Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667831

RESUMO

When writing down a Langevin equation for the time evolution of a "system" in contact with a thermal bath, one typically makes the implicit (and often tacit) assumption that the thermal environment is in equilibrium at all times. Here, we take this assumption as a starting point to formulate the problem of a system evolving in contact with a thermal bath from the perspective of the bath, which, since it is in equilibrium, can be described by the microcanonical ensemble. We show that the microcanonical ensemble of the bath, together with the Hamiltonian equations of motion for all the constituents of the bath and system together, give rise to a Langevin equation for the system evolution alone. The friction coefficient turns out to be given in terms of auto-correlation functions of the interaction forces between the bath particles and the system, and the Einstein relation is recovered. Moreover, the connection to the Fokker-Planck equation is established.

2.
Philos Trans A Math Phys Eng Sci ; 380(2226): 20210049, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35527627

RESUMO

This paper presents a geometric microcanonical ensemble perspective on two-dimensional truncated Euler flows, which contain a finite number of (Fourier) modes and conserve energy and enstrophy. We explicitly perform phase space volume integrals over shells of constant energy and enstrophy. Two applications are considered. In the first part, we determine the average energy spectrum for highly condensed flow configurations and show that the result is consistent with Kraichnan's canonical ensemble description, despite the fact that no thermodynamic limit is invoked. In the second part, we compute the probability density for the largest-scale mode of a free-slip flow in a square, which displays reversals. We test the results against numerical simulations of a minimal model and find excellent agreement with the microcanonical theory, unlike the canonical theory, which fails to describe the bimodal statistics. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.

3.
Entropy (Basel) ; 23(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579012

RESUMO

This paper seeks to advance the state-of-the-art in analysing fMRI data to detect onset of Alzheimer's disease and identify stages in the disease progression. We employ methods of network neuroscience to represent correlation across fMRI data arrays, and introduce novel techniques for network construction and analysis. In network construction, we vary thresholds in establishing BOLD time series correlation between nodes, yielding variations in topological and other network characteristics. For network analysis, we employ methods developed for modelling statistical ensembles of virtual particles in thermal systems. The microcanonical ensemble and the canonical ensemble are analogous to two different fMRI network representations. In the former case, there is zero variance in the number of edges in each network, while in the latter case the set of networks have a variance in the number of edges. Ensemble methods describe the macroscopic properties of a network by considering the underlying microscopic characterisations which are in turn closely related to the degree configuration and network entropy. When applied to fMRI data in populations of Alzheimer's patients and controls, our methods demonstrated levels of sensitivity adequate for clinical purposes in both identifying brain regions undergoing pathological changes and in revealing the dynamics of such changes.

4.
Entropy (Basel) ; 22(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33286155

RESUMO

In the present work, we discuss how the functional form of thermodynamic observables can be deduced from the geometric properties of subsets of phase space. The geometric quantities taken into account are mainly extrinsic curvatures of the energy level sets of the Hamiltonian of a system under investigation. In particular, it turns out that peculiar behaviours of thermodynamic observables at a phase transition point are rooted in more fundamental changes of the geometry of the energy level sets in phase space. More specifically, we discuss how microcanonical and geometrical descriptions of phase-transitions are shaped in the special case of ϕ 4 models with either nearest-neighbours and mean-field interactions.

5.
Materials (Basel) ; 12(22)2019 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-31717604

RESUMO

Solitons are a challenging topic in condensed matter physics and materials science because of the interplay between their topological and physical properties and for the crucial role they play in topological phase transitions. Among them, chiral skyrmions hosted in ferromagnetic systems are axisymmetric solitonic states attracting a lot of attention for their dazzling physical properties and technological applications. In this paper, the equilibrium statistical thermodynamics of chiral magnetic skyrmions developing in a ferromagnetic material having the shape of an ultrathin cylindrical dot is investigated. This is accomplished by determining via analytical calculations for both Néel and Bloch skyrmions: (1) the internal energy of a single chiral skyrmion; (2) the partition function; (3) the free energy; (4) the pressure; and (5) the equation of state of a skyrmion diameters population. To calculate the thermodynamic functions for points (2)-(5), the derivation of the average internal energy and of the configurational entropy is crucial. Numerical calculations of the thermodynamic functions for points (1)-(5) are applied to Néel skyrmions. These results could advance the field of materials science with special regard to low-dimensional magnetic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA