Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Evol Appl ; 17(8): e13762, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39100752

RESUMO

While the presence of morphologically cryptic species is increasingly recognized, we still lack a useful understanding of what causes and maintains co-occurring cryptic species and its consequences for the ecology, evolution, and conservation of communities. We sampled 724 Pocillopora corals from five habitat zones (the fringing reef, back reef, and fore reef at 5, 10, and 20 m) at four sites around the island of Moorea, French Polynesia. Using validated genetic markers, we identified six sympatric species of Pocillopora, most of which cannot be reliably identified based on morphology: P. meandrina (42.9%), P. tuahiniensis (25.1%), P. verrucosa (12.2%), P. acuta (10.4%), P. grandis (7.73%), and P. cf. effusa (2.76%). For 423 colonies (58% of the genetically identified hosts), we also used psbA ncr or ITS2 markers to identify symbiont species (Symbiodiniaceae). The relative abundance of Pocillopora species differed across habitats within the reef. Sister taxa P. verrucosa and P. tuahiniensis had similar niche breadths and hosted the same specialist symbiont species (mostly Cladocopium pacificum) but the former was more common in the back reef and the latter more common deeper on the fore reef. In contrast, sister taxa P. meandrina and P. grandis had the highest niche breadths and overlaps and tended to host the same specialist symbiont species (mostly C. latusorum). Pocillopora acuta had the narrowest niche breadth and hosted the generalist, and more thermally tolerant, Durusdinium gynnii. Overall, there was a positive correlation between reef habitat niche breadth and symbiont niche breadth-Pocillopora species with a broader habitat niche also had a broader symbiont niche. Our results show how fine-scale variation within reefs plays an important role in the generation and coexistence of cryptic species. The results also have important implications for how niche differences affect community resilience, and for the success of coral restoration practices, in ways not previously appreciated.

2.
Ecol Evol ; 14(7): e70057, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39041015

RESUMO

Butyrate-producing bacteria colonise the gut of humans and non-human animals, where they produce butyrate, a short-chain fatty acid with known health benefits. Butyrate-producing bacteria also reside in soils and soil bacteria can drive the assembly of airborne bacterial communities (the aerobiome). Aerobiomes in urban greenspaces are important reservoirs of butyrate-producing bacteria as they supplement the human microbiome, but soil butyrate producer communities have rarely been examined in detail. Here, we studied soil metagenome taxonomic and functional profiles and soil physicochemical data from two urban greenspace types: sports fields (n = 11) and nature parks (n = 22). We also developed a novel method to quantify soil butyrate and characterised the in situ activity of butyrate-producing bacteria. We show that soil butyrate was higher in sports fields than nature parks and that sports fields also had significantly higher relative abundances of the terminal butyrate production genes buk and butCoAT than nature parks. Soil butyrate positively correlated with buk gene abundance (but not butCoAT). Soil moisture (r = .50), calcium (r = -.62), iron (ρ = .54), ammonium nitrogen (ρ = .58) and organic carbon (r = .45) had the strongest soil abiotic effects on soil butyrate concentrations and iron (ρ = .56) and calcium (ρ = -.57) had the strongest soil abiotic effects on buk read abundances. Overall, our findings contribute important new insights into the role of sports fields as key exposure reservoirs of butyrate producing bacteria, with important implications for the provision of microbiome-mediated human health benefits via butyrate.

3.
Animals (Basel) ; 14(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731291

RESUMO

The introduction and subsequent range expansion of the American bullfrog (Lithobates catesbeianus) is part of a rising trend of troublesome biological invasions happening in China. This detrimental amphibious invasive species has strong adaptability. After its introduction and spread, it established its own ecological niche in many provinces of China, and its range has continued to expand to more areas. Previous studies recorded the introduction time of bullfrogs and calculated the changes in their genetic diversity in China using mitochondria, but the specific introduction route in China is still unknown. Expanding upon previous research, we employed whole-genome scans (utilizing 2b-RAD genomic sequencing) to examine single nucleotide polymorphisms (SNPs) and microsatellites within Lithobates catesbeianus to screen the genomes of these invasive amphibian species from eight Chinese provinces and two U.S. states, including Kansas, where bullfrogs originate. A total of 1,336,475 single nucleotide polymorphic loci and 17 microsatellite loci were used to calculate the genetic diversity of bullfrogs and their migration pathways. Our results suggest that the population in Hunan was the first to be introduced and to spread, and there may have been multiple introductions of subpopulations. Additionally, the genetic diversity of both the SNP and microsatellite loci in the Chinese bullfrog population was lower than that of the US population due to bottleneck effects, but the bullfrogs can adapt and spread rapidly. This study will offer crucial insights for preventing and controlling future introductions into the natural habitats in China. Additionally, it will assist in devising more precise strategies to manage the existing populations and curtail their continued expansion, as well as aim to improve clarity and originality while mitigating plagiarism risk.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38717107

RESUMO

Background: Aedes aegypti, is the primary vector of dengue, Chikungunya, Zika, and yellow fever viruses. Both natural and human-impacted landscapes have selective pressures on Ae. aegypti, resulting in strong genomic structure even within close geographical distances. Materials and Methods: We assess the genetic structure of this medically important mosquito species at the northern leading edge of their distribution in Southwestern USA. Ae. aegypti were collected during 2017 in the urban communities of El Paso and Sparks, Texas (USA) and in the city of Ciudad Juárez, Mexico. Results: Thousands of nuclear loci were sequenced across 260 captured Ae. aegypti. First, we recovered the genetic structure of Ae. aegypti following geography, with all four major collection communities being genetically distinct. Importantly, we found population structure and genetic diversity that suggest rapid expansion through active-short distance dispersals, with Anapra being the likely source for the others. Next, tests of selection recovered eight functional genes across six outliers: calmodulin with olfactory receptor function; the protein superfamily C-type lectin with function in mosquito immune system and development; and TATA box binding protein with function in gene regulation. Conclusion: Despite these populations being documented in the early 2000s, we find that selective pressures on specific genes have already occurred and likely facilitate Ae. aegypti range expansion.

5.
Heliyon ; 10(7): e27820, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560215

RESUMO

Marine macroalgae are the habitat of epiphytic bacteria and provide several conditions for a beneficial biological interaction to thrive. Although Bacillus is one of the most abundant epiphytic genera, genomic information on marine macroalgae-associated Bacillus species remains scarce. In this study, we further investigated our previously published genome of the epiphytic strain Bacillus altitudinis 19_A to find features that could be translated to potential metabolites produced by this microorganism, as well as genes that play a role in its interaction with its macroalgal host. To achieve this goal, we performed a pan-genome analysis of Bacillus sp. and a codon bias assessment, including the genome of the strain Bacillus altitudinis 19_A and 29 complete genome sequences of closely related Bacillus strains isolated from soil, marine environments, plants, extreme environments, air, and food. This genomic analysis revealed that Bacillus altitudinis 19_A possessed unique genes encoding proteins involved in horizontal gene transfer, DNA repair, transcriptional regulation, and bacteriocin biosynthesis. In this comparative analysis, codon bias was not associated with the habitat of the strains studied. Some accessory genes were identified in the Bacillus altitudinis 19_A genome that could be related to its epiphytic lifestyle, as well as gene clusters for the biosynthesis of a sporulation-killing factor and a bacteriocin, showing their potential as a source of antimicrobial peptides. Our results provide a comprehensive view of the Bacillus altitudinis 19_A genome to understand its adaptation to the marine environment and its potential as a producer of bioactive compounds.

6.
Mol Ecol Resour ; 24(2): e13893, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37966259

RESUMO

Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed. Here, we review practical guidance to improve applied conservation genomics. We share insights aimed at ensuring effectiveness of conservation actions around three themes: (1) improving pedagogy and training in conservation genomics including for online global audiences, (2) conducting rigorous population genomic analyses properly considering theory, marker types and data interpretation and (3) facilitating communication and collaboration between managers and researchers. We aim to update students and professionals and expand their conservation toolkit with genomic principles and recent approaches for conserving and managing biodiversity. The biodiversity crisis is a global problem and, as such, requires international involvement, training, collaboration and frequent reviews of the literature and workshops as we do here.


Assuntos
Conservação dos Recursos Naturais , Genômica , Humanos , Conservação dos Recursos Naturais/métodos , Biodiversidade , Genoma
7.
One Health ; 17: 100640, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38024284

RESUMO

Rates of fluoroquinolone resistance in Escherichia coli, a key opportunistic human pathogen, are problematic. Taking a One Health approach, we investigated the excretion of fluoroquinolone-resistant (FQ-R) E. coli by 600 dogs (303 from rural and 297 from urban environments) recruited from a 50 × 50 km region where we have also surveyed FQ-R E. coli from cattle and from human urine. FQ-R E. coli were detected in faeces from 7.3% (rural) and 11.8% (urban) of dogs. FQ-R E. coli from rural dogs tended to be of sequence types (STs) commonly excreted by cattle, whilst those from urban dogs tended to carry plasmid-mediated quinolone resistance genes, common in human E. coli in our study region. Phylogenetic evidence was obtained for sharing FQ-R E. coli - particularly for STs 10, 162 and 744 - between cattle, dogs and humans. Epidemiological analysis showed a strong association between feeding dogs uncooked meat and the excretion of FQ-R E. coli, particularly for STs 10, 162 and 744. This practice, therefore, could serve as a transmission link for FQ-R E. coli from farmed animals entering the home so we suggest that dogs fed uncooked meat should be handled and housed using enhanced hygiene practices.

8.
Planta ; 258(6): 117, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957258

RESUMO

MAIN CONCLUSION: Environmental DNA-based monitoring provides critical insights for enhancing our understanding of plant-animal interactions in the context of worldwide biodiversity decrease for developing a global framework for effective plant biodiversity conservation. To understand the ecology and evolutionary patterns of plant-animal interactions (PAI) and their pivotal roles in ecosystem functioning advances in molecular ecology tools such as Environmental DNA (eDNA) provide unprecedented research avenues. These methods being non-destructive in comparison to traditional biodiversity monitoring methods, enhance the discernment of ecosystem health, integrity, and complex interactions. This review intends to offer a systematic and critical appraisal of the prospective of eDNA for investigating PAI. The review thoroughly discusses and analyzes the recent reports (2015-2022) employing preferred reporting items for systematic reviews and meta-analyses (PRISMA) to outline the recent progression in eDNA approaches for elucidating PAI. The current review envisages that eDNA has a significant potential to monitor both plants and associated cohort of prospective pollinators (avian species and flowering plants, bees and plants, arthropods and plants, bats and plants, etc.). Furthermore, a brief description of the factors that influence the utility and interpretation of PAI eDNA is also presented. The review establishes that factors such as biotic and abiotic, primer selection and taxonomic resolution, and indeterminate spatio-temporal scales impact the availability and longevity of eDNA. The study also identified the limitations that influence PAI detection and suggested possible solutions for better execution of these molecular approaches. Overcoming these research caveats will augment the assortment of PAI analysis through eDNA that could be vital for ecosystem health and integrity. This review forms a critical guide and offers prominent insights for ecologists, environmental managers and researchers to assess and evaluate plant-animal interaction through environmental DNA.


Assuntos
DNA Ambiental , Ecossistema , Animais , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Ecologia , Monitoramento Ambiental/métodos , Plantas/genética
9.
Evol Appl ; 16(7): 1257-1273, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37492151

RESUMO

Human activity has diminished forests in different terrestrial ecosystems. This is well illustrated in the Brazilian Atlantic Forest, which still hosts high levels of species richness and endemism, even with only 28% of its original extent remaining. The consequences of such forest loss in remaining populations can be investigated with several approaches, including the genomic perspective, which allows a broader understanding of how human disturbance influences the genetic variability in natural populations. In this context, our study investigated the genomic responses of Euterpe edulis Martius, an endangered palm tree, in forest remnants located in landscapes presenting different forest cover amount and composed by distinct bird assemblage that disperse its seeds. We sampled 22 areas of the Brazilian Atlantic Forest in four regions using SNP markers inserted into transcribed regions of the genome of E. edulis, distinguishing neutral loci from those putatively under natural selection (outlier). We demonstrate that populations show patterns of structure and genetic variability that differ between regions, as a possible reflection of deforestation and biogeographic histories. Deforested landscapes still maintain high neutral genetic diversity due to gene flow over short distances. Overall, we not only support previous evidence with microsatellite markers, but also show that deforestation can influence the genetic variability outlier, in the scenario of selective pressures imposed by these stressful environments. Based on our findings, we suggest that, to protect genetic diversity in the long term, it is necessary to reforest and enrich deforested areas, using seeds from populations in the same management target region.

10.
11.
Ecol Evol ; 13(5): e10036, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37139403

RESUMO

Knowledge about parasite species of orcas, their prevalence, and impact on the health status is scarce. Only two records of lungworm infections in orca exist from male neonatal orcas stranded in Germany and Norway. The nematodes were identified as Halocercus sp. (Pseudaliidae), which have been described in the respiratory tract of multiple odontocete species, but morphological identification to species level remained impossible due to the fragile structure and ambiguous morphological features. Pseudaliid nematodes (Metastrongyloidea) are specific to the respiratory tract of toothed whales and are hypothesized to have become almost extinct in terrestrial mammals. Severe lungworm infections can cause secondary bacterial infections and bronchopneumonia and are a common cause of mortality in odontocetes. DNA isolations and subsequent sequencing of the rDNA ITS-2 and mtDNA COI revealed nucleotide differences between previously described Halocercus species from common dolphin (H. delphini) and harbor porpoises (H. invaginatus) that were comparatively analyzed, pointing toward a potentially new species of pseudaliid lungworm in orcas. New COI sequences of six additional metastrongyloid lungworms of seals and porpoises were derived to elucidate phylogenetic relationships and differences between nine species of Metastrongyloidea.

12.
Microorganisms ; 11(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37110372

RESUMO

The integration and reanalysis of big data provide valuable insights into microbiome studies. However, the significant difference in information scale between amplicon data poses a key challenge in data analysis. Therefore, reducing batch effects is crucial to enhance data integration for large-scale molecular ecology data. To achieve this, the information scale correction (ISC) step, involving cutting different length amplicons into the same sub-region, is essential. In this study, we used the Hidden Markov model (HMM) method to extract 11 different 18S rRNA gene v4 region amplicon datasets with 578 samples in total. The length of the amplicons ranged from 344 bp to 720 bp, depending on the primer position. By comparing the information scale correction of amplicons with varying lengths, we explored the extent to which the comparability between samples decreases with increasing amplicon length. Our method was shown to be more sensitive than V-Xtractor, the most popular tool for performing ISC. We found that near-scale amplicons exhibited no significant change after ISC, while larger-scale amplicons exhibited significant changes. After the ISC treatment, the similarity among the data sets improved, especially for long amplicons. Therefore, we recommend adding ISC processing when integrating big data, which is crucial for unlocking the full potential of microbial community studies and advancing our knowledge of microbial ecology.

13.
Pest Manag Sci ; 79(7): 2517-2526, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36864785

RESUMO

BACKGROUND: Plant invasions are a global concern. In eastern China, bamboo is rapidly expanding, negatively influencing neighbouring forest communities. However, studies on how bamboo invasion affects belowground communities, especially for soil invertebrates, are still lacking. In the present study, we focused on a highly abundant and diverse fauna taxon - Collembola. Collembola communities have three typical life-forms (i.e., epedaphic, hemiedaphic, and euedaphic) inhabiting different soil layers and playing distinct roles in ecological processes. Specifically, we studied their abundance, diversity, and community composition at the three stages of bamboo invasion: uninvaded secondary broadleaf forest, moderately invaded mixed bamboo forest, and completely invaded bamboo (Phyllostachys edulis) forest. RESULTS: Our results showed that bamboo invasion negatively influenced Collembola communities by decreasing their abundance and diversity. Moreover, Collembola life-forms differed in their responses to bamboo invasion, with surface-dwelling Collembola being more vulnerable to bamboo invasion than soil-living Collembola. CONCLUSION: Our findings indicate differential response patterns to bamboo invasion within Collembola communities. The negative effects of bamboo invasion on soil surface-dwelling Collembola may further influence ecosystem functioning. © 2023 Society of Chemical Industry.


Assuntos
Artrópodes , Ecossistema , Poaceae , Animais , Florestas , Solo/química
14.
Microorganisms ; 11(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838414

RESUMO

Legionella pneumophila is an environmental bacterium and clinical pathogen that causes many life-threating outbreaks of an atypical pneumonia called Legionnaires' disease (LD). Studies of this pathogen have focused mainly on Europe and the United States. A shortage in L. pneumophila data is clearly observed for developing countries. To reduce this knowledge gap, L. pneumophila isolates were studied in two widely different geographical areas, i.e., the West Bank and Germany. For this study, we sequenced and compared the whole genome of 38 clinical and environmental isolates of L. pneumophila covering different MLVA-8(12) genotypes in the two areas. Sequencing was conducted using the Illumina HiSeq 2500 platform. In addition, two isolates (A194 and H3) were sequenced using a Pacific Biosciences (PacBio) RSII platform to generate complete reference genomes from each of the geographical areas. Genome sequences from 55 L. pneumophila strains, including 17 reference strains, were aligned with the genome sequence of the closest strain (L. pneumophila strain Alcoy). A whole genome phylogeny based on single nucleotide polymorphisms (SNPs) was created using the ParSNP software v 1.0. The reference genomes obtained for isolates A194 and H3 consisted of circular chromosomes of 3,467,904 bp and 3,691,263 bp, respectively. An average of 36,418 SNPs (min. 8569, max. 70,708 SNPs) against our reference strain L. pneumophila str. Alcoy, and 2367 core-genes were identified among the fifty-five strains. An analysis of the genomic population structure by SNP comparison divided the fifty-five L. pneumophila strains into six branches. Individual isolates in sub-lineages in these branches differed by less than 120 SNPs if they had the same MLVA genotype and were isolated from the same location. A bioinformatics analysis identified the genomic islands (GIs) for horizontal gene transfer and mobile genetic elements, demonstrating that L. pneumophila showed high genome plasticity. Four L. pneumophila isolates (H3, A29, A129 and L10-091) contained well-defined plasmids. On average, only about half of the plasmid genes could be matched to proteins in databases. In silico phage findings suggested that 43 strains contained at least one phage. However, none of them were found to be complete. BLASTp analysis of proteins from the type IV secretion Dot/Icm system showed those proteins highly conserved, with less than 25% structural differences in the new L. pneumophila isolates. Overall, we demonstrated that whole genome sequencing provides a molecular surveillance tool for L. pneumophila at the highest conceivable discriminatory level, i.e., two to eight SNPs were observed for isolates from the same location but several years apart.

15.
Ageing Res Rev ; 85: 101854, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657619

RESUMO

Telomere attrition is considered a hallmark of ageing. Untangling the proximate causes of telomere attrition may therefore reveal important aspects about the ageing process. In a landmark paper in 2002 Thomas von Zglinicki demonstrated that oxidative stress accelerates telomere attrition in cell culture. In the next 20 years, oxidative stress became firmly embedded into modern theories of ageing and telomere attrition. However, a recent surge of in vivo studies reveals an inconsistent pattern questioning the unequivocal role of oxidative stress in telomere length and telomere attrition (henceforth referred to as telomere dynamics), in living organisms. Here we report the results of the first formal meta-analysis on the association between oxidative stress and telomere dynamics in vivo, representing 37 studies, 4969 individuals, and 18,677 correlational measurements. The overall correlation between oxidative stress markers and telomere dynamics was indistinguishable from zero (r = 0.027). This result was independent of the type of oxidative stress marker, telomere dynamic, or taxonomic group. However, telomere measurement method affected the analysis and the subset of TRF-based studies showed a significant overall correlation (r = 0.09), supporting the prediction that oxidative stress accelerates telomere attrition. The correlation was more pronounced in short-lived species and during the adult life phase, when ageing becomes apparent. We then performed an additional meta-analysis of interventional studies (n = 7) manipulating oxidative stress. This revealed a significant effect of treatment on telomere dynamics (d=0.36). Our findings provide new support for the hypothesis that oxidative stress causes telomere attrition in living organisms.


