Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int Immunopharmacol ; 138: 112560, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38959541

RESUMO

BACKGROUND: Dysregulation of lipid metabolism is a key factor influencing the progression of diabetic nephropathy (DN). Morroniside (MOR) is a major active compound isolated from the traditional Chinese herb Cornus officinalis, our previous research found that it can improve the lipid deposition of renal tubular epithelial cells. The purpose of this study is to explore whether MOR can improve podocyte lipid deposition and its mechanism of reducing DN. METHODS: Initially, we used network pharmacology and bioinformatics techniques to predict the relationship between renal lipid metabolism of MOR and DN. Subsequently, the binding activity of MOR with lipid-related proteins was studied by molecular docking to determine how MOR acts through these proteins. After determining the target of MOR, animal experiments and cell tests were carried out to verify it. RESULTS: Using network pharmacology, bioinformatics, and molecular docking, target proteins for MOR treatment of DN were predicted and screened, including PGC-1α, LXRs, ABCA1, PPARY, CD36, and nephrin. It is particularly noted that MOR effectively binds to PGC-1α, while LXRs, ABCA1, PPARY and CD36 are downstream molecules of PGC-1α. Silencing the PGC-1α gene significantly reduced the therapeutic effects of MOR. Conversely, in groups without PGC-1α knockdown, MOR was able to increase the expression levels of PGC-1α and influence the expression of downstream proteins. Furthermore, through in vivo and in vitro experiments, utilizing techniques such as lipid droplet staining, PAS, MASSON staining, immunofluorescence, and Western blot, we found that MOR effectively elevated the expression levels of the podocyte protein nephrin and lipid metabolism-regulating proteins PGC-1α, PPARY, and ABCA1, while significantly inhibiting the expression of the lipid accumulation promoter CD36. CONCLUSION: MOR can regulate the cholesterol efflux in podocytes via the PGC-1α/LXRs/ABCA1 signaling pathway, and control cholesterol intake via the PGC-1α/PPARY/CD36 signaling pathway, thereby ameliorating lipid deposition in DN.


Assuntos
Nefropatias Diabéticas , Metabolismo dos Lipídeos , Simulação de Acoplamento Molecular , Podócitos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Farmacologia em Rede , Humanos , Camundongos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Endogâmicos C57BL , Linhagem Celular , Glicosídeos
2.
Fitoterapia ; 177: 106098, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38950636

RESUMO

Brain edema after ischemic stroke could worsen cerebral injury in patients who received intravenous thrombolysis. Cornus officinalis Sieb. et Zucc., a long-established traditional Chinese medicine, is beneficial to the treatment of neurodegenerative diseases including ischemic stroke. In particular, its major component, cornel iridoid glycoside (CIG), was evidenced to exhibit neuroprotective effects against cerebral ischemic/reperfusion injury (CIR/I). Aimed to explore the effects of the CIG on brain edema of the CIR/I rats, the CIG was analyzed with the main constituents by using HPLC. The molecular docking analysis was performed between the CIG constituents and AQP4-M23. TGN-020, an AQP4 inhibitor, was used as a comparison. In the in vivo experiments, the rats were pre-treated with the CIG and were injured by performing middle cerebral artery occlusion/reperfusion (MCAO/R). After 24 h, the rats were examined for neurological function, pathological changes, brain edema, and polarized Aqp4 expressions in the brain. The HPLC analysis indicated that the CIG was composed of morroniside and loganin. The molecular docking analysis showed that both morroniside and loganin displayed lower binding energies to AQP4-M23 than TGN-020. The CIG pre-treated rats exhibited fewer neurological function deficits, minimized brain swelling, and reduced lesion volumes compared to the MCAO/R rats. In the peri-infarct and infarct regions, the CIG pre-treatment restored the polarized Aqp4 expression which was lost in the MCAO/R rats. The results suggested that the CIG could attenuate brain edema of the cerebral ischemia/reperfusion rats by modulating the polarized Aqp4 through the interaction of AQP4-M23 with morroniside and loganin.


Assuntos
Aquaporina 4 , Edema Encefálico , Cornus , Glicosídeos Iridoides , Iridoides , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Masculino , Ratos , Aquaporina 4/metabolismo , Encéfalo/efeitos dos fármacos , Edema Encefálico/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Cornus/química , Glicosídeos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Glicosídeos Iridoides/farmacologia , Glicosídeos Iridoides/isolamento & purificação , Iridoides/farmacologia , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico
3.
Biomed Pharmacother ; 176: 116762, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788597

RESUMO

Obesity is a multifaceted medical condition characterized by the pathological accumulation of excessive lipids in the body. We investigated the effects of morroniside, a bioactive compound derived from Cornus officinalis, on adipogenesis. We used a preadipocyte 3T3-L1 stable cell line and primary cultured adipose-derived stem cells (ADSCs) in vitro and ovariectomized (OVX) and a high-fat diet (HFD)-fed obese mouse model in vivo. Preadipocyte 3T3-L1 cells and ADSCs incubated with morroniside during adipocyte differentiation and obese mice subjected to OVX and HFD received oral morroniside treatment for 12 weeks. Morroniside treatment significantly reduced adipocyte differentiation and fatty acid accumulation and downregulated adipogenesis-related gene expression, concomitant with a decrease in triglyceride content and an increase in glycerol release in cells. The results of the in vivo study showed that morroniside ameliorated obesity-related phenotypes by reducing body weight gain, hepatic steatosis, and adipose tissue in obese mice. These findings suggest that morroniside is a promising compound for preventing and treating obesity.


Assuntos
Células 3T3-L1 , Adipogenia , Fármacos Antiobesidade , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade , Animais , Camundongos , Adipogenia/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Fármacos Antiobesidade/farmacologia , Feminino , Dieta Hiperlipídica/efeitos adversos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Glicosídeos/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Camundongos Obesos , Triglicerídeos/metabolismo , Ovariectomia , Fígado Gorduroso/tratamento farmacológico
4.
Phytomedicine ; 129: 155703, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723527

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH), the inflammatory subtype in the progression of non-alcoholic fatty liver disease, is becoming a serious burden threatening human health, but no approved medication is available to date. Mononoside is a natural active substance derived from Cornus officinalis and has been confirmed to have great potential in regulating lipid metabolism in our previous studies. However, its effect and mechanism to inhibit the progression of NASH remains unclear. PURPOSE: Our work aimed to explore the action of mononoside in delaying the progression of NASH and its regulatory mechanisms from the perspective of regulating lipophagy. METHODS AND RESULTS: Male C57BL/6 mice were fed with a high-fat and high-fructose diet for 16 weeks to establish a NASH mouse model. After 8 weeks of high-fat and high-fructose feeding, these mice were administrated with different doses of morroniside. H&E staining, ORO staining, Masson staining, RNA-seq, immunoblotting, and immunofluorescence were performed to determine the effects and molecular mechanisms of morroniside in delaying the progression of NASH. In this study, we found that morroniside is effective in attenuating hepatic lipid metabolism disorders and inflammatory response activation, thereby limiting the progression from simple fatty liver to NASH in high-fat and high-fructose diet-fed mice. Mechanistically, we identified AMPK signaling as the key molecular pathway for the positive efficacy of morroniside by transcriptome sequencing. Our results revealed that morroniside maintained hepatic lipid metabolism homeostasis and inhibited NLRP3 inflammasome activation by promoting AMPKα phosphorylation-mediated lipophagy and fatty acid oxidation. Consistent results were observed in palmitic acid-treated cell models. Of particular note, silencing AMPKα both in vivo and in vitro reversed morroniside-induced lipophagy flux enhancement and NLRP3 inflammasome inhibition, emphasizing the critical role of AMPKα activation in the effect of morroniside in inhibiting NASH progression. CONCLUSION: In summary, the present study provides strong evidence for the first time that morroniside inhibits NASH progression by promoting AMPK-dependent lipophagy and inhibiting NLRP3 inflammasome activation, suggesting that morroniside is expected to be a potential molecular entity for the development of therapeutic drugs for NASH.


Assuntos
Proteínas Quinases Ativadas por AMP , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Cornus/química , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Frutose , Glicosídeos/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
5.
Acta Biochim Biophys Sin (Shanghai) ; 56(7): 1072-1084, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38779766

