amino acid profiling in late-gestation sows also revealed decreased branched-chain amino acid and kynurenine serum levels following LGG supplementation. Further analyses highlighted a correlation between mitigated insulin resistance in late pregnancy and lactation by LGG and gut microbiota reshaping and changes in serum amino acid metabolism. Furthermore, maternal LGG enhanced immunity in newborn piglets, reduced inflammation, and facilitated the establishment of a gut microbiota. CONCLUSIONS: We provide the first evidence that LGG mitigates insulin resistance in sows and enhances offspring survival by modulating the gut microbiota and amino acid metabolism.

6.
Anim Microbiome ; 6(1): 38, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951941

RESUMO

To promote sustainable aquaculture, the formulation of Atlantic salmon (Salmo salar) feeds has changed in recent decades, focusing on replacing standard marine-based ingredients with plant-based alternatives, increasingly demonstrating successful outcomes in terms of fish performance. However, little is known about how these plant-based diets may impact the gut microbiota at first feeding and onwards. Nutritional programming (NP) is one strategy applied for exposing fish to a plant-based (V) diet at an early stage in life to promote full utilisation of plant-based ingredients and prevent potential adverse impacts of exposure to a plant-rich diet later in life. We investigated the impact of NP on gut microbiota by introducing fish to plant ingredients (V fish) during first feeding for a brief period of two weeks (stimulus phase) and compared those to fish fed a marine-based diet (M fish). Results demonstrated that V fish not only maintained growth performance at 16 (intermediate phase) and 22 (challenge phase) weeks post first feeding (wpff) when compared to M fish but also modulated gut microbiota. PERMANOVA general effects revealed gut microbiota dissimilarity by fish group (V vs. M fish) and phases (stimulus vs. intermediate vs. challenge). However, no interaction effect of both groups and phases was demonstrated, suggesting a sustained impact of V diet (nutritional history) on fish across time points/phases. Moreover, the V diet exerted a significant cumulative modulatory effect on the Atlantic salmon gut microbiota at 16 wpff that was not demonstrated at two wpff, although both fish groups were fed the M diet at 16 wpff. The nutritional history/dietary regime is the main NP influencing factor, whereas environmental and host factors significantly impacted microbiota composition in M fish. Microbial metabolic reactions of amino acid metabolism were higher in M fish when compared to V fish at two wpff suggesting microbiota played a role in digesting the essential amino acids of M feed. The excessive mucin O-degradation revealed in V fish at two wpff was mitigated in later life stages after NP, suggesting physiological adaptability and tolerance to V diet. Future studies are required to explore more fully how the microbiota functionally contributes to the NP.

7.
Cancer Med ; 13(13): e7455, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953300

RESUMO

BACKGROUND: Recent studies provide compelling evidence linking the gut microbiota to most cancers. Nevertheless, further research is required to establish a definitive causal relationship between the gut microbiota and malignant cardiac tumors. METHODS: The genome-wide association studies (GWAS) data on the human gut Microbiota, included in the IEU Open GWAS project, was initially collected by the MiBioGen consortium. It encompasses 14,306 individuals and comprises a total of 5,665,279 SNPs. Similarly, the GWAS data on malignant cardiac tumors, also sourced from the IEU Open GWAS project, was initially stored in the finnGen database, including 16,380,303 SNPs observed within a cohort of 174,108 individuals within the European population. Utilizing a two-sample Mendelian randomization (MR) methodology, we examined whether there exists a causal association between the gut microbiota and cardiac tumors. Additionally, to bolster the credibility and robustness of the identified causal relationships, we conducted an extensive array of sensitivity analyses, encompassing Cochran's Q test, MR-PRESSO tests, MR-Egger interpret test, directionality test and leave-one-out analysis. RESULTS: Our analysis unveiled seven distinct causal associations between genetic susceptibility in the gut microbiota and the incidence of malignant cardiac tumors. Among these, the Family Rikenellaceae, genus Eubacterium brachy group, and genus Ruminococcaceae UCG009 exhibited an elevated risk of cardiac tumors, while the phylum Verrucomicrobia, genus Lactobacillus, genus Ruminiclostridium5, and an unknown genus id.1868 were genetically linked to a reduced risk of cardiac tumors. The causal relationship between these two bacteria, belonging to the phylum Verrucomicrobia (OR = 0.178, 95% CI: 0.052-0.614, p = 0.006) and the genus Ruminococcaceae UCG009 (OR = 3.071, 95% CI: 1.236-7.627, p = 0.016), and cardiac tumors was further validated through sensitivity analyses, reinforcing the robustness and reliability of the observed associations. CONCLUSION: Our MR analysis confirms that the phylum Verrucomicrobia displays significant protection against cardiac tumor, and the genus Ruminococcaceae UCG009 leads to an increasing risk of cardiac tumor.


Assuntos
Microbioma Gastrointestinal , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neoplasias Cardíacas , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Humanos , Microbioma Gastrointestinal/genética , Neoplasias Cardíacas/genética , Neoplasias Cardíacas/microbiologia , Fatores de Risco
8.
Int J Biol Macromol ; 275(Pt 1): 133582, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955301

RESUMO

Inulin as a natural polysaccharide regulates intestinal microorganisms, and improves the immune and gastrointestinal function. In order to explore the effect of inulin on pulmonary metastasis of colon cancer, we set up a CT26 injected pulmonary metastatic model. The results showed that inulin used alone did not improve pulmonary metastasis of colon cancer, while inulin combined with rifaximin significantly prolonged the survival time of mice, and inhibited pulmonary metastasis compared with model and inulin groups. Inulin treatment increased the abundance of harmful bacteria such as Proteobacteria and Actinobacteria, while combined treatment decreased their abundance and increased the abundance of beneficial bacteria containing Firmicutes and Eubacterium which belonged to the bile acid-related bacteria. The combination treatment decreased the content of primary bile acids and secondary bile acids in the feces of mice, especial for DCA and LCA which were the agonists of TGR5. Furthermore, the combination treatment reduced the mRNA expression of the TGR5, cyclin dependent kinase 4, cyclin 1 and CDK2, increased the mRNA expression of p21 in the lung, down-regulated the level of NF-κB p65, and up-regulated the level of TNF-α compared with the model group. The above may be the reason for the better use of the combination treatment.

9.
Front Med (Lausanne) ; 11: 1410246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957302

RESUMO

Mild cognitive impairment (MCI) is a heterogeneous condition definable as the intermediate clinical state between normal aging and dementia. As a pre-dementia condition, there is a recent growing interest in the identification of non-invasive markers able to predict the progression from MCI to a more advanced stage of the disease. Previous evidence showed the close link between gut microbiota and neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's disease (PD). Conversely, the actual relationship between gut microbiota and MCI is yet to be clarified. In this work, we provide an overview about the current knowledge regarding the role of gut microbiota in the context of MCI, also assessing the potential for microbiota-targeted therapies. Through the review of the most recent studies focusing on this topic, we found evidence of an increase of Bacteroidetes at phylum level and Bacteroides at genus level in MCI subjects with respect to healthy controls and patients with AD. Despite such initial evidence, the definitive identification of a typical microbiota profile associated with MCI is still far from being achieved. These preliminary results, however, are growingly encouraging research on the role of gut microbiota modulation in improving the cognitive status of pre-dementia subjects. To date, few studies evaluated the role of probiotics in MCI subjects, and they showed favorable results, although still biased by small sample size, heterogeneity of study design and short follow-up.

10.
Drug Des Devel Ther ; 18: 2617-2639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957410

RESUMO

Objective: To explored the potential molecular mechanism of Sugemule-4 decoction (MMS-4D) in treating insomnia. Methods: DL-4-chlorophenylalanine (PCPA) + chronic unpredictable mild stress stimulation (CUMS) was used to induce an insomnia model in rats. After the model was successfully established, MMS-4D was intervened at low, medium, and high doses for 7 days. The open-field test (OFT) was used to preliminarily evaluate the efficacy. The potential mechanism of MMS-4D in treating insomnia was investigated using gut microbiota, serum metabolomics, and network pharmacology (NP). Experimental validation of the main components of the key pathways was carried out using ELISA and Western blot. Results: The weights of the insomnia-model rats were significantly raised (p ≤ 0.05), the total exercise distance in the OFT increased (p ≤ 0.05), the rest time shortened, and the number of standing times increased (p ≤ 0.05), after treatment with MMS-4D. Moreover, there was a substantial recovery in the 5-HT, DA, GABA, and Glu levels in the hypothalamus tissue and the 5-HT and GABA levels in the colon tissue of rats. The expression of DAT and DRD1 proteins in the hippocampus of insomnia rats reduced after drug treatment. MMS-4D may treat insomnia by regulating different crucial pathways including 5-HT -, DA -, GABA -, and Glu-mediated neuroactive light receiver interaction, cAMP signaling pathway, serotonergic, glutamatergic, dopaminergic, and GABAergic synapses. Conclusion: This study revealed that MMS-4D can improve the general state and behavioral changes of insomnia model rats. Its mechanism may be related to the reversal of abnormal pathways mediated by 5-HT, DA, GABA, and Glu, such as Serotonergic synapse, Dopaminergic synapse, Glutamatergic synapse, and GABAergic synapse.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Farmacologia em Rede , Ratos Sprague-Dawley , Distúrbios do Início e da Manutenção do Sono , Animais , Ratos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica , Relação Dose-Resposta a Droga
11.
Oncoimmunology ; 13(1): 2374954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957477

RESUMO

Gut microbiota impacts responses to immune checkpoint inhibitors (ICI). A high level of Faecalibacterium prausnitzii have been associated with a positive response to ICI in multiple cancer types. Here, based on fecal shotgun metagenomics data, we show in two independent cohorts of patients with non-small cell lung cancer and advanced melanoma that a high level of F. prausnitzii at baseline is positively associated with a better clinical response to ICI. In MCA205 tumor-bearing mice, administration of F. prausnitzii strain EXL01, already in clinical development for Inflammatory Bowel Disease, restores the anti-tumor response to ICI in the context of antibiotic-induced microbiota perturbation at clinical and tumor transcriptomics level. In vitro, EXL01 strain enhances T cell activation in the presence of ICI. Interestingly, oral administration of EXL01 strain did not induce any change in fecal microbiota diversity or composition, suggesting a direct effect on immune cells in the small intestine. F. prausnitzii strain EXL01 will be evaluated as an adjuvant to ICI in multiple cancers in the near future.


Assuntos
Faecalibacterium prausnitzii , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Animais , Humanos , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Faecalibacterium prausnitzii/efeitos dos fármacos , Feminino , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/patologia , Fezes/microbiologia , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL
12.
Front Microbiol ; 15: 1396699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957618

RESUMO

Background: Previous research has hinted at a crucial link between gut microbiota and arterial embolism and thrombosis, yet the causal relationship remains enigmatic. To gain a deeper understanding, we aimed to comprehensively explore the causal relationship and elucidate the impact of the gut microbiota on the risk through a two-sample Mendelian randomization (MR) study. Methods: Genetic instrumental variables for gut microbiota were identified from a genome-wide association study (GWAS) of 18,340 participants. Summary statistics for IBS were drawn from a GWAS including 1,076 cases and 381,997 controls. We used the inverse-variance weighted (IVW) method as the primary analysis. To test the robustness of our results, we further performed the weighted median method, MR-Egger regression, and MR pleiotropy residual sum and outlier test. Results: We identified three bacterial traits that were associated with the risk of arterial embolism and thrombosis: odds ratio (OR): 1.58, 95% confidence interval (CI): 1.08-2.31, p = 0.017 for genus Catenibacterium; OR: 0.64, 95% CI: 0.42-0.96, p = 0.031 for genus Dialister; and OR: 2.08, 95% CI: 1.25-3.47, p = 0.005 for genus Odoribacter. The results of sensitivity analyses for these bacterial traits were consistent (P<0.05). Conclusion: Our systematic analyses provided evidence to support a potential causal relationship between several gut microbiota taxa and the risk of arterial embolism and thrombosis. More studies are required to show how the gut microbiota affects the development of arterial embolism and thrombosis.

13.
Front Psychiatry ; 15: 1335554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957739

RESUMO

Background: Mobile phone addiction (MPA) greatly affects the biological clock and sleep quality and is emerging as a behavioral disorder. The saliva microbiota has been linked to circadian rhythms, and our previous research revealed dysrhythmic saliva metabolites in MPA subjects with sleep disorders (MPASD). In addition, acupuncture had positive effects. However, the dysbiotic saliva microbiota in MPASD patients and the restorative effects of acupuncture are unclear. Objectives: To probe the circadian dysrhythmic characteristics of the saliva microbiota and acupunctural restoration in MPASD patients. Methods: MPASD patients and healthy volunteers were recruited by the Mobile Phone Addiction Tendency Scale (MPATS) and the Pittsburgh Sleep Quality Index (PSQI). Saliva samples were collected every 4 h for 72 h. After saliva sampling, six MPDSD subjects (group M) were acupuncturally treated (group T), and subsequent saliva sampling was conducted posttreatment. Finally, all the samples were subjected to 16S rRNA gene sequencing and bioinformatic analysis. Results: Significantly increased MPATS and PSQI scores were observed in MPDSD patients (p< 0.01), but these scores decreased (p<0.001) after acupuncture intervention. Compared with those in healthy controls, the diversity and structure of the saliva microbiota in MPASD patients were markedly disrupted. Six genera with circadian rhythms were detected in all groups, including Sulfurovum, Peptostreptococcus, Porphyromonas and Prevotella. There were five genera with circadian rhythmicity in healthy people, of which the rhythmicities of the genera Rothia and Lautropia disappeared in MPASD patients but effectively resumed after acupuncture intervention. Conclusions: This work revealed dysrhythmic salivary microbes in MPASD patients, and acupuncture, as a potential intervention, could be effective in mitigating this ever-rising behavioral epidemic.

14.
Poult Sci ; 103(8): 103968, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38959643

RESUMO

Berberine (BBR), a well-known quaternary ammonium alkaloid, is recognized for its ability to prevent and alleviate metabolic disorders because of its anti-oxidative and anti-inflammatory properties. However, the underlying mechanisms of BBR to mitigate fatty liver hemorrhagic syndrome (FLHS) through the modulation of gut microbiota and their metabolism remained unclear. The results revealed that BBR ameliorates lipid metabolism disorder in high-energy and low-protein (HELP) diet-induced FLHS laying hens, as evidenced by improved liver function and lipid deposition of the liver, reduced blood lipids, and the expression of liver lipid synthesis-related factors. Moreover, BBR alleviated HELP diet-induced barrier dysfunction, increased microbial population, and dysregulated lipid metabolism in the ileum. BBR reshaped the HELP-perturbed gut microbiota, particularly declining the abundance of Desulfovibrio_piger and elevating the abundance of Bacteroides_salanitronis_DSM_18170. Meanwhile, metabolomic profiling analysis revealed that BBR reshaped microbial metabolism and function, particularly by reducing the levels of hydrocinnamic acid, dehydroanonaine, and leucinic acid. Furthermore, fecal microbiota transplantation (FMT) experiments revealed that BBR-enriched gut microbiota alleviated hepatic lipid deposition and intestinal inflammation compared with those chicks that received a gut microbiota by HELP. Collectively, our study provided evidence that BBR effectively alleviated FLHS induced by HELP by reshaping the microbial and metabolic homeostasis within the liver-gut axis.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38959707

RESUMO

Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex have been used together to treat constipation in the clinical practices for more than 2000 years. Nonetheless, their compatibility mechanism is still unclear. In this study, the amelioration of Rhei Radix et Rhizoma combined with Magnoliae Officinalis Cortex on constipation was systematically and comprehensively evaluated. The results showed that their compatibility could markedly shorten gastrointestinal transport time, increase fecal water content and frequency of defecation, improve gastrointestinal hormone disorders and protect colon tissue of constipation rats compared with the single drug. Furthermore, according to 16S rRNA sequencing in conjunction with UPLC-Q-TOF/MS, the combination of two herbal medications could greatly raise the number of salutary bacteria (Lachnospiraceae, Romboutsia and Subdoligranulum) while decreasing the abundance of pathogenic bacteria (Erysipelatoclostridiaceae). And two herb drugs could markedly improve the disorder of fecal metabolic profiles. A total of 7 different metabolites associated with constipation were remarkably shifted by the compatibility of two herbs, which were mainly related to arachidonic acid metabolism, alpha-linolenic acid metabolism, unsaturated fatty acid biosynthesis and other metabolic ways. Thus, the regulation of intestinal microbiome and its metabolism could be a potential target for Rhei Radix et Rhizoma and Magnoliae Officinalis Cortex herb pair to treat constipation. Furthermore, the multi-omics approach utilized in this study, which integrated the microbiome and metabolome, had potential for investigating the mechanism of traditional Chinese medicines.

16.
Cell Host Microbe ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38959900

RESUMO

The gut microbiota and diet-induced changes in microbiome composition have been linked to various liver diseases, although the specific microbes and mechanisms remain understudied. Alcohol-related liver disease (ALD) is one such disease with limited therapeutic options due to its complex pathogenesis. We demonstrate that a diet rich in soluble dietary fiber increases the abundance of Bacteroides acidifaciens (B. acidifaciens) and alleviates alcohol-induced liver injury in mice. B. acidifaciens treatment alone ameliorates liver injury through a bile salt hydrolase that generates unconjugated bile acids to activate intestinal farnesoid X receptor (FXR) and its downstream target, fibroblast growth factor-15 (FGF15). FGF15 promotes hepatocyte expression of ornithine aminotransferase (OAT), which facilitates the metabolism of accumulated ornithine in the liver into glutamate, thereby providing sufficient glutamate for ammonia detoxification via the glutamine synthesis pathway. Collectively, these findings uncover a potential therapeutic strategy for ALD involving dietary fiber supplementation and B. acidifaciens.

17.
Fish Shellfish Immunol ; : 109737, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960106

RESUMO

Clostridium autoethanogenum protein (CAP) is an eco-friendly protein source and has great application potential in aquafeeds. The present study aimed to investigate the effects of dietary CAP inclusion on the anti-oxidation, immunity, inflammation, disease resistance and gut microbiota of abalone Haliotis discus hannai after a 110-day feeding trial. Three isonitrogenous and isolipidic diets were formulated by adding 0% (control), 4.10% (CAP4.10) and 16.25% (CAP16.25) of CAP, respectively. A total of 540 abalones with an initial mean body weight of 22.05 ± 0.19 g were randomly distributed in three groups with three replicates per group and 60 abalones per replicate. Results showed that the activities of superoxide dismutase and glutathione peroxidase in the cell-free hemolymph (CFH) were significantly decreased and the content of malondialdehyde in CFH was significantly increased in the CAP16.25 group. The diet with 4.1% of CAP significantly increased the activities of lysozyme and acid phosphatase in CFH. The expressions of pro-inflammatory genes such as tumor necrosis factor-α (tnf-α), nuclear factor-κb (nf-κb) and toll-like receptor 4 (tlr4) in digestive gland were downregulated, and the expressions of anti-inflammatory genes such as ß-defensin and mytimacin 6 in digestive gland were upregulated in the CAP4.10 group. Dietary CAP inclusion significantly decreased the cumulative mortality of abalone after the challenge test with Vibrio parahaemolyticus for 7 days. Dietary CAP inclusion changed the composition of gut microbiota of abalone. Besides, the balance of the ecological interaction network of bacterial genera in the intestine of abalone was enhanced by dietary CAP. The association analysis showed that two bacterial genera Ruegeria and Bacteroides were closely correlated with the inflammatory genes. In conclusion, the 4.10% of dietary CAP enhanced the immunity and disease resistance as well as inhibited the inflammation of abalone. The 16.25% of dietary CAP decreased the anti-oxidative capacity of abalone. The structure of the gut microbiota of abalone changed with dietary CAP levels.

18.
Fish Shellfish Immunol ; : 109739, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960108

RESUMO

Lauric acid (LA), a saturated fatty acid with 12 carbon atoms, is widely regarded as a healthy fatty acid that plays an important role in disease resistance and improving immune physiological function. The objective of this study was to determine the effects of dietary lauric acid on the growth performance, antioxidant capacity, non-specific immunity and intestinal microbiology, and evaluate the potential of lauric acids an environmentally friendly additive in swimming crab (Portunus trituberculatus) culture. A total of 192 swimming crabs with an initial body weight of 11.68 ± 0.02 g were fed six different dietary lauric acid levels, the analytical values of lauric acid were 0.09, 0.44, 0.80, 1.00, 1.53, 2.91 mg/g, respectively. There were four replicates per treatment and 8 juvenile swimming crabs per replicate. The results indicated that final weight, percent weight gain, specific growth rate, survival and feed intake were not significantly affected by dietary lauric acid levels; however, crabs fed diets with 0.80 and 1.00 mg/g lauric acid showed the lowest feed efficiency among all treatments. Proximate composition in hepatopancreas and muscle were not significantly affected by dietary lauric acid levels. The highest activities of amylase and lipase in hepatopancreas and intestine were found at crabs fed diet with 0.80 mg/g lauric acid (P<0.05), the activity of carnitine palmityl transferase (CPT) in hepatopancreas and intestine significantly decreased with dietary lauric acid levels increasing from 0.09 to 2.91 mg/g (P<0.05). The lowest concentration of glucose and total protein and the activity of alkaline phosphatase in hemolymph were observed at crabs fed diets with 0.80 and 1.00 mg/g lauric acid among all treatments. The activity of GSH-Px in hepatopancreas significantly increased with dietary lauric acid increasing from 0.09 to 1.53 mg/g, MDA in hepatopancreas and hemolymph was not significantly influenced by dietary lauric acid levels. The highest expression of cat and gpx in hepatopancreas were exhibited in crabs fed diet with 1.00 mg/g lauric acid, however, the expression of genes related to the inflammatory signaling pathway (relish, myd88, traf6, nf-κB ) were up-regulated in the hepatopancreas with dietary lauric acid levels increasing from 0.09 to 1.00 mg/g, moreover, the expression of genes related to intestinal inflammatory, immune and antioxidant were significantly affected by dietary lauric acid levels (P<0.05). Crabs fed diet without lauric acid supplementation exhibited higher lipid drop area in hepatopancreas than those fed the other diets (P<0.05). The expression of genes related to lipid catabolism was up-regulated, however, and the expression of genes related to lipid synthesis was down-regulated in the hepatopancreas of crabs fed with 0.80 mg/g lauric acid. Lauric acid improved hepatic tubular integrity, and enhanced intestinal barrier function by increasing peritrophic membrane (PM) thickness and upregulating the expression of structural factors (per44, zo-1) and intestinal immunity-related genes. In addition, dietary 1.00 mg/g lauric acid significantly improved the microbiota composition of the intestinal, increased the abundance of Actinobacteria and Rhodobacteraceae, and decreased the abundance of Vibrio, thus maintaining the microbiota balance of the intestine. The correlation analysis showed that there was a relationship between intestinal microbiota and immune-antioxidant function. In conclusion, the dietary 1.00 mg/g lauric acid is beneficial to improve the antioxidant capacity and intestinal health of swimming crab.

19.
J Genet Genomics ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960315

RESUMO

Cough is one of the most common symptoms observed in patients presenting with COVID-19, persisting for an extended duration following SARS-CoV-2 infection. We aim to describe the distribution of airway microbiota and explore its role in patients with post-COVID-19 chronic cough. A total of 57 patients experiencing persistent cough after infection were recruited during the Omicron wave of SARS-CoV-2 in China. Airway microbiota profiling is assessed in nasopharyngeal swab, nasal lavage, and induced sputum samples at 4 and 8 weeks after SARS-CoV-2 infection. Our findings reveal that bacterial families Staphylococcaceae, Corynebacteriaceae, and Enterobacteriaceae are the most prevalent in the upper airway, while Streptococcaceae, Lachnospiraceae, and Prevotellaceae emerge as the most prevalent bacterial families in the lower airway. An increase in the abundance of Staphylococcus in nasopharyngeal swab samples and of Streptococcus in induced sputum samples is observed after one month. Furthermore, the abundance of Staphylococcus identified in nasopharyngeal swab samples at the baseline period emerges as an insightful predictor for improvement in cough severity. In conclusion, dynamic alterations in the airway microbial composition may contribute to the post-COVID-19 chronic cough progression, while the compositional signatures of nasopharyngeal microbiota could reflect the improvement of this disease.

20.
Neurogastroenterol Motil ; : e14854, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946176

RESUMO

BACKGROUND: The relationship between gut microbiota and irritable bowel syndrome (IBS) subtype is unclear. We aimed to explore whether differences in fecal bacteria composition and short-chain fatty acid (SCFA) levels were associated with subtypes and symptoms of IBS. METHODS: All participants delivered fecal samples and self-reports on IBS Symptom Severity Score (IBS-SSS), Bristol Stool Scale (BSS), and Gastrointestinal Symptom Rating Scale (GSRS). Fecal bacteria composition was assessed by the GA-map® Dysbiosis Test based on 16S rRNA sequences of bacterial species/groups. SCFAs were analyzed by vacuum distillation followed by gas chromatography. KEY RESULTS: Sixty patients with IBS were included (mean age 38 years, 46 [77%] females): Twenty-one patients were classified as IBS-D (diarrhea), 31 IBS-M (mixed diarrhea and constipation), and eight IBS-C (constipation). Forty-two healthy controls (HCs) (mean age 35 years, 27 [64%] females) were included. Patients had a significantly higher relative frequency of dysbiosis, lower levels of Actinobacteria, and higher levels of Bacilli than HCs. Eight bacterial markers were significantly different across IBS subgroups and HCs, and 13 bacterial markers were weakly correlated with IBS symptoms. Clostridia and Veillonella spp. had a weak negative correlation with constipation scores (GSRS) and a weak positive correlation with loose stools (BSS). Diarrhea scores (GSRS) and looser stool (BSS) were weakly correlated with levels of total SCFAs, acetic and butyric acid. Levels of total SCFAs and acetic acid were weakly correlated with symptom severity (IBS-SSS). CONCLUSIONS & INFERENCES: Patients with IBS had a different fecal bacteria composition compared to HCs, and alterations of SCFAs may contribute to the subtype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...