RESUMO
INTRODUCTION: Cancer is an individual disease and its formation and development are specific to each host. Conventional treatments are ineffective in complex cases, such as metastasis, and have severe adverse side effects. New strategies are needed to address the problem, and the use of immunogenic cell death (ICD) as a trigger or booster of the immune system through the exposure of damage-associated molecular patterns, along with tumor antigens, by cancerous cells is presented as an immunization approach in this work. METHODS: For this purpose, 4T1 cells were exposed to doxorubicin (DOX) for 24 hours and then, these cells undergoing ICD were subcutaneously administered to mice. The ICD induction by DOX on 4T1 was assessed by flow cytometry and image analysis. This immunization process was performed three times and after the last administration, the immunized mice were challenged with a subcutaneous xenograft of live cancer cells. RESULTS: The results demonstrate that the mice immunized with cells undergoing ICD after exposure to DOX presented no primary tumor or indications of distant metastatic lesion development. CONCLUSION: In summary, our findings indicate that the immunization process utilizing ICD is indeed efficacious in managing this aggressive form of pre-clinical breast cancer.
Assuntos
Neoplasias da Mama , Doxorrubicina , Camundongos Endogâmicos BALB C , Animais , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Camundongos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Metástase Neoplásica , Progressão da Doença , Morte Celular Imunogênica/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/administração & dosagem , Humanos , Linhagem Celular Tumoral , Modelos Animais de DoençasRESUMO
Snake venom enzymes have a broad range of molecular targets in plasma, tissues, and cells, among which hyaluronan (HA) is outstanding. HA is encountered in the extracellular matrix of diverse tissues and in the bloodstream, and its different chemical configurations dictate the diverse morphophysiological processes in which it participates. Hyaluronidases are highlighted among the enzymes involved in HA metabolism. This enzyme has been detected along the phylogenetic tree, suggesting that hyaluronidases exert multiple biological effects on different organisms. Hyaluronidases have been described in tissues, blood and snake venoms. Snake venom hyaluronidases (SVHYA) contribute to tissue destruction in envenomations and are called spreading factors since their action potentiates venom toxin delivery. Interestingly, SVHYA are clustered in Enzyme Class 3.2.1.35 together with mammalian hyaluronidases (HYAL). Both HYAL and SVHYA of Class 3.2.1.35 act upon HA, generating low molecular weight HA fragments (LMW-HA). LMW-HA generated by HYAL becomes a damage-associated molecular pattern that is recognized by Toll-like receptors 2 and 4, triggering cell signaling cascades culminating in innate and adaptive immune responses that are characterized by lipid mediator generation, interleukin production, chemokine upregulation, dendritic cell activation and T cell proliferation. In this review, aspects of the structures and functions of HA and hyaluronidases in both snake venoms and mammals are presented, and their activities are compared. In addition, the potential immunopathological consequences of HA degradation products generated after snakebite envenoming and their use as adjuvant to enhance venom toxin immunogenicity for antivenom production as well as envenomation prognostic biomarker are also discussed.
Assuntos
Hialuronoglucosaminidase , Toxinas Biológicas , Animais , Hialuronoglucosaminidase/metabolismo , Ácido Hialurônico/metabolismo , Filogenia , Venenos de Serpentes , Mamíferos/metabolismoRESUMO
In bacteria, as in other microorganisms, surface compounds interact with different pattern recognition receptors expressed by host cells, which usually triggers a variety of cellular responses that result in immunomodulation. The S-layer is a two-dimensional macromolecular crystalline structure formed by (glyco)-protein subunits that covers the surface of many species of Bacteria and almost all Archaea. In Bacteria, the presence of S-layer has been described in both pathogenic and non-pathogenic strains. As surface components, special attention deserves the role that S-layer proteins (SLPs) play in the interaction of bacterial cells with humoral and cellular components of the immune system. In this sense, some differences can be predicted between pathogenic and non-pathogenic bacteria. In the first group, the S-layer constitutes an important virulence factor, which in turn makes it a potential therapeutic target. For the other group, the growing interest to understand the mechanisms of action of commensal microbiota and probiotic strains has prompted the studies of the role of the S-layer in the interaction between the host immune cells and bacteria bearing this surface structure. In this review, we aim to summarize the main latest reports and the perspectives of bacterial SLPs as immune players, focusing on those from pathogenic and commensal/probiotic most studied species.