RESUMO

Epidermal stem cells (EpSCs) play a vital role in skin wound healing through re-epithelialization. Identifying chemicals that can promote EpSC proliferation is helpful for treating skin wounds. This study investigates the effect of morroniside on cutaneous wound healing in mice and explores the underlying mechanisms. Application of 10‒50 µg/mL of morroniside to the skin wound promotes wound healing in mice. In vitro studies demonstrate that morroniside stimulates the proliferation of mouse and human EpSCs in a time- and dose-dependent manner. Mechanistic studies reveal that morroniside promotes the proliferation of EpSCs by facilitating the cell cycle transition from the G1 to S phase. Morroniside increases the expression of ß-catenin via the glucagon-like peptide-1 receptor (GLP-1R)-mediated PKA, PKA/PI3K/AKT and PKA/ERK signaling pathways, resulting in an increase in cyclin D1 and cyclin E1 expression, either directly or by upregulating c-Myc expression. This process ultimately leads to EpSC proliferation. Administration of morroniside to mouse skin wounds increases the phosphorylation of AKT and ERK, the expressions of ß-catenin, c-Myc, cyclin D1, and cyclin E1, as well as the proliferation of EpSCs, in periwound skin tissue, and accelerates wound re-epithelialization. These effects of morroniside are mediated by the GLP-1R. Overall, these results indicate that morroniside promotes skin wound healing by stimulating the proliferation of EpSCs via increasing ß-catenin expression and subsequently upregulating c-Myc, cyclin D1, and cyclin E1 expressions through GLP-1R signaling pathways. Morroniside has clinical potential for treating skin wounds.


Assuntos
Proliferação de Células , Reepitelização , Células-Tronco , Regulação para Cima , beta Catenina , Animais , beta Catenina/metabolismo , beta Catenina/genética , Proliferação de Células/efeitos dos fármacos , Camundongos , Regulação para Cima/efeitos dos fármacos , Humanos , Reepitelização/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia , Cicatrização/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Masculino , Células Epidérmicas/metabolismo , Células Epidérmicas/efeitos dos fármacos , Células Epidérmicas/citologia , Ciclina D1/metabolismo , Ciclina D1/genética
6.
Biomol Ther (Seoul) ; 32(3): 349-360, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602043

RESUMO

Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38472369

RESUMO

Myocardial fibrosis (MF), which is an inevitable pathological manifestation of many cardiovascular diseases in the terminal stage, often contributes to severe cardiac dysfunction and sudden death. Morroniside (MOR) is the main active component of Cornus officinalis with a variety of biological activities. This study was designed to explore the efficacy of MOR in MF and to investigate its pharmacological mechanism. The viability of MOR-treated human cardiac fibroblast (HCF) cells with or without Angiotensin II (AngII) induction was assessed with Cell Counting Kit-8 (CCK-8). The migration of AngII-induced HCF cells was appraised with a transwell assay. Gelatin zymography analysis was adopted to evaluate the activities of MMP2 and MMP9, while immunofluorescence assay was applied for the estimation of Collagen I and Collagen III. By means of western blot, the expressions of migration-, fibrosis-, and p38/c-Jun N-terminal kinase (JNK) signal pathway-related proteins were resolved. The transfection efficacy of oe-Kruppel-like factor 5 (KLF5) was examined with reverse transcription-quantitative PCR (RT-qPCR) and western blot. In this study, it was found that MOR treatment inhibited AngII-induced hyperproliferation, migration, and fibrosis of HCF cells, accompanied with decreased activities of matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), connective tissue growth factor (CTGF), Fibronectin, and α-SMA, which were all reversed by KLF5 overexpression. Collectively, MOR exerted protective effects on MF by blocking p38/JNK signal pathway through the downregulation of KLF5.

8.
Phytomedicine ; 123: 155224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006805

RESUMO

BACKGROUND: Post-stroke depression (PSD) is a common psychiatric symptom after a stroke. Morroniside, an iridoid glycoside found in Cornus officinalis, has garnered significant attention for its potential to alleviate symptoms associated with depression. PURPOSE: This study aims to highlight the potential use of morroniside in the treatment of PSD and elucidate the underlying molecular mechanisms. METHODS: To establish a reliable PSD model, male C57BL/6 mice were subjected to brief MCAO in conjunction with CUMS. Post-morroniside administration, neuronal viability, and hippocampal cell apoptosis were evaluated by Nissl staining and TUNEL detection, respectively. Depression-like behaviors were evaluated using SPT, TST, and FST. The Longa score and cylinder test were used to evaluate the effect of morroniside on motor function. Furthermore, to investigate the underlying molecular mechanisms, bioinformatic analysis and the dual luciferase assay were performed to investigate the MiR-409-3p-BDNF interaction. In addition, subsequent to MiR-409-3p overexpression via AAV virus, we assessed mRNA expression and protein levels of key components within the BDNF/TrkB signaling pathway using RT-qPCR, immunohistochemistry, and western blot analysis. RESULTS: The observed decrease in apoptosis and amelioration of depression-like behaviors strongly indicate the potential of morroniside as a therapeutic agent for PSD. Furthermore, the upregulation of key proteins within the BDNF/TrkB signaling pathway in the cortex suggests that morroniside activates this pathway. Through bioinformatics analysis, MiR-409-3p was identified and found to bind to the BDNF gene, resulting in the inhibition of BDNF expression. Importantly, we demonstrate that morroniside mitigates this inhibitory effect of MiR-409-3p on BDNF, thereby facilitating the activation of the BDNF/TrkB signaling pathway. CONCLUSION: The findings suggest that morroniside demonstrates the ability to improve PSD symptoms through the BDNF/TrkB signaling pathway mediated by MiR-409-3p. These results emphasize the importance of the BDNF signaling pathway in improving PSD symptoms and provide a possible mechanism for morroniside to treat PSD.


Assuntos
Glicosídeos , MicroRNAs , Acidente Vascular Cerebral , Camundongos , Masculino , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Transdução de Sinais , MicroRNAs/genética
9.
Int Immunopharmacol ; 127: 111421, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38157694

RESUMO

BACKGROUND: Prolonged use of glucocorticoids (GCs) potentially lead to a condition known as GCs-induced osteonecrosis of the femoral head (GIONFH). The primary mechanisms underlying this phenomenon lies in stem cells and endothelial cells dysfunctions. Morroniside, an iridoid glycoside sourced from Cornus officinalis, possesses numerous biological capabilities, including combating oxidative stress, preventing apoptosis, opposing ischemic effects, and promoting the regeneration of bone tissue. PURPOSE: This study aimed to analyze the impact of Morroniside on Dexamethasone (DEX)-induced dysfunction in stem cells and endothelial cells, and its potential as a therapeutic agent for GIONFH in rat models. METHODS: ROS assay, JC-1 assay, and TUNEL assay were used to detect oxidative stress and apoptosis levels in vitro. For the evaluation of the osteogenic capability of bone marrow-derived mesenchymal stem cells, we employed ALP and ARS staining. Additionally, the angiogenic ability of endothelial cells was assessed using tube formation assay and migration assay. Microcomputed tomography analysis, hematoxylin-eosin staining, and immunohistochemical staining were utilized to evaluate the in vivo therapeutic efficacy of Morroniside. RESULTS: Morroniside mitigates DEX-induced excessive ROS expression and cell apoptosis, effectively reducing oxidative stress and alleviating cell death. In terms of osteogenesis, Morroniside reverses DEX-induced osteogenic impairment, as evidenced by enhanced ALP and ARS staining, as well as increased osteogenic protein expression. In angiogenesis, Morroniside counteracts DEX-induced vascular dysfunction, demonstrated by an increase in tube-like structures in tube formation assays, a rise in the number of migrating cells, and elevated levels of angiogenic proteins. In vivo, our results further indicate that Morroniside alleviates the progression of GIONFH. CONCLUSION: The experimental findings suggest that Morroniside concurrently mitigates stem cell and endothelial cell dysfunction through the PI3K/AKT signaling pathway both in vitro and in vivo. These outcomes suggest that Morroniside serves as a potential therapeutic agent for GIONFH.


Assuntos
Glucocorticoides , Glicosídeos , Osteonecrose , Ratos , Animais , Glucocorticoides/uso terapêutico , Glucocorticoides/farmacologia , Células Endoteliais , Espécies Reativas de Oxigênio , Cabeça do Fêmur , Microtomografia por Raio-X , Fosfatidilinositol 3-Quinases/farmacologia , Células-Tronco , Osteogênese , Glicosídeos Iridoides
10.
Int J Ophthalmol ; 16(12): 1928-1934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111933

RESUMO

AIM: To investigate the effect of morroniside (Mor) on lipopolysaccharide (LPS)-treated iris pigment epithelial cells (IPE). METHODS: IPE cells were induced by LPS and treated with Mor. Cell proliferation was detected by cell counting kit (CCK) -8, apoptosis was detected by flow cytometry, the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-8 were measured by enzyme-linked immunosorbent assay (ELISA) kits, and the protein expression of TLR4, JAK2, p-JAK2, STAT3, and p-STAT3 was analyzed by Western blotting. In addition, overexpression of TLR4 and Mor treatment of LPS-stimulated IPE cells were also tested for the above indices. RESULTS: Mor effectively promoted the proliferation and inhibited the apoptosis of LPS-treated IPE cells. In addition, Mor significantly reduced the levels of TNF-α, IL-6, and IL-8 and significantly inhibited the expression of TLR4, p-JAK2, and p-STAT3 in LPS-treated IPE cells. The effect of Mor on LPS-treated IPE cells was markedly attenuated after overexpression of TLR4. CONCLