Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Neuroinflammation ; 14(1): 166, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830445

RESUMO

BACKGROUND: Acute CNS damage is commonly studied using rat and mouse models, but increasingly, molecular analysis is finding species differences that might affect the ability to translate findings to humans. Microglia can undergo complex molecular and functional changes, often studied by in vitro responses to discrete activating stimuli. There is considerable evidence that pro-inflammatory (M1) activation can exacerbate tissue damage, while anti-inflammatory (M2) states help resolve inflammation and promote tissue repair. However, in assessing potential therapeutic targets for controlling inflammation, it is crucial to determine whether rat and mouse microglia respond the same. METHODS: Primary microglia from Sprague-Dawley rats and C57BL/6 mice were cultured, then stimulated with interferon-γ + tumor necrosis factor-α (I + T; M1 activation), interleukin (IL)-4 (M2a, alternative activation), or IL-10 (M2c, acquired deactivation). To profile their activation responses, NanoString was used to monitor messenger RNA (mRNA) expression of numerous pro- and anti-inflammatory mediators, microglial markers, immunomodulators, and other molecules. Western analysis was used to measure selected proteins. Two potential targets for controlling inflammation-inward- and outward-rectifier K+ channels (Kir2.1, Kv1.3)-were examined (mRNA, currents) and specific channel blockers were applied to determine their contributions to microglial migration in the different activation states. RESULTS: Pro-inflammatory molecules increased after I + T treatment but there were several qualitative and quantitative differences between the species (e.g., iNOS and nitric oxide, COX-2). Several molecules commonly associated with an M2a state differed between species or they were induced in additional activation states (e.g., CD206, ARG1). Resting levels and/or responses of several microglial markers (Iba1, CD11b, CD68) differed with the activation state, species, or both. Transcripts for several Kir2 and Kv1 family members were detected in both species. However, the current amplitudes (mainly Kir2.1 and Kv1.3) depended on activation state and species. Treatment-induced changes in morphology and migratory capacity were similar between the species (migration reduced by I + T, increased by IL-4 or IL-10). In both species, Kir2.1 block reduced migration and Kv1.3 block increased it, regardless of activation state; thus, these channels might affect microglial migration to damage sites. CONCLUSIONS: Caution is recommended in generalizing molecular and functional responses of microglia to activating stimuli between species.


Assuntos
Movimento Celular/fisiologia , Mediadores da Inflamação/metabolismo , Canal de Potássio Kv1.3/metabolismo , Microglia/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/metabolismo , Sequência de Bases , Proliferação de Células/fisiologia , Canal de Potássio Kv1.3/genética , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
2.
Adv Exp Med Biol ; 949: 147-165, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27714688

RESUMO

Microglial cells are highly dynamic cells with processes continuously moving to survey the surrounding territory. Microglia possess a broad variety of surface receptors and subtle changes in their microenvironment cause microglial cell processes to extend, retract, and interact with neuronal synaptic contacts. When the nervous system is disturbed, microglia activate, proliferate, and migrate to sites of injury in response to alert signals. Released nucleotides like ATP and UTP are among the wide range of molecules promoting microglial activation and guiding their migration and phagocytic function. The increased concentration of nucleotides in the extracellular space could be involved in the microglial wrapping found around injured neurons in various pathological conditions, especially after peripheral axotomy. Microglial wrappings isolate injured neurons from synaptic inputs and facilitate the molecular dialog between endangered or injured neurons and activated microglia. Astrocytes may also participate in neuronal ensheathment. Degradation of ATP by microglial ecto-nucleotidases and the expression of various purine receptors might be decisive in regulating the function of enwrapping glial cells and in determining the fate of damaged neurons, which may die or may regenerate their axons and survive.


Assuntos
Trifosfato de Adenosina/metabolismo , Microglia/fisiologia , Neurônios Motores/fisiologia , Receptores Purinérgicos/metabolismo , Sinapses/fisiologia , Uridina Trifosfato/metabolismo , Animais , Axotomia , Comunicação Celular , Movimento Celular/fisiologia , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Humanos , Microglia/citologia , Neurônios Motores/citologia , Regeneração Nervosa/fisiologia , Neurotransmissores/genética , Neurotransmissores/metabolismo , Fagocitose/fisiologia , Receptores Purinérgicos/genética , Transdução de Sinais
3.
Front Cell Neurosci ; 9: 185, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029054

RESUMO

When microglia respond to CNS damage, they can range from pro-inflammatory (classical, M1) to anti-inflammatory, alternative (M2) and acquired deactivation states. It is important to determine how microglial functions are affected by these activation states, and to identify molecules that regulate their behavior. Microglial proliferation and migration are crucial during development and following damage in the adult, and both functions are Ca(2+)-dependent. In many cell types, the membrane potential and driving force for Ca(2+) influx are regulated by inward-rectifier K(+) channels, including Kir2.1, which is prevalent in microglia. However, it is not known whether Kir2.1 expression and contributions are altered in anti-inflammatory states. We tested the hypothesis that Kir2.1 contributes to Ca(2+) entry, proliferation and migration of rat microglia. Kir2.1 (KCNJ2) transcript expression, current amplitude, and proliferation were comparable in unstimulated microglia and following alternative activation (IL-4 stimulated) and acquired deactivation (IL-10 stimulated). To examine functional roles of Kir2.1 in microglia, we first determined that ML133 was more effective than the commonly used blocker, Ba(2+); i.e., ML133 was potent (IC50 = 3.5 µM) and voltage independent. Both blockers slightly increased proliferation in unstimulated or IL-4 (but not IL-10)-stimulated microglia. Stimulation with IL-4 or IL-10 increased migration and ATP-induced chemotaxis, and blocking Kir2.1 greatly reduced both but ML133 was more effective. In all three activation states, blocking Kir2.1 with ML133 dramatically reduced Ca(2+) influx through Ca(2+)-release-activated Ca(2+) (CRAC) channels. Thus, Kir2.1 channel activity is necessary for microglial Ca(2+) signaling and migration under resting and anti-inflammatory states but the channel weakly inhibits proliferation.

4.
Front Cell Neurosci ; 8: 183, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071444

RESUMO

The Ca(2+)-activated K(+) channel, KCa3.1 (KCNN4/IK1/SK4), contributes to "classical," pro-inflammatory activation of microglia, and KCa3.1 blockers have improved the outcome in several rodent models of CNS damage. For instance, blocking KCa3.1 with TRAM-34 rescued retinal ganglion neurons after optic nerve damage in vivo and, reduced p38 MAP kinase activation, production of reactive oxygen and nitrogen species, and neurotoxicity by microglia in vitro. In pursuing the therapeutic potential of KCa3.1 blockers, it is crucial to assess KCa3.1 contributions to other microglial functions and activation states, especially the IL-4-induced "alternative" activation state that can counteract pro-inflammatory states. We recently found that IL-4 increases microglia migration - a crucial function in the healthy and damaged CNS - and that KCa3.1 contributes to P2Y2 receptor-stimulated migration. Here, we discovered that KCa3.1 is greatly increased in alternative-activated rat microglia and then contributes to an enhanced migratory capacity. IL-4 up-regulated KCNN4 mRNA (by 6 h) and greatly increased the KCa3.1 current by 1 day, and this required de novo protein synthesis. The increase in current was sustained for at least 6 days. IL-4 increased microglial migration and this was reversed by blocking KCa3.1 with TRAM-34. A panel of inhibitors of signal-transduction mediators was used to analyze contributions of IL-4-related signaling pathways. Induction of KCNN4 mRNA and KCa3.1 current was mediated specifically through IL-4 binding to the type I receptor and, surprisingly, it required JAK3, Ras/MEK/ERK signaling and the transcription factor, activator protein-1, rather than JAK2, STAT6, or phosphatidylinositol 3-kinase.The same receptor subtype and pathway were required for the enhanced KCa3.1-dependent migration. In providing the first direct signaling link between an IL-4 receptor, expression and roles of an ion channel, this study also highlights the potential importance of KCa3.1 in alternative-activated microglia.

5.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-17803

RESUMO

Chronic neuroinflammation is an integral pathological feature of major neurodegenerative diseases. The recruitment of microglia to affected brain regions and the activation of these cells are the major events leading to disease-associated neuroinflammation. In a previous study, we showed that neuron-released alpha-synuclein can activate microglia through activating the Toll-like receptor 2 (TLR2) pathway, resulting in proinflammatory responses. However, it is not clear whether other signaling pathways are involved in the migration and activation of microglia in response to neuron-released alpha-synuclein. In the current study, we demonstrated that TLR2 activation is not sufficient for all of the changes manifested by microglia in response to neuron-released alpha-synuclein. Specifically, the migration of and morphological changes in microglia, triggered by neuron-released alpha-synuclein, did not require the activation of TLR2, whereas increased proliferation and production of cytokines were strictly under the control of TLR2. Construction of a hypothetical signaling network using computational tools and experimental validation with various peptide inhibitors showed that beta1-integrin was necessary for both the morphological changes and the migration. However, neither proliferation nor cytokine production by microglia was dependent on the activation of beta1-integrin. These results suggest that beta1-integrin signaling is specifically responsible for the recruitment of microglia to the disease-affected brain regions, where neurons most likely release relatively high levels of alpha-synuclein.


Assuntos
Animais , Humanos , Camundongos , Ratos , Integrina beta1/genética , Linhagem Celular Tumoral , Movimento Celular , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Redes Reguladoras de Genes , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , alfa-Sinucleína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...