Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(9)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36144085

RESUMO

This article documents the design, manufacture, and testing of a silicon inertial optical sensor for low-frequency (lower than 2 kHz) applications. Three accelerometer designs optimized by parameterization using Finite Element Analysis were considered. The accelerometers were manufactured and the one with the highest performance at low frequency was chosen for testing, which was attached to a steel package. The feasibility of using probes, based on micro-machined sensing elements, to measure mechanical vibrations with high resolution was also studied. The detection is performed with an air interferometer, eliminating the need for electric signals that are susceptible to electromagnetic interference and large temperature variations. From the fabrication technology using only a silicon wafer with both sides etched, the frequency response of the sensor, temperature operation (higher than 85 °C) and with a resolution of 17.5 nm, it was concluded that is achievable and feasible to design and manufacture an optical vibration sensor for potential harsh environments with a low cost.

2.
Biofabrication ; 13(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33482658

RESUMO

Vascularization is considered to be one of the key challenges in engineering functional 3D tissues. Engineering suturable vascular grafts containing pores with diameter of several tens of microns in tissue engineered constructs may provide an instantaneous blood perfusion through the grafts improving cell infiltration and thus, allowing rapid vascularization and vascular branching. The aim of this work was to develop suturable tubular scaffolds to be integrated in biofabricated constructs, enabling the direct connection of the biofabricated construct with the host blood stream, providing an immediate blood flow inside the construct. Here, tubular grafts with customizable shapes (tubes, Y-shape capillaries) and controlled diameter ranging from several hundreds of microns to few mm are fabricated based on poly(glycerol sebacate) (PGS)/poly(vinyl alcohol) (PVA) electrospun scaffolds. Furthermore, a network of pore channels of diameter in the order of 100µm was machined by laser femtosecond ablation in the tube wall. Both non-machined and laser machined tubular scaffolds elongated more than 100% of their original size have shown suture retention, being 5.85 and 3.96 N mm-2respectively. To demonstrate the potential of application, the laser machined porous grafts were embedded in gelatin methacryloyl (GelMA) hydrogels, resulting in elastomeric porous tubular graft/GelMA 3D constructs. These constructs were then co-seeded with osteoblast-like cells (MG-63) at the external side of the graft and human umbilical vein endothelial cells inside, forming a bone osteon model. The laser machined pore network allowed an immediate endothelial cell flow towards the osteoblasts enabling the osteoblasts and endothelial cells to interact and form 3D structures. This rapid vascularization approach could be applied, not only for bone tissue regeneration, but also for a variety of tissues and organs.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Gelatina , Células Endoteliais da Veia Umbilical Humana , Humanos , Metacrilatos , Porosidade
3.
Micromachines (Basel) ; 9(4)2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30424120

RESUMO

The development of organ-on-chip and biological scaffolds is currently requiring simpler methods for microstructure biocompatible materials in three dimensions, to fabricate structural and functional elements in biomaterials, or modify the physicochemical properties of desired substrates. Aiming at addressing this need, a low-power CD-DVD-Blu-ray laser pickup head was mounted on a programmable three-axis micro-displacement system in order to modify the surface of polymeric materials in a local fashion. Thanks to a specially-designed method using a strongly absorbing additive coating the materials of interest, it has been possible to establish and precisely control processes useful in microtechnology for biomedical applications. The system was upgraded with Blu-ray laser for additive manufacturing and ablation on a single platform. In this work, we present the application of these fabrication techniques to the development of biomimetic cellular culture platforms thanks to the simple integration of several features typically achieved with traditional, less cost-effective microtechnology methods in one step or through replica-molding. Our straightforward approach indeed enables great control of local laser microablation or polymerization for true on-demand biomimetic micropatterned designs in transparent polymers and hydrogels and is allowing integration of microfluidics, microelectronics, surface microstructuring, and transfer of superficial protein micropatterns on a variety of biocompatible materials.

4.
Int J Mol Sci ; 17(8)2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27548153

RESUMO

Controlling microbial growth is crucial for many biomedical, pharmaceutical and food industry applications. In this paper, we used a femtosecond laser to microstructure the surface of chitosan, a biocompatible polymer that has been explored for applications ranging from antimicrobial action to drug delivery. The influence of energy density on the features produced on chitosan was investigated by optical and atomic force microscopies. An increase in the hydrophilic character of the chitosan surface was attained upon laser micromachining. Patterned chitosan films were used to observe Staphylococcus aureus (ATCC 25923) biofilm formation, revealing an increase in the biofilm formation in the structured regions. Our results indicate that fs-laser micromachining is an attractive option to pattern biocompatible surfaces, and to investigate basic aspects of the relationship between surface topography and bacterial adhesion.


Assuntos
Biofilmes/efeitos dos fármacos , Biopolímeros/química , Quitosana/química , Aderência Bacteriana/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biopolímeros/farmacologia , Quitosana/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA