Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int. j. morphol ; 41(5): 1288-1296, oct. 2023. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1521049

RESUMO

El propósito de este estudio fue analizar el comportamiento mecánico de la estructura dental sana de un primer premolar inferior humano sometido a fuerzas funcionales y disfuncionales en diferentes direcciones. Se buscó comprender, bajo las variables contempladas, las zonas de concentración de esfuerzos que conllevan al daño estructural de sus constituyentes y tejidos adyacentes. Se realizó el modelo 3D de la reconstrucción de un archivo TAC de un primer premolar inferior, que incluyó esmalte, dentina, ligamento periodontal y hueso alveolar considerando tres variables: dirección, magnitud y área de la fuerza aplicada. La dirección fue dirigida en tres vectores (vertical, tangencial y horizontal) bajo cuatro magnitudes, una funcional de 35 N y tres disfuncionales de 170, 310 y 445 N, aplicadas sobre un área de la cara oclusal y/o vestibular del premolar que involucró tres contactos estabilizadores (A, B y C) y dos paradores de cierre. Los resultados obtenidos explican el fenómeno de combinar tres vectores, cuatro magnitudes y un área de aplicación de la fuerza, donde los valores de esfuerzo efectivo equivalente Von Mises muestran valores máximos a partir de los 60 MPa. Los valores de tensión máximos se localizan, bajo la carga horizontal a 170 N y en el proceso masticatorio en la zona cervical, cuando la fuerza pasa del 60 %. Sobre la base de los hallazgos de este estudio, se puede concluir que la reacción de los tejidos a fuerzas funcionales y disfuncionales varía de acuerdo con la magnitud, dirección y área de aplicación de la fuerza. Los valores de tensión resultan ser más altos bajo la aplicación de fuerzas disfuncionales tanto en magnitud como en dirección, produciendo esfuerzos tensiles significativos para la estructura dental y periodontal cervical, mientras que, bajo las cargas funcionales aplicadas en cualquier dirección, no se generan esfuerzos lesivos. Esto supone el reconocimiento del poder de detrimento estructural del diente y periodonto frente al bruxismo céntrico y excéntrico.


SUMMARY: The purpose of this study was to analyze the mechanical behavior of the healthy dental structure of a human mandibular first premolar subjected to functional and dysfunctional forces in different directions. It was sought to understand, under the contemplated variables, the areas of stress concentration that lead to structural damage of its constituents and adjacent tissues. The 3D model of the reconstruction of a CT file of a lower first premolar was made, which included enamel, dentin, periodontal ligament and alveolar bone considering three variables: direction, magnitude and area of the applied force. The direction was directed in three vectors (vertical, tangential and horizontal) under four magnitudes, one functional of 35 N and three dysfunctional of 170, 310 and 445 N, applied to an area of the occlusal and/or buccal face of the premolar that involved three stabilizing contacts (A, B and C) and two closing stops. The results obtained explain the phenomenon of combining three vectors, four magnitudes and an area of force application, where the values of effective equivalent Von Mises stress show maximum values from 60 MPa. The maximum tension values are located under the horizontal load at 170 N and in the masticatory process in the cervical area, when the force exceeds 60%. Based on the findings of this study, it can be concluded that the reaction of tissues to functional and dysfunctional forces varies according to the magnitude, direction, and area of application of the force. The stress values turn out to be higher under the application of dysfunctional forces both in magnitude and in direction, producing significant tensile stresses for the dental and cervical periodontal structure, while under functional loads applied in any direction, no damaging stresses are generated. This supposes the recognition of the power of structural detriment of the tooth and periodontium against centric and eccentric bruxism.


Assuntos
Humanos , Dente Pré-Molar/fisiologia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Dente/fisiologia , Força de Mordida , Bruxismo/fisiopatologia , Módulo de Elasticidade , Desgaste dos Dentes , Mastigação/fisiologia
2.
Rev. osteoporos. metab. miner. (Internet) ; 13(1)ene.-mar. 2021. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-227976

RESUMO

Objetivo: El objetivo del trabajo fue analizar el fenómeno de cut-out, fenómeno que supone desplazamientos oblicuos y/o rotaciones de la cabeza femoral alrededor del componente cefálico del clavo intramedular. El análisis se llevó a cabo mediante modelos numéricos de elementos finitos. Con esta técnica se busca entender el fallo de este tipo de fijaciones y establecer qué posicionamiento del sistema favorece o evita el fallo por cut-out. Material y métodos: El estudio se realizó sobre un modelo numérico de la extremidad proximal de un fémur artificial y un clavo intramedular tipo PFNA (femoral proximal de antirrotación). En el modelo numérico se varió la posición del clavo intramedular en dirección anterior/posterior y superior/inferior para analizar la influencia de la posición en el fenómeno de cut-out. Se analizaron las tensiones en zonas críticas y par torsor sobre el clavo bajo una carga en posición normal. Resultados: La posición más crítica fue aquella en la que el clavo intramedular está colocado en la posición superior, debido a las altas compresiones que aparecen en el hueso trabecular de la cabeza femoral. La posición centrada del clavo disminuyó el riesgo de daño óseo y el par torsor que tiene que soportar el clavo intramedular. Conclusión: Este tipo de modelos permite simular la influencia de la posición del clavo y obtener variables que de otra manera son difíciles de analizar. Aunque se trata de un modelo sencillo con carga estática, confirma que una posición centrada del clavo intramedular disminuye el riesgo de cut-out. (AU)


Objetive: This work aimed to analyze the cut-out phenomenon, which involves oblique displacements and/or rotations of the femoral head around the cephalic component of the intramedullary nail. The analysis was carried out using finite element numerical models. This technique seeks to understand the failure of this type of fixation and establish what positioning of the system favors or prevents failure due to cut-out. Material and methods: The study was carried out on a numerical model of the proximal limb of an artificial femur and an intramedullary nail type PFNA (proximal femoral nail anti-rotation). In the numerical model, the position of the intramedullary nail was varied in the anterior/posterior and superior/inferior directions to analyze the influence of the position on the cut-out phenomenon. Stresses in critical areas and torque on the nail under normal position loading were analyzed. Results: The most critical position was the one in which the intramedullary nail is placed in the superior position, due to the high compressions that appear in the trabecular bone of the femoral head. The centered position of the nail decreased the risk of bone damage and the torque that the intramedullary nail has to support. Conclusion: This type of model allows us to simulate the influence of the nail position and obtain variables that are otherwise difficult to analyze. Although it is a simple model with static load, it confirms that a centered position of the intramedullary nail reduces the risk of cut-out. (AU)


Assuntos
Humanos , Fraturas do Quadril , Fixação Intramedular de Fraturas/métodos , Análise de Elementos Finitos , Fêmur/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...