RESUMO
Snake venom enzymes have a broad range of molecular targets in plasma, tissues, and cells, among which hyaluronan (HA) is outstanding. HA is encountered in the extracellular matrix of diverse tissues and in the bloodstream, and its different chemical configurations dictate the diverse morphophysiological processes in which it participates. Hyaluronidases are highlighted among the enzymes involved in HA metabolism. This enzyme has been detected along the phylogenetic tree, suggesting that hyaluronidases exert multiple biological effects on different organisms. Hyaluronidases have been described in tissues, blood and snake venoms. Snake venom hyaluronidases (SVHYA) contribute to tissue destruction in envenomations and are called spreading factors since their action potentiates venom toxin delivery. Interestingly, SVHYA are clustered in Enzyme Class 3.2.1.35 together with mammalian hyaluronidases (HYAL). Both HYAL and SVHYA of Class 3.2.1.35 act upon HA, generating low molecular weight HA fragments (LMW-HA). LMW-HA generated by HYAL becomes a damage-associated molecular pattern that is recognized by Toll-like receptors 2 and 4, triggering cell signaling cascades culminating in innate and adaptive immune responses that are characterized by lipid mediator generation, interleukin production, chemokine upregulation, dendritic cell activation and T cell proliferation. In this review, aspects of the structures and functions of HA and hyaluronidases in both snake venoms and mammals are presented, and their activities are compared. In addition, the potential immunopathological consequences of HA degradation products generated after snakebite envenoming and their use as adjuvant to enhance venom toxin immunogenicity for antivenom production as well as envenomation prognostic biomarker are also discussed.
RESUMO
Alcohol-associated liver disease is one of the main causes of chronic liver disease. It comprises a clinical-histologic spectrum of presentations, from steatosis, steatohepatitis, to different degrees of fibrosis, including cirrhosis and severe necroinflammatory disease, called alcohol-associated hepatitis. In this focused update, we aim to present specific therapeutic interventions and strategies for the management of alcohol-associated liver disease. Current evidence for management in all spectra of manifestations is derived from general chronic liver disease recommendations, but with a higher emphasis on abstinence and nutritional support. Abstinence should comprise the treatment of alcohol use disorder as well as withdrawal syndrome. Nutritional assessment should also consider the presence of sarcopenia and its clinical manifestation, frailty. The degree of compensation of the disease should be evaluated, and complications, actively sought. The most severe acute form of this disease is alcohol-associated hepatitis, which has high mortality and morbidity. Current treatment is based on corticosteroids that act by reducing immune activation and blocking cytotoxicity and inflammation pathways. Other aspects of treatment include preventing and treating hepatorenal syndrome as well as preventing infections although there is no clear evidence as to the benefit of probiotics and antibiotics in prophylaxis. Novel therapies for alcohol-associated hepatitis include metadoxine, interleukin-22 analogs, and interleukin-1-beta antagonists. Finally, granulocyte colony-stimulating factor, microbiota transplantation, and gut-liver axis modulation have shown promising results. We also discuss palliative care in advanced alcohol-associated liver disease.
RESUMO
PURPOSE: Among diverse Pattern Recognition Receptors (PRRs), Toll-like receptor-4 (TLR-4) is a key urothelial trigger for innate immune response impacting urothelial bladder carcinoma (BC). Androgen activation promotes immunotolerance, playing an immunoregulatory role by unknown mechanisms. We explored the castration impact on urothelial TLR-4 modulation in carcinogenesis and immunotherapeutic scenario. METHODS: Intact (SHAM) versus castrated male Fisher-344 rats were evaluated in 2 scenarios: (A) Carcinogenesis: After randomization to SHAM (n = 5) and Castration (n = 5), carcinogenesis was induced by four intravesical doses of 1.5 mg/kg n-methyl-n-nitrosourea (MNU) every 15 days. (B) Treatment: After ultrasonographic confirmed MNU-induced papillary BC on week 8, rats were randomized to SHAM (n = 5) and Castration (n = 5) and offered 6 weekly intravesical treatment of 106 CFU of bacillus Calmette Guerin (BCG) in 0.2 ml saline. After 15 weeks the urinary bladders underwent histopathology. Urothelial cell proliferation was measured by Ki-67 immunohistochemistry (IHC), and TLR-4 expression was quantified by IHC and WB. RESULTS: Castration induced higher TLR-4 urothelial expression (p = 0.007) and anticarcinogenic effect with fewer urothelial tumors (60 vs. 80%) and lower urothelial cell proliferation compared to intact animals (p = 0.008). In the intravesical BCG treatment setting, castration has potentialized the BCG activation of TLR-4 (p = 0.007) with no residual in situ carcinoma compared to intact animals, suggesting the potential to amplify the BCG immune response. CONCLUSION: To our knowledge, this is the first description of TLR-4 urothelial expression hormonal modulation. The described castration-mediated immunomodulation will help to improve the knowledge of urothelial cancer gender diversities and PRRs modulations with treatment implications.
Assuntos
Castração , Neoplasias da Bexiga Urinária , Adjuvantes Imunológicos , Administração Intravesical , Androgênios , Animais , Anticarcinógenos , Vacina BCG/uso terapêutico , Carcinogênese/induzido quimicamente , Carcinoma de Células de Transição/patologia , Antígeno Ki-67 , Masculino , Metilnitrosoureia/toxicidade , Ratos , Receptor 4 Toll-Like , Neoplasias da Bexiga Urinária/patologiaRESUMO
The innate immune system can limit the growth of invading pathogens by depleting micronutrients at a cellular and tissue level. However, it is not known whether nutrient depletion mechanisms discriminate between living pathogens (which require nutrients) and pathogen-associated molecular patterns (PAMPs) (which do not). We stimulated SHK-1 cells with different PAMPs (outer membrane vesicles of Piscirickettsia salmonis "OMVs", protein extract of P. salmonis "TP" and lipopolysaccharides of P. salmonis "LPS") isolated from P. salmonis and evaluated transcriptional changes in nutritional immunity associated genes. Our experimental treatments were: Control (SHK-1 stimulated with bacterial culture medium), OMVs (SHK-1 stimulated with 1µg of outer membrane vesicles), TP (SHK-1 stimulated with 1µg of total protein extract) and LPS (SHK-1 stimulated with 1µg of lipopolysaccharides). Cells were sampled at 15-, 30-, 60- and 120-minutes post-stimulation. We detected increased transcription of zip8, zip14, irp1, irp2 and tfr1 in all three experimental conditions and increased transcription of dmt1 in cells stimulated with OMVs and TP, but not LPS. Additionally, we observed generally increased transcription of ireg-1, il-6, hamp, irp1, ft-h and ft-m in all three experimental conditions, but we also detected decreased transcription of these markers in cells stimulated with TP and LPS at specific time points. Our results demonstrate that SHK-1 cells stimulated with P. salmonis PAMPs increase transcription of markers involved in the transport, uptake, storage and regulation of micronutrients such as iron, manganese and zinc.
Assuntos
Moléculas com Motivos Associados a Patógenos , Salmão , Animais , Linhagem Celular , Lipopolissacarídeos/farmacologia , Macrófagos , Micronutrientes , PiscirickettsiaRESUMO
The coupling of a ligand with a molecular receptor induces a signal that travels through the receptor, reaching the internal domain and triggering a response cascade. In previous work on T-cell receptors and their coupling with foreign antigens, we observed the presence of planar molecular patterns able to generate electromagnetic fields within the proteins. These planes showed a coherent (synchronized) behavior, replicating immediately in the intracellular domain that which occurred in the extracellular domain as the ligand was coupled. In the present study, we examined this molecular transduction - the capacity of the coupling signal to penetrate deep inside the receptor molecule and induce a response. We verified the presence of synchronized behavior in diverse receptor ligand systems. To appreciate this diversity, we present four biochemically different systems - TCR-peptide, calcium pump-ADP, haemoglobin-oxygen, and gp120-CD4 viral coupling. The confirmation of synchronized molecular transduction in each of these systems suggests that the proposed mechanism would occur in all biochemical receptor-ligand systems.(AU)
A ligação de um ligante com um receptor molecular induz um sinal que viaja através do receptor, chegando ao domínio interno e disparando uma cascata de resposta. Em trabalhos anteriores em receptores de células T e sua ligação com antígenos estranhos, observamos a presença de padrões moleculares planares capazes de gerar campos eletromagnéticos dentro das proteínas. Esses planos mostraram um comportamento coerente (sincronizado), replicando, instantaneamente, no domínio intracelular o que ocorreu no domínio extracelular, enquanto o ligante era acoplado. No presente estudo, examinamos essa transdução a capacidade de um sinal de acoplamento de penetrar profundamente a molécula receptora e induzir uma resposta. Verificamos a presença de um comportamento coerente em sistemas diversos de receptor-ligante. Para apreciar essa diversidade, apresentamos quatro sistemas bioquímicos diferentes: TCR-peptídeo, ADP-bomba de cálcio, hemoglobina-oxigênio e gp120-CD4 acoplamento viral. A confirmação de transdução molecular sincronizada em cada um desses sistemas sugere que o mecanismo proposto ocorreria em todos os sistemas bioquímicos receptor-ligante.(AU)
Assuntos
Transdução de Sinais , Peptídeos , Receptores de Superfície Celular/análiseRESUMO
The coupling of a ligand with a molecular receptor induces a signal that travels through the receptor, reaching the internal domain and triggering a response cascade. In previous work on T-cell receptors and their coupling with foreign antigens, we observed the presence of planar molecular patterns able to generate electromagnetic fields within the proteins. These planes showed a coherent (synchronized) behavior, replicating immediately in the intracellular domain that which occurred in the extracellular domain as the ligand was coupled. In the present study, we examined this molecular transduction - the capacity of the coupling signal to penetrate deep inside the receptor molecule and induce a response. We verified the presence of synchronized behavior in diverse receptor ligand systems. To appreciate this diversity, we present four biochemically different systems - TCR-peptide, calcium pump-ADP, haemoglobin-oxygen, and gp120-CD4 viral coupling. The confirmation of synchronized molecular transduction in each of these systems suggests that the proposed mechanism would occur in all biochemical receptor-ligand systems.
A ligação de um ligante com um receptor molecular induz um sinal que viaja através do receptor, chegando ao domínio interno e disparando uma cascata de resposta. Em trabalhos anteriores em receptores de células T e sua ligação com antígenos estranhos, observamos a presença de padrões moleculares planares capazes de gerar campos eletromagnéticos dentro das proteínas. Esses planos mostraram um comportamento coerente (sincronizado), replicando, instantaneamente, no domínio intracelular o que ocorreu no domínio extracelular, enquanto o ligante era acoplado. No presente estudo, examinamos essa transdução a capacidade de um sinal de acoplamento de penetrar profundamente a molécula receptora e induzir uma resposta. Verificamos a presença de um comportamento coerente em sistemas diversos de receptor-ligante. Para apreciar essa diversidade, apresentamos quatro sistemas bioquímicos diferentes: TCR-peptídeo, ADP-bomba de cálcio, hemoglobina-oxigênio e gp120-CD4 acoplamento viral. A confirmação de transdução molecular sincronizada em cada um desses sistemas sugere que o mecanismo proposto ocorreria em todos os sistemas bioquímicos receptor-ligante.
Assuntos
Peptídeos , Receptores de Superfície Celular/análise , Transdução de SinaisRESUMO
Abstract The coupling of a ligand with a molecular receptor induces a signal that travels through the receptor, reaching the internal domain and triggering a response cascade. In previous work on T-cell receptors and their coupling with foreign antigens, we observed the presence of planar molecular patterns able to generate electromagnetic fields within the proteins. These planes showed a coherent (synchronized) behavior, replicating immediately in the intracellular domain that which occurred in the extracellular domain as the ligand was coupled. In the present study, we examined this molecular transduction - the capacity of the coupling signal to penetrate deep inside the receptor molecule and induce a response. We verified the presence of synchronized behavior in diverse receptor-ligand systems. To appreciate this diversity, we present four biochemically different systems - TCR-peptide, calcium pump-ADP, haemoglobin-oxygen, and gp120-CD4 viral coupling. The confirmation of synchronized molecular transduction in each of these systems suggests that the proposed mechanism would occur in all biochemical receptor-ligand systems.
Resumo A ligação de um ligante com um receptor molecular induz um sinal que viaja através do receptor, chegando ao domínio interno e disparando uma cascata de resposta. Em trabalhos anteriores em receptores de células T e sua ligação com antígenos estranhos, observamos a presença de padrões moleculares planares capazes de gerar campos eletromagnéticos dentro das proteínas. Esses planos mostraram um comportamento coerente (sincronizado), replicando, instantaneamente, no domínio intracelular o que ocorreu no domínio extracelular, enquanto o ligante era acoplado. No presente estudo, examinamos essa transdução a capacidade de um sinal de acoplamento de penetrar profundamente a molécula receptora e induzir uma resposta. Verificamos a presença de um comportamento coerente em sistemas diversos de receptor-ligante. Para apreciar essa diversidade, apresentamos quatro sistemas bioquímicos diferentes: TCR-peptídeo, ADP-bomba de cálcio, hemoglobina-oxigênio e gp120-CD4 acoplamento viral. A confirmação de transdução molecular sincronizada em cada um desses sistemas sugere que o mecanismo proposto ocorreria em todos os sistemas bioquímicos receptor-ligante.
RESUMO
The coupling of a ligand with a molecular receptor induces a signal that travels through the receptor, reaching the internal domain and triggering a response cascade. In previous work on T-cell receptors and their coupling with foreign antigens, we observed the presence of planar molecular patterns able to generate electromagnetic fields within the proteins. These planes showed a coherent (synchronized) behavior, replicating immediately in the intracellular domain that which occurred in the extracellular domain as the ligand was coupled. In the present study, we examined this molecular transduction - the capacity of the coupling signal to penetrate deep inside the receptor molecule and induce a response. We verified the presence of synchronized behavior in diverse receptorligand systems. To appreciate this diversity, we present four biochemically different systems - TCR-peptide, calcium pump-ADP, haemoglobin-oxygen, and gp120-CD4 viral coupling. The confirmation of synchronized molecular transduction in each of these systems suggests that the proposed mechanism would occur in all biochemical receptor-ligand systems.
A ligação de um ligante com um receptor molecular induz um sinal que viaja através do receptor, chegando ao domínio interno e disparando uma cascata de resposta. Em trabalhos anteriores em receptores de células T e sua ligação com antígenos estranhos, observamos a presença de padrões moleculares planares capazes de gerar campos eletromagnéticos dentro das proteínas. Esses planos mostraram um comportamento coerente (sincronizado), replicando, instantaneamente, no domínio intracelular o que ocorreu no domínio extracelular, enquanto o ligante era acoplado. No presente estudo, examinamos essa transdução a capacidade de um sinal de acoplamento de penetrar profundamente a molécula receptora e induzir uma resposta. Verificamos a presença de um comportamento coerente em sistemas diversos de receptor-ligante. Para apreciar essa diversidade, apresentamos quatro sistemas bioquímicos diferentes: TCR-peptídeo, ADP-bomba de cálcio, hemoglobina-oxigênio e gp120-CD4 acoplamento viral. A confirmação de transdução molecular sincronizada em cada um desses sistemas sugere que o mecanismo proposto ocorreria em todos os sistemas bioquímicos receptor-ligante.
Assuntos
Transdução de Sinais , Campos Eletromagnéticos , Receptores de Antígenos de Linfócitos T/genética , LigantesRESUMO
SARS-CoV-2 contains certain molecules that are related to the presence of immunothrombosis. Here, we review the pathogen and damage-associated molecular patterns. We also study the imbalance of different molecules participating in immunothrombosis, such as tissue factor, factors of the contact system, histones, and the role of cells, such as endothelial cells, platelets, and neutrophil extracellular traps. Regarding the pathogenetic mechanism, we discuss clinical trials, case-control studies, comparative and translational studies, and observational studies of regulatory or inhibitory molecules, more specifically, extracellular DNA and RNA, histones, sensors for RNA and DNA, as well as heparin and heparinoids. Overall, it appears that a network of cells and molecules identified in this axis is simultaneously but differentially affecting patients at different stages of COVID-19, and this is characterized by endothelial damage, microthrombosis, and inflammation.
Assuntos
Alarminas , COVID-19/virologia , SARS-CoV-2 , Tromboinflamação/virologia , Trombose/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Coagulação Sanguínea , Plaquetas/virologia , COVID-19/complicações , DNA/metabolismo , Armadilhas Extracelulares , Heparina/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Neuropilina-1/metabolismo , RNA/metabolismo , Transdução de Sinais , Trombina/metabolismo , Tromboplastina/metabolismo , Trombose/complicaçõesRESUMO
The association of vaccines with immunostimulants such as ß-glucan, promote the production of cytokines, competent immune cells and antibodies. However, differences between ß-glucan types and trials make it difficult to understand ß-glucan's mechanism of action. In this study, three trials were carried out with control and fish fed ß-glucan, the first trial occurred at 15 days; the second trial occurred at 30 days when we associated ß-glucan and vaccine; and the third trial occurred at 15 days post-challenge with Streptococcus agalactiae in tilapia (O. niloticus) in order to investigate immune-related gene expression in the head kidney and spleen using real-time qPCR. We found increases in HSP70, IL-6, IL-1ß, TNF-α, IL-10, Lys and C3 predominantly in the head kidney, except for IgM expression, which prevailed in the spleen, under vaccinated + ß-glucan action. This demonstrates the trade-off presented by the head kidney and spleen after immunostimulation in order to produce acquired immunity, as well as an increase in HSP70 expression in vaccinated + ß-glucan fish. The results suggest that ß-glucan stimulates the immune response through damage-associated molecular patterns (DAMPs) recognition. Therefore, these dynamics of the immune response promote a more robust defense against disease.
Assuntos
Adjuvantes Imunológicos/administração & dosagem , Ciclídeos/imunologia , Rim Cefálico/efeitos dos fármacos , Baço/efeitos dos fármacos , Vacinas Estreptocócicas/administração & dosagem , beta-Glucanas/administração & dosagem , Imunidade Adaptativa , Animais , Ciclídeos/genética , Ciclídeos/microbiologia , Citocinas/genética , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Proteínas de Peixes/genética , Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Rim Cefálico/imunologia , Muramidase/imunologia , Transdução de Sinais , Baço/imunologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Streptococcus agalactiaeRESUMO
Relevant reviews highlight the association between dysfunctional mitochondria and inflammation, but few studies address the contribution of mitochondria and mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) to cellular homeostasis and inflammatory signaling. The present review outlines the important role of mitochondria in cellular homeostasis and how dysfunctional mitochondrion can release and misplace mitochondrial components (cardiolipin, mitochondrial DNA (mtDNA), and mitochondrial formylated peptides) through multiple mechanisms. These components can act as damage-associated molecular patterns (DAMPs) and induce an inflammatory response via pattern recognition receptors (PRRs). Accumulation of damaged ROS-generating mitochondria, accompanied by the release of mitochondrial DAMPs, can activate PRRs such as the NLRP3 inflammasome, TLR9, cGAS/STING, and ZBP1. This process would explain the chronic inflammation that is observed in autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), type I diabetes (T1D), and Sjögren's syndrome. This review also provides a comprehensive overview of the importance of MERCs to mitochondrial function and morphology, cellular homeostasis, and the inflammatory response. MERCs play an important role in calcium homeostasis by mediating the transfer of calcium from the ER to the mitochondria and thereby facilitating the production of ATP. They also contribute to the synthesis and transfer of phospholipids, protein folding in the ER, mitochondrial fission, mitochondrial fusion, initiation of autophagosome formation, regulation of cell death/survival signaling, and regulation of immune responses. Therefore, alterations within MERCs could increase inflammatory signaling, modulate ER stress responses, cell homeostasis, and ultimately, the cell fate. This study shows severe ultrastructural alterations of mitochondria in salivary gland cells from Sjögren's syndrome patients for the first time, which could trigger alterations in cellular bioenergetics. This finding could explain symptoms such as fatigue and malfunction of the salivary glands in Sjögren's syndrome patients, which would contribute to the chronic inflammatory pathology of the disease. However, this is only a first step in solving this complex puzzle, and several other important factors such as changes in mitochondrial morphology, functionality, and their important contacts with other organelles require further in-depth study. Future work should focus on detecting the key milestones that are related to inflammation in patients with autoimmune diseases, such as Sjögren´s syndrome.
Assuntos
Síndrome de Sjogren , DNA Mitocondrial/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Inflamação/metabolismo , MitocôndriasRESUMO
This study evaluated the impact of the TLR7 Gln11Leu (rs179008) and TLR9 -1237 T/C (rs5743836) single nucleotide polymorphisms (SNPs) on susceptibility to placental infections and pregnancy complications in 455 Brazilian women. Demographic, socioeconomic, gynecological, and clinical characteristics of the women were collected. Placental tissues were sampled from pregnant women and human and viral DNA was extracted. Human alphaherpesvirus 1 (Herpes simplex virus type 1, HSV-1), Human alphaherpesvirus 2 (Herpes simplex virus type 2, HSV-2) and Human betaherpesvirus 5 (Human cytomegalovirus, HCMV) were detected by nested PCR. TLR9 and TLR7 SNPs were genotyped by PCR amplification of bi-directional specific alleles (Bi-PASA) and restriction fragment length polymorphism (RFLP), respectively. Infections at the time of birth were detected in 45.71 % of women. The presence of the TT genotype (recessive model) of the TLR7 SNP was associated with increased susceptibility to HSV-1 infection (O.R. = 2.23, p = 0.05). The presence of the C allele of the TLR9 SNP, in heterozygosis or homozygosis (dominant model), decreased the infection risk by HCMV (O.R. = 0.31, p-mod<0.05). The TT genotype (recessive model) of the TLR7 SNP was significantly associated (p < 0.05) with increased occurrence of pre-treated hypertension. The codominant model of the TLR9 SNP was significantly associated (p < 0.05) with reduced risk of hospitalization during pregnancy. In combination, the AA/CT (TLR7-TLR9) genotypes significantly decreased the risk of placental infection by HSV-1 and/or HSV-2 (O.R. = 0.47, p = 0.02), the susceptibility to all infectious agents considered in combination (O.R. = 0.4, p = 0.00), and the need of hospitalization (O.R. = 0.48, p = 0.02). In conclusion, TLR7 and TLR9 SNPs are potential modulating factors for the risk of placental infections and pregnancy complications.
Assuntos
Infecções por Citomegalovirus/genética , Herpes Simples/genética , Complicações Infecciosas na Gravidez/genética , Receptor 7 Toll-Like/genética , Receptor Toll-Like 9/genética , Adolescente , Adulto , Alelos , Brasil , Estudos de Casos e Controles , Citomegalovirus/imunologia , Citomegalovirus/isolamento & purificação , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Epistasia Genética/imunologia , Feminino , Predisposição Genética para Doença , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/isolamento & purificação , Herpesvirus Humano 2/imunologia , Herpesvirus Humano 2/isolamento & purificação , Humanos , Placenta/imunologia , Placenta/virologia , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Estudos Retrospectivos , Adulto JovemRESUMO
INTRODUCTION: In light of the current COVID-19 pandemic, during which the world is confronted with a new, highly contagious virus that suppresses innate immunity as one of its initial virulence mechanisms, thus escaping from first-line human defense mechanisms, enhancing innate immunity seems a good preventive strategy. METHODS: Without the intention to write an official systematic review, but more to give an overview of possible strategies, in this review article we discuss several interventions that might stimulate innate immunity and thus our defense against (viral) respiratory tract infections. Some of these interventions can also stimulate the adaptive T- and B-cell responses, but our main focus is on the innate part of immunity. We divide the reviewed interventions into: 1) lifestyle related (exercise, >7 h sleep, forest walking, meditation/mindfulness, vitamin supplementation); 2) Non-specific immune stimulants (letting fever advance, bacterial vaccines, probiotics, dialyzable leukocyte extract, pidotimod), and 3) specific vaccines with heterologous effect (BCG vaccine, mumps-measles-rubeola vaccine, etc). RESULTS: For each of these interventions we briefly comment on their definition, possible mechanisms and evidence of clinical efficacy or lack of it, especially focusing on respiratory tract infections, viral infections, and eventually a reduced mortality in severe respiratory infections in the intensive care unit. At the end, a summary table demonstrates the best trials supporting (or not) clinical evidence. CONCLUSION: Several interventions have some degree of evidence for enhancing the innate immune response and thus conveying possible benefit, but specific trials in COVID-19 should be conducted to support solid recommendations.
RESUMO
BACKGROUND: Chemotherapeutics can stimulate immune antitumor response by inducing immunogenic cell death (ICD), which is activated by Damage-Associated Molecular Patterns (DAMPs) like the exposure of calreticulin (CRT) on the cell surface, the release of ATP and the secretion of High Mobility Group Box 1 (HMGB1). METHODS: Here, we investigated the levels of ICD-associated DAMPs induced by chemotherapeutics commonly used in the clinical practice of non-small cell lung cancer (NSCLC) and the association of these DAMPs with apoptosis and autophagy. A549 human lung adenocarcinoma cells were treated with clinically relevant doses of cisplatin, carboplatin, etoposide, paclitaxel and gemcitabine. We assessed ICD-associated DAMPs, cell viability, apoptosis and autophagy in an integrated way. RESULTS: Cisplatin and its combination with etoposide induced the highest levels of apoptosis, while etoposide was the less pro-apoptotic treatment. Cisplatin also induced the highest levels of ICD-associated DAMPs, which was not incremented by co-treatments. Etoposide induced the lower levels of ICD and the highest levels of autophagy, suggesting that the cytoprotective role of autophagy is dominant in relation to its pro-ICD role. High levels of CRT were associated with better prognosis in TCGA databank. In an integrative analysis we found a strong positive correlation between DAMPs and apoptosis, and a negative correlation between cell number and ICD-associated DAMPs as well as between autophagy and apoptosis markers. We also purpose a mathematical integration of ICD-associated DAMPs in an index (IndImunnog) that may represent with greater biological relevance this process. Cisplatin-treated cells showed the highest IndImmunog, while etoposide was the less immunogenic and the more pro-autophagic treatment. CONCLUSIONS: Cisplatin alone induced the highest levels of ICD-associated DAMPs, so that its combination with immunotherapy may be a promising therapeutic strategy in NSCLC.
Assuntos
Adenocarcinoma de Pulmão/metabolismo , Alarminas/metabolismo , Antineoplásicos/farmacologia , Morte Celular Imunogênica , Neoplasias Pulmonares/metabolismo , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Trifosfato de Adenosina/metabolismo , Alarminas/efeitos dos fármacos , Apoptose , Autofagia , Calreticulina/metabolismo , Carboplatina/farmacologia , Caspase 3/metabolismo , Sobrevivência Celular , Cisplatino/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Etoposídeo/farmacologia , Proteína HMGB1/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Paclitaxel/farmacologia , Prognóstico , GencitabinaRESUMO
Urticaria is defined as the sudden appearance of erythematous, itchy wheals of variable size, with or without angioedema (AE) (swelling of the deeper layers of the skin). Its classification depends on time course of symptoms and the presence of eliciting factors. When it lasts less than 6 weeks it is classified as acute urticaria (AU), and if the symptoms persist for more than 6 weeks, it is classified as chronic urticaria (CU). Current International Guidelines also classify CU as chronic spontaneous urticaria (CSU) and inducible urticarial, according to the absence or presence of environmental triggering factors. CSU is defined as urticaria and/or angioedema in which there is no evidence of a specific eliciting factor. CSU is associated with autoimmunity in 30-45% of the cases, sharing some immunological mechanisms with other autoimmune diseases, and is associated with autoimmune thyroid disease (ATD) in about 4.3%-57.4% patients. Several studies suggest that adequate therapy with anti-thyroid drugs or levothyroxine in early stages of ATD and CSU, may help to remit the latter; but there is still a lack of double-blind, placebo-controlled studies that support this hypothesis in patients without abnormal thyroid hormone levels. The objective of this review is to describe the pathophysiology of chronic spontaneous urticaria and its association with autoimmune thyroid disease.