Assuntos
Envelhecimento , Estresse Oxidativo , Humanos , Envelhecimento/genética , Telômero , Encurtamento do Telômero
17.
Conserv Biol ; 37(4): e14061, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36704891

RESUMO

Genetic diversity within species represents a fundamental yet underappreciated level of biodiversity. Because genetic diversity can indicate species resilience to changing climate, its measurement is relevant to many national and global conservation policy targets. Many studies produce large amounts of genome-scale genetic diversity data for wild populations, but most (87%) do not include the associated spatial and temporal metadata necessary for them to be reused in monitoring programs or for acknowledging the sovereignty of nations or Indigenous peoples. We undertook a distributed datathon to quantify the availability of these missing metadata and to test the hypothesis that their availability decays with time. We also worked to remediate missing metadata by extracting them from associated published papers, online repositories, and direct communication with authors. Starting with 848 candidate genomic data sets (reduced representation and whole genome) from the International Nucleotide Sequence Database Collaboration, we determined that 561 contained mostly samples from wild populations. We successfully restored spatiotemporal metadata for 78% of these 561 data sets (n = 440 data sets with data on 45,105 individuals from 762 species in 17 phyla). Examining papers and online repositories was much more fruitful than contacting 351 authors, who replied to our email requests 45% of the time. Overall, 23% of our email queries to authors unearthed useful metadata. The probability of retrieving spatiotemporal metadata declined significantly as age of the data set increased. There was a 13.5% yearly decrease in metadata associated with published papers or online repositories and up to a 22% yearly decrease in metadata that were only available from authors. This rapid decay in metadata availability, mirrored in studies of other types of biological data, should motivate swift updates to data-sharing policies and researcher practices to ensure that the valuable context provided by metadata is not lost to conservation science forever.


Importancia de la curación oportuna de metadatos para la vigilancia mundial de la diversidad genética Resumen La diversidad genética intraespecífica representa un nivel fundamental, pero a la vez subvalorado de la biodiversidad. La diversidad genética puede indicar la resiliencia de una especie ante el clima cambiante, por lo que su medición es relevante para muchos objetivos de la política de conservación mundial y nacional. Muchos estudios producen una gran cantidad de datos sobre la diversidad a nivel genético de las poblaciones silvestres, aunque la mayoría (87%) no incluye los metadatos espaciales y temporales asociados para que sean reutilizados en los programas de monitoreo o para reconocer la soberanía de las naciones o los pueblos indígenas. Realizamos un "datatón" distribuido para cuantificar la disponibilidad de estos metadatos faltantes y para probar la hipótesis que supone que esta disponibilidad se deteriora con el tiempo. También trabajamos para reparar los metadatos faltantes al extraerlos de los artículos asociados publicados, los repositorios en línea y la comunicación directa con los autores. Iniciamos con 838 candidatos de conjuntos de datos genómicos (representación reducida y genoma completo) tomados de la colaboración internacional para la base de datos de secuencias de nucleótidos y determinamos que 561 incluían en su mayoría muestras tomadas de poblaciones silvestres. Restauramos con éxito los metadatos espaciotemporales en el 78% de estos 561 conjuntos de datos (n = 440 conjuntos de datos con información sobre 45,105 individuos de 762 especies en 17 filos). El análisis de los artículos y los repositorios virtuales fue mucho más productivo que contactar a los 351 autores, quienes tuvieron un 45% de respuesta a nuestros correos. En general, el 23% de nuestras consultas descubrieron metadatos útiles. La probabilidad de recuperar metadatos espaciotemporales declinó de manera significativa conforme incrementó la antigüedad del conjunto de datos. Hubo una disminución anual del 13.5% en los metadatos asociados con los artículos publicados y los repositorios virtuales y hasta una disminución anual del 22% en los metadatos que sólo estaban disponibles mediante la comunicación con los autores. Este rápido deterioro en la disponibilidad de los metadatos, duplicado en estudios de otros tipos de datos biológicos, debería motivar la pronta actualización de las políticas del intercambio de datos y las prácticas de los investigadores para asegurar que en las ciencias de la conservación no se pierda para siempre el contexto valioso proporcionado por los metadatos.


Assuntos
Conservação dos Recursos Naturais , Metadados , Humanos , Biodiversidade , Probabilidade , Variação Genética
18.
Bioscience ; 73(12): 885-890, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38162573

RESUMO

The exponential increase in the availability of genomic data, derived from sequencing thousands of loci or whole genomes, provides exciting new insights into the diversity of life. However, it can also challenge established species concepts and existing management regimes derived from these concepts. Genomic data can help inform decisions about how to manage genetic diversity, but policies that protect identified taxonomic entities can generate conflicting recommendations that create challenges for practitioners. We outline three dimensions of management concern that arise when facing new and potentially conflicting interpretations of genomic data: defining conservation entities, deciding how to manage diversity, and evaluating the risks and benefits of management actions. We highlight the often-underappreciated role of values in influencing management choices made by individuals, scientists, practitioners, the public, and other stakeholders. Such values influence choices through mechanisms such as the Rashomon effect, whereby management decisions are complicated by conflicting perceptions of the causes and consequences of the conservation problem. To illustrate how this might operate, we offer a hypothetical example of this effect for the interpretation of genomic data and its implications for conservation management. Such value-based decisions can be challenged by the rigidity of existing management regimes, making it difficult to achieve the necessary flexibility to match the changing biological understanding. We finish by recommending that both conservation geneticists and practitioners reflect on their respective values, responsibilities, and roles in building a more robust system of species management. This includes embracing the inclusion of stakeholders in decision-making because, as in many cases, there are not objectively defensible right or wrong decisions.

19.
Microbiome ; 10(1): 225, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36510248

RESUMO

The measurement of uncharacterized pools of biological molecules through techniques such as metabarcoding, metagenomics, metatranscriptomics, metabolomics, and metaproteomics produces large, multivariate datasets. Analyses of these datasets have successfully been borrowed from community ecology to characterize the molecular diversity of samples (ɑ-diversity) and to assess how these profiles change in response to experimental treatments or across gradients (ß-diversity). However, sample preparation and data collection methods generate biases and noise which confound molecular diversity estimates and require special attention. Here, we examine how technical biases and noise that are introduced into multivariate molecular data affect the estimation of the components of diversity (i.e., total number of different molecular species, or entities; total number of molecules; and the abundance distribution of molecular entities). We then explore under which conditions these biases affect the measurement of ɑ- and ß-diversity and highlight how novel methods commonly used in community ecology can be adopted to improve the interpretation and integration of multivariate molecular data. Video Abstract.


Assuntos
Ecologia , Metagenômica , Ecologia/métodos , Metagenômica/métodos , Metabolômica/métodos
20.
Insects ; 13(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36292830

RESUMO

We compared the population genetic structure between populations of the blueberry gall midge-Dasineura oxycoccana (Johnson) (Diptera: Cecidomyiidae)-from blueberry and cranberry and determined the genetic relationships among geographical subgroups by genotyping 632 individuals from 31 different populations from their native USA regions (New Jersey, Michigan, and Georgia) and from invaded Korean regions using 12 microsatellite loci. Our population genetic analyses showed a clear separation between the two host-associated D. oxycoccana populations from blueberry and cranberry. Using data from only the blueberry-associated D. oxycoccana populations, we identified five genetically isolated subgroups. An analysis of the approximate Bayesian computation suggests that the invasive D. oxycoccana population from Korea appears to have been introduced from an unsampled source population rather than directly from its native range. Our findings will allow for an easier identification of the source of D. oxycoccana into newly invaded regions, as well as to determine their association with blueberry and cranberry, which based on our results can be considered as two distinct species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA