Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Chembiochem ; 25(10): e202400126, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38602445

RESUMO

Results pertaining to the mechanism of the oxidation of the tertiary amine 1-methyl-4-(1-methyl-1-H-pyrrol-2-yl)-1,2,3,6-tetrahydropyridine (MMTP, a close analog of the Parkinsonism inducing compound MPTP) by 3-methyllumiflavin (3MLF), a chemical model for the FAD cofactor of monoamine oxidase, are reported. MMTP and related compounds are among the few tertiary amines that are monoamine oxidase B (MAO-B) substrates. The MMTP/3MLF reaction is catalytic in the presence of O2 and the results under anaerobic conditions strongly suggest the involvement of radical intermediates, consistent with a single electron transfer mechanism. These observations support a new hypothesis to explain the MAO-catalyzed oxidations of amines. In general, electron transfer is thermodynamically unfavorable, and as a result, most 1° and 2° amines react via one of the currently accepted polar pathways. Steric constraints prevent 3° amines from reacting via a polar pathway. Those select 3° amines that are MAO substrates possess certain structural features (e. g., a C-H bond that is α- both to nitrogen and a C=C) that dramatically lower the pKa of the corresponding radical cation. Consequently, the thermodynamically unfavorable electron transfer equilibrium is driven towards products by an extremely favorable deprotonation step in the context of Le Chatelier's principle.


Assuntos
Monoaminoxidase , Piridinas , Biocatálise , Estrutura Molecular , Monoaminoxidase/metabolismo , Monoaminoxidase/química , Oxirredução , Piridinas/química , Piridinas/metabolismo , Termodinâmica
2.
Curr Top Med Chem ; 24(10): 850-868, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38424435

RESUMO

Alzheimer's disease (AD) is characterized by a complex pathological landscape, necessitating a comprehensive treatment approach. This concise review paper delves into the idea of addressing multiple mechanisms in AD, summarizing the latest research findings on pathogenesis, risk factors, diagnostics, and therapeutic strategies. The etiology of AD is multifaceted, involving genetic, environmental, and lifestyle factors. The primary feature is the accumulation of amyloid-- beta and tau proteins, leading to neuroinflammation, synaptic dysfunction, oxidative stress, and neuronal loss. Conventional single-target therapies have shown limited effectiveness, prompting a shift toward simultaneously addressing multiple disease-related processes. Recent advancements in AD research underscore the potential of multifaceted therapies. This review explores strategies targeting both tau aggregation and amyloid-beta, along with interventions to alleviate neuroinflammation, enhance synaptic function, and reduce oxidative stress. In conclusion, the review emphasizes the growing importance of addressing various pathways in AD treatment. A holistic approach that targets different aspects of the disease holds promise for developing effective treatments and improving the quality of life for Alzheimer's patients and their caregivers.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Proteínas tau/antagonistas & inibidores , Proteínas tau/metabolismo , Animais
3.
Nutrients ; 16(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276545

RESUMO

BACKGROUND: Alzheimer's disease (AD) and Parkinson's disease (PD) are multifactorial neurodegenerative disorders that are mostly treated with drugs inhibiting key enzymes of cholinergic and aminergic neurotransmission, such as acetyl and butyryl cholinesterase (AChE, BuChE) or monoamine oxidases (MAO)-A/B, and of Aß1-40 aggregation. Diet plant components with multitarget functions are promising compounds in the prevention of AD and PD. Our aim was to identify neuroprotective compounds from Annurca apple polyphenol extract (AFPE). METHODS: AFPE was fractionated by gel filtration, and the eluted peaks were subjected to chemical analyses (i.e., RP-HPLC and mass spectrometry), determination of inhibitory enzyme activity and cell effects by MTT, and morphology assays. RESULTS: In AFPE, we identified thaumatin-like protein 1a, belonging to the pathogenesis-related protein (PR) family. This protein showed the best inhibitory activity on AChE, MAO-A (IC50 = 5.53 µM and 1.71 µM, respectively), and Aß1-40 fibril aggregation (IC50 = 9.16 µM), compared to AFPE and other polyphenol-containing fractions. Among the latter, Peak 4 reverted Aß fibril formation (IC50 = 104.87 µM). Moreover, thaumatin-like protein 1a protected AGS and MKN-28 cells from serum-deprivation-induced stress conditions. CONCLUSIONS: We showed that AFPE exerted neuroprotective functions not only through its polyphenols but also through thaumatin-like protein 1a, which acted like a multitarget molecule.


Assuntos
Doença de Alzheimer , Ácido Clorogênico , Flavonoides , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/uso terapêutico , Cromatografia Gasosa-Espectrometria de Massas , Doença de Alzheimer/tratamento farmacológico , Monoaminoxidase/metabolismo , Taninos , Peptídeos beta-Amiloides/metabolismo , Aditivos Alimentares/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo
4.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276568

RESUMO

Extensive research has been dedicated to develop compounds that can target multiple aspects of Alzheimer's disease (AD) treatment due to a growing understanding of AD's complex multifaceted nature and various interconnected pathological pathways. In the present study, a series of biological assays were performed to evaluate the potential of the tryptamine analogues synthesized earlier in our lab as multi-target-directed ligands (MTDLs) for AD. To assess the inhibitory effects of the compounds, various in vitro assays were employed. Three compounds, SR42, SR25, and SR10, displayed significant AChE inhibitory activity, with IC50 values of 0.70 µM, 0.17 µM, and 1.00 µM, respectively. These values superseded the standard drug donepezil (1.96 µM). In the MAO-B inhibition assay, SR42 (IC50 = 43.21 µM) demonstrated superior inhibitory effects as compared to tryptamine and other derivatives. Moreover, SR22 (84.08%), SR24 (79.30%), and SR42 (75.16%) exhibited notable percent inhibition against the COX-2 enzyme at a tested concentration of 100 µM. To gain insights into their binding mode and to validate the biological results, molecular docking studies were conducted. Overall, the results suggest that SR42, a 4,5 nitro-benzoyl derivative of tryptamine, exhibited significant potential as a MTDL and warrants further investigation for the development of anti-Alzheimer agents.


Assuntos
Doença de Alzheimer , Monoaminoxidase , Humanos , Monoaminoxidase/metabolismo , Doença de Alzheimer/metabolismo , Inibidores da Monoaminoxidase/química , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Triptaminas/farmacologia , Acetilcolinesterase/metabolismo , Ligantes
5.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276626

RESUMO

Monoamine oxidase and xanthine oxidase inhibitors represent useful multi-target drugs for the prevention, attenuation, and treatment of oxidative damage and neurodegenerative disorders. Chimeric molecules, constituted by naturally derived compounds linked to drugs, represent lead compounds to be explored for the discovery of new synthetic drugs acting as enzyme inhibitors. We have previously reported that seven hydroxytyrosol-donepezil hybrid compounds play a protective role in an in vitro neuronal cell model of Alzheimer's disease. In this work, we analyzed the effects exerted by the hybrid compounds on the activity of monoamine oxidase A (MAO-A) and B (MAO-B), as well as on xanthine oxidase (XO), enzymes involved in both neurodegenerative disorders and oxidative stress. The results pointed to the identification, among the compounds tested, of selective inhibitors between the two classes of enzymes. While the 4-hydroxy-3-methoxyphenethyl 1-benzylpiperidine-4-carboxylate- (HT3) and the 4-hydroxyphenethyl 1-benzylpiperidine-4-carboxylate- donepezil derivatives (HT4) represented the best inhibitors of MAO-A, with a scarce effect on MAO-B, they were almost ineffective on XO. On the other hand, the 4,5-dihydroxy-2-nitrophenethyl 1-benzylpiperidine-4-carboxylate donepezil derivative (HT2), the least efficient MAO inhibitor, acted like the best XO inhibitor. Therefore, the differential enzymatic targets identified among the hybrid compounds synthesized enhance the possible applications of these polyphenol-donepezil hybrids in neurodegenerative disorders and oxidative stress.


Assuntos
Doenças Neurodegenerativas , Álcool Feniletílico/análogos & derivados , Humanos , Donepezila/farmacologia , Donepezila/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Xantina Oxidase , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/uso terapêutico , Monoaminoxidase/metabolismo , Estresse Oxidativo , Relação Estrutura-Atividade
6.
Chem Pharm Bull (Tokyo) ; 72(1): 109-120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38267058

RESUMO

A series of 2-azolylmethylene-3-(2H)-benzofuranone derivatives, 2-indolylmethylene-3-(2H)-benzofuranone and 2-pyrrolylmethylene-3-(2H)-benzofuranone derivatives, were synthesized, and their monoamine oxidase (MAO) A and B inhibitory activities were evaluated. Compounds 1b, 3b, 6b, 7b, and 10b showed strong inhibitory activity against MAO-A, and compound 3b showed the highest potency and selectivity, with an IC50 value of 21 nM and a MAO-A selectivity index of 48. Compounds 3c, 4c, 9a, 9c, 10c, 11a, and 11c showed strong inhibitory activity against MAO-B, and compound 4c showed the highest potency and selectivity, with an IC50 value of 16 nM and a MAO-B selectivity index of >1100. Further analysis of these compounds indicated that compound 3b for MAO-A and compound 4c for MAO-B were competitive inhibitors, with Ki values of 10 and 6.1 nM, respectively. Furthermore, computational analyses, such as quantitative structure-activity relationship (QSAR) analysis of the 2-azolylmethylene-3-(2H)-benzofuranone derivatives conducting their pIC50 values with the Molecular Operating Environment (MOE) and Mordred, and molecular docking analysis using MOE-Dock supported that the 2-azolylmethylene-3-(2H)-benzofuranone derivatives are a privileged scaffold for the design and development of novel MAO inhibitors.


Assuntos
Inibidores da Monoaminoxidase , Monoaminoxidase , Inibidores da Monoaminoxidase/farmacologia , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade
7.
J Neural Transm (Vienna) ; 131(1): 59-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37507512

RESUMO

Congenital absence of monoamine oxidase A (MAO-A) activity predisposes to antisocial impulsive behaviour, and the MAOA uVNTR low-expressing genotype (MAOA-L) together with childhood maltreatment is associated with similar phenotypes in males. A possible explanation of how family environment may lead to such behaviour involves DNA methylation. We have assessed MAOA methylation and impulsive/antisocial behaviour in 121 males from the Estonian Children Personality Behaviour and Health Study. Of the 12 CpG sites measured, methylation levels at the locus designated CpG3 were significantly lower in subjects with antisocial behaviour involving police contact. CpG3 methylation was lower in subjects with alcohol use disorder by age 25, but only in MAOA-H genotype. No correlation between MAOA CpG3 methylation levels and adaptive impulsivity was found at age 15, but in MAOA-L genotype a positive correlation appeared by age 18. By age 25, this positive correlation was no longer observed in subjects with better family relationships but had increased further with experience of adversity within the family. MAOA CpG3 methylation had different developmental dynamics in relation to maladaptive impulsivity. At age 18, a positive correlation was observed in MAOA-L genotype with inferior family relationships and a negative correlation was found in MAOA-H with superior home environment; both of these associations had disappeared by age 25. CpG3 methylation was associated with dietary intake of several micronutrients, most notable was a negative correlation with the intake of zinc, but also with calcium, potassium and vitamin E; a positive correlation was found with intake of phosphorus. In conclusion, MAOA CpG3 methylation is related to both maladaptive and adaptive impulsivity in adolescence in MAOA-L males from adverse home environment. By young adulthood, this relationship with maladaptive impulsivity had disappeared but with adaptive impulsivity strengthened. Thus, MAOA CpG3 methylation may serve as a marker for adaptive developmental neuroplasticity in MAOA-L genotype. The mechanisms involved may include dietary factors.


Assuntos
Transtorno da Personalidade Antissocial , Ambiente Domiciliar , Adolescente , Adulto , Criança , Humanos , Masculino , Adulto Jovem , Transtorno da Personalidade Antissocial/genética , Dieta , Metilação de DNA , Genótipo , Comportamento Impulsivo , Monoaminoxidase/genética
8.
Antioxidants (Basel) ; 12(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38136164

RESUMO

Neurodegenerative disorders (NDs) include a large range of diseases characterized by neural dysfunction with a multifactorial etiology. The most common NDs are Alzheimer's disease and Parkinson's disease, in which cholinergic and dopaminergic systems are impaired, respectively. Despite different brain regions being affected, oxidative stress and inflammation were found to be common triggers in the pathogenesis and progression of both diseases. By taking advantage of a multi-target approach, in this work we explored alkyl substituted coumarins as neuroprotective agents, capable to reduce oxidative stress and inflammation by inhibiting enzymes involved in neurodegeneration, among which are Carbonic Anhydrases (CAs), Monoamine Oxidases (MAOs), and Cholinesterases (ChEs). The compounds were synthesized and profiled against the three targeted enzymes. The binding mode of the most promising compounds (7 and 9) within MAO-A and -B was analyzed through molecular modeling studies, providing and explanation for the different selectivities observed for the MAO isoforms. In vitro biological studies using LPS-stimulated rat astrocytes showed that some compounds were able to counteract the oxidative stress-induced neuroinflammation and hamper interleukin-6 secretion, confirming the success of this multitarget approach.

9.
Molecules ; 28(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687161

RESUMO

Alzheimer's (AD) and Parkinson's diseases (PD) are multifactorial neurogenerative disorders of the Central Nervous System causing severe cognitive and motor deficits in elderly people. Because treatment of AD and PD by synthetic drugs alleviates the symptoms often inducing side effects, many studies have aimed to find neuroprotective properties of diet polyphenols, compounds known to act on different cell signaling pathways. In this article, we analyzed the effect of polyphenols obtained from the agro-food industry waste of Citrus limon peel (LPE) on key enzymes of cholinergic and aminergic neurotransmission, such as butyryl cholinesterase (BuChE) and monoamine oxidases (MAO)-A/B, on Aß1-40 aggregation and on superoxide dismutase (SOD) 1/2 that affect oxidative stress. In our in vitro assays, LPE acts as an enzyme inhibitor on BuChE (IC50 ~ 73 µM), MAO-A/B (IC50 ~ 80 µM), SOD 1/2 (IC50 ~ 10-20 µM) and interferes with Aß1-40 peptide aggregation (IC50 ~ 170 µM). These results demonstrate that LPE behaves as a multitargeting agent against key factors of AD and PD by inhibiting to various extents BuChE, MAOs, and SODs and reducing Aß-fibril aggregation. Therefore, LPE is a promising candidate for the prevention and management of AD and PD symptoms in combination with pharmacological therapies.


Assuntos
Citrus , Doenças Neurodegenerativas , Doença de Parkinson , Doenças Neurodegenerativas/tratamento farmacológico , Superóxido Dismutase , Monoaminoxidase , Colinesterases , Superóxido Dismutase-1 , Extratos Vegetais/farmacologia
10.
Brain Res ; 1804: 148249, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682705

RESUMO

Lower platelet monoamine oxidase (MAO) activity has been associated with problem behaviors, including criminal behavior, but not all studies agree. We have examined platelet MAO activity and antisocial behavior involving police contact in a longitudinal birth cohort study. The sample included both birth cohorts (original n = 1238) of the Estonian Children Personality Behavior and Health Study. Platelet MAO activity was measured at ages 15, 18 and 25 radioenzymatically with ß-phenylethylamine as the substrate. Police contacts were self-reported in an interview and drug use in a questionnaire filled in during a laboratory visit. In cross-sectional analyses, males with the record of antisocial behavior had lower platelet MAO activity. In longitudinal mixed-effect regression models, this association was found to be independent of smoking. Furthermore, including smoking in the model revealed lower platelet MAO activity also in females with past antisocial behaviour. A further exploratory regression analysis with antisocial behavior at two levels of frequency and consideration of self-reported use of illicit drugs either in a single occasion or repeatedly demonstrated some "dose-dependency" in the relationship of antisocial behavior and platelet MAO activity. Platelet MAO activity was lower in male but not female subjects with basic education level as compared to secondary and higher education, but it was not related to non-verbal intelligence. Neither was platelet MAO activity associated with socio- economic status. In conclusion, antisocial behavior as occurring in general population is associated with low platelet MAO activity that probably reflects low capacity of the serotonergic system.


Assuntos
Transtorno da Personalidade Antissocial , Coorte de Nascimento , Feminino , Criança , Humanos , Masculino , Estudos de Coortes , Estudos Transversais , Monoaminoxidase , Plaquetas
11.
Front Neurosci ; 16: 886496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051642

RESUMO

Monoamine oxidase (MAO) activity is reduced in cigarette smokers and this may promote the reinforcing actions of nicotine, thereby enhancing the addictive properties of cigarettes. At present, it is unclear how cigarette smoking leads to MAO inhibition, but preclinical studies in rodents show that MAO inhibition increases nicotine self-administration, especially at low doses of nicotine. This effect of MAO inhibition develops slowly, likely due to plasticity of brain monoamine systems; studies relying on acute MAO inhibition are unlikely to replicate what happens with smoking. Given that MAO inhibition may reduce the threshold level at which nicotine becomes reinforcing, it is important to consider this in the context of very low nicotine content (VLNC) cigarettes and potential tobacco product regulation. It is also important to consider how this interaction between MAO inhibition and the reinforcing actions of nicotine may be modified in populations that are particularly vulnerable to nicotine dependence. In the context of these issues, we show that the MAO-inhibiting action of cigarette smoke extract (CSE) is similar in VLNC cigarettes and cigarettes with a standard nicotine content. In addition, we present evidence that in a rodent model of schizophrenia the effect of MAO inhibition to enhance nicotine self-administration is absent, and speculate how this may relate to brain serotonin systems. These issues are relevant to the MAO-inhibiting effect of cigarette smoking and its implications to tobacco product regulation.

12.
Front Mol Neurosci ; 15: 925272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832393

RESUMO

Nicotine is the primary addictive component in cigarette smoke, and dopamine release induced by nicotine is considered a significant cause of persistent smoking and nicotine dependence. However, the effects of nicotine replacement therapy on smoking cessation were less effective than expected, suggesting that other non-nicotine constituents may potentiate the reinforcing effects of nicotine. Harmane is a potent, selective monoamine oxidase A (MAO-A) inhibitor found in cigarette smoke, but showed no effect on nicotine self-administration in previous studies, possibly due to the surprisingly high doses used. In the present study, we found that harmane potentiated nicotine self-administration on the fixed ration schedule at the dose related to human cigarette smoking by the synergistic effects in up-regulating genes in addiction-related pathways, and the effect was reduced at doses 10 times higher or lower than the smoking-related dose. The smoking-related dose of harmane also enhanced the increase of locomotor activity induced by nicotine, accompanied by increased dopamine basal level and dopamine release in the nucleus accumbens through MAO-A inhibition. Our findings provided new evidence for the important role of non-nicotine ingredients of tobacco products in smoking addiction.

13.
Drugs Today (Barc) ; 58(7): 315-326, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35851867

RESUMO

Contezolid (MRX-I, Youxitai) is an oral oxazolidinone drug being developed by MicuRx Pharmaceutical Co., Ltd., Shanghai, China. It was approved by China's National Medical Products Administration (NMPA) in June 2021, attaining its first approval for the treatment of complicated skin and soft tissue infections (cSSTIs). It is also under clinical development for acute bacterial skin and skin structure infections (ABSSSIs) in the U.S. after receiving qualified infectious disease product (QIDP) classification and fast track status by U.S. Food and Drug Administration (FDA) in September 2018. Contezolid is effective against a broad range of Gram-positive bacteria including activity against methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant Streptococcus pneumoniae and vancomycin-resistant Enterococci (VRE). It provides a major benefit over the most popular drug of its class, linezolid (Zyvox), by offering an improved safety profile and minimal effects concerning myelosuppression and monoamine oxidase (MAO) inhibition, two independent adverse events limiting linezolid use in the clinic. The recommended dosage regimen of contezolid is 800 mg every 12 hours for 7-14 days with regular food intake and it can be extended if required. At the mentioned dose under fed conditions, satisfactory efficacy against MRSA with a 90%; or higher cumulative fraction of response and probability of target attainment was achieved. Additionally, contezolid also exhibits activity against Mycobacterium tuberculosis and Mycobacterium abscessus.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Oxazolidinonas , Infecções dos Tecidos Moles , Antibacterianos/efeitos adversos , China , Humanos , Linezolida/farmacologia , Linezolida/uso terapêutico , Oxazolidinonas/farmacologia , Oxazolidinonas/uso terapêutico , Piridonas , Infecções dos Tecidos Moles/induzido quimicamente , Infecções dos Tecidos Moles/complicações , Infecções dos Tecidos Moles/tratamento farmacológico , Estados Unidos
14.
Front Neurosci ; 16: 868088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712461

RESUMO

Conventional tobacco cigarettes appear to have greater abuse liability than non-combusted products such as electronic cigarettes (ECs) and nicotine replacement therapy (NRT). This may be due to the higher levels of behaviorally active non-nicotine constituents [e.g., monoamine oxidase (MAO) inhibitors such as ß-carbolines] in cigarette smoke (CS) compared to non-combusted products. To evaluate this hypothesis, the current studies compared the relative abuse liability of CS and EC aerosol extracts containing nicotine and a range of non-nicotine constituents to that of nicotine alone (NRT analog) using intracranial self-stimulation (ICSS) in rats. Effects of formulations on brain MAO activity in vitro and ex vivo were also studied to evaluate the potential role of MAO inhibition in the ICSS study. CS extract contained higher levels of several behaviorally active non-nicotine constituents (e.g., the ß-carbolines norharmane and harmane) than EC extract. Nicotine alone reduced ICSS thresholds at a moderate nicotine dose, suggesting a reinforcement-enhancing effect that may promote abuse liability, and elevated ICSS thresholds at a high nicotine dose, suggesting an aversive/anhedonic effect that may limit abuse liability. CS extract elevated ICSS thresholds to a greater degree than nicotine alone at high nicotine doses. Effects of EC extract on ICSS did not differ from those of nicotine alone. Finally, CS extract significantly inhibited MAO-A and MAO-B activity in vitro, whereas EC extract and nicotine alone did not. None of the formulations inhibited MAO measured ex vivo. These findings indicate greater acute aversive/anhedonic effects for CS extract compared to nicotine alone, suggesting lower abuse liability. Although confirmation of our findings using other dosing regimens, preclinical addiction models, and tobacco product extracts is needed, these findings suggest that the centrally-mediated effects of MAO inhibitors and other non-nicotine constituents may not account for the greater abuse liability of cigarettes compared to non-combusted products. Nonetheless, identifying the specific constituent(s) mediating the effects of CS extracts in this study could help clarify mechanisms mediating tobacco addiction and inform FDA product standards.

15.
Front Pharmacol ; 13: 886408, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600851

RESUMO

The monoamine oxidases (MAOs) are flavin-containing amine oxidoreductases responsible for metabolism of many biogenic amine molecules in the brain and peripheral tissues. Whereas serotonin is the preferred substrate of MAO-A, phenylethylamine is metabolized by MAO-B, and dopamine and tyramine are nearly ambivalent with respect to the two isozymes. ß-Carboline alkaloids such as harmine, harman(e), and norharman(e) are MAO inhibitors present in many plant materials, including foodstuffs, medicinal plants, and intoxicants, notably in tobacco (Nicotiana spp.) and in Banisteriopsis caapi, a vine used in the Amazonian ayahuasca brew. The ß-carbolines present in B. caapi may have effects on neurogenesis and intrinsic antidepressant properties, in addition to potentiating the bioavailability of the hallucinogen N,N-dimethyltryptamine (DMT), which is often present in admixture plants of ayahuasca such as Psychotria viridis. Tobacco also contains physiologically relevant concentrations of ß-carbolines, which potentially contribute to its psychopharmacology. However, in both cases, the threshold of MAO inhibition sufficient to interact with biogenic amine neurotransmission remains to be established. An important class of antidepressant medications provoke a complete and irreversible inhibition of MAO-A/B, and such complete inhibition is almost unattainable with reversible and competitive inhibitors such as ß-carbolines. However, the preclinical and clinical observations with synthetic MAO inhibitors present a background for obtaining a better understanding of the polypharmacologies of tobacco and ayahuasca. Furthermore, MAO inhibitors of diverse structures are present in a wide variety of medicinal plants, but their pharmacological relevance in many instances remains to be established.

16.
Psychopharmacology (Berl) ; 239(1): 327-337, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35001146

RESUMO

RATIONALE: Platelet monoamine oxidase (MAO) activity, a marker of central serotonergic capacity, has been associated with a variety of problem behaviours. However, studies on platelet MAO activity and addictive drugs have not consistently linked MAO activity with addiction or reported to predict illicit substance use initiation or frequency. OBJECTIVES: Platelet MAO activity and illicit drug use was examined in a longitudinal birth cohort study. METHODS: The sample included both birth cohorts (original n = 1238) of the Estonian Children Personality Behaviour and Health Study. Longitudinal association from age 15 to 25 years between platelet MAO activity and lifetime drug use was analysed by mixed-effects regression models. Differences at ages 15, 18 and 25 were analysed by t-test. Cox proportional hazard regression analysis was used to assess the association between platelet MAO activity and the age of drug use initiation. RESULTS: Male subjects who reported at least one drug use event had lower platelet MAO activity compared to nonusers, both in cross-sectional and longitudinal analyses. Males with low platelet MAO activity had started to use drugs at a younger age. Moreover, in male subjects who had experimented with illicit drugs only once in lifetime, low platelet MAO activity was also associated with higher risk at a younger age. In females, platelet MAO activity was not associated with drug use. CONCLUSION: In males, low platelet MAO activity is associated with drug abuse primarily owing to risk-taking at early age.


Assuntos
Preparações Farmacêuticas , Transtornos Relacionados ao Uso de Substâncias , Adolescente , Adulto , Coorte de Nascimento , Plaquetas , Criança , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Masculino , Monoaminoxidase , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Adulto Jovem
18.
Brain Dev ; 43(10): 1023-1028, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34481663

RESUMO

BACKGROUND: Aromatic L-amino acid decarboxylase (AADC) deficiency, caused by a pathogenic variant in the dopa decarboxylase (DDC) gene, is a rare neurometabolic disorder in which catecholamine and serotonin are not synthesized. From a large number of reports, it has been recognized that most affected patients show severe developmental delay in a bedridden state and are unable to speak. On the other hand, patients with a mild phenotype with AADC deficiency have been reported, but they number only a few cases. Therefore, the variation of phenotypes of the disease appears to be broad, and it may be challenging to diagnose an atypical phenotype as AADC deficiency. CASE REPORT: We report novel compound heterozygous variants in DDC (c.202G > A and c.254C > T) in two sisters, whose main complaint was mild developmental delay, by whole-exome sequencing (WES). Additionally, we describe their clinical features and provide an image that shows the variants located at different sites responsible for the catalysis of AADC in a three-dimensional structure. The patients were prescribed a Monoamine oxidase (MAO) inhibitor after diagnosis. INTERPRETATION: Our cases indicate that a comprehensive genomic approach helps to diagnose AADC deficiency with atypical features, and underscore the significance of understanding the variations of this disorder for diagnosis and appropriate treatment.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Descarboxilases de Aminoácido-L-Aromático/deficiência , Deficiências do Desenvolvimento , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Descarboxilases de Aminoácido-L-Aromático/genética , Criança , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Humanos , Fenótipo , Irmãos , Sequenciamento do Exoma
19.
Chem Pharm Bull (Tokyo) ; 68(11): 1082-1089, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132375

RESUMO

A series of 2-(N-cyclicamino)chromone derivatives (1a-4c) and 3-(N-cyclicamino)chromone derivatives (5a-8c) were synthesized, and their monoamine oxidase (MAO) A and B inhibitory activities were studied as part of a structure-activity relationship investigation. Compounds 1a-4c showed no remarkable inhibition for MAO-A or MAO-B, whereas compounds 5a-8c (with a few exceptions) showed significant and selective inhibition of MAO-B. Of these compounds, 7c, 7-methoxy-3-(4-phenyl-1-piperazinyl)-4H-1-benzopyran-4-one inhibited MAO-B the most potently and selectively, having IC50 of 15 nM and an MAO-B selectivity index of more than 6700; c.f, 50 nM and 2000, respectively, for safinamide. The mode of inhibition of 7c to MAO-B was competitive and reversible. Considering the IC50 values and selectivity indices of the other synthetic compounds, the presence of the methoxy group on the chromone ring (R2) of 7c seemed to increase MAO-B inhibition. Molecular docking analysis also supports this hypothesis. Our results suggest that 3-(N-cyclicamino)chromones are useful lead compounds for the development of MAO-B inhibitors.


Assuntos
Cromonas/química , Inibidores da Monoaminoxidase/síntese química , Monoaminoxidase/química , Benzopiranos/química , Benzopiranos/metabolismo , Sítios de Ligação , Domínio Catalítico , Cromonas/síntese química , Cromonas/metabolismo , Concentração Inibidora 50 , Cinética , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/metabolismo , Relação Estrutura-Atividade
20.
Stress ; 23(1): 1-12, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31322459

RESUMO

Glucocorticoid signaling is fundamental in healthy stress coping and in the pathophysiology of stress-related diseases, such as post-traumatic stress disorder (PTSD). Glucocorticoids are metabolized by cytochrome P450 (CYP) as well as 11-ß-hydroxysteroid dehydrogenase type 1 (11ßHSD1) and 2 (11ßHSD2). Acute stress-induced increase in glucocorticoid concentrations stimulates the expression of several CYP sub-types. CYP is primarily responsible for glucocorticoid metabolism and its increased activity can result in decreased circulating glucocorticoids in response to repeated stress stimuli. In addition, repeated stress-induced glucocorticoid release can promote 11ßHSD1 activation and 11ßHSD2 inhibition, and the 11ßHSD2 suppression can lead to apparent mineralocorticoid excess. The activation of CYP and 11ßHSD1 and the suppression of 11ßHSD2 may at least partly contribute to development of the blunted glucocorticoid response to stressors characteristic in high trait anxiety, PTSD, and other stress-related disorders. Glucocorticoids and glucocorticoid-metabolizing enzymes interact closely with other biomolecules such as inflammatory cytokines, monoamines, and some monoamine-metabolizing enzymes, namely the monoamine oxidase type A (MAO-A) and B (MAO-B). Glucocorticoids boost MAO activity and this decreases monoamine levels and induces oxidative tissue damage which then activates inflammatory cytokines. The inflammatory cytokines suppress CYP expression and activity. This dynamic cross-talk between glucocorticoids, monoamines, and their metabolizing enzymes could be a critical factor in the pathophysiology of stress-related disorders.Lay summaryGlucocorticoids, which are produced and released under the control by brain regulatory centers, are fundamental in the stress response. This review emphasizes the importance of glucocorticoid metabolism and particularly the interaction between the brain and the liver as the major metabolic organ in the body. The activity of enzymes involved in glucocorticoid metabolism is proposed to play not only an important role in positive, healthy glucocorticoid effects, but also to contribute to the development and course of stress-related diseases.


Assuntos
Glucocorticoides/metabolismo , Monoaminoxidase/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Síndrome de Excesso Aparente de Minerolocorticoides , Síndrome de Excesso Aparente de Minerolocorticoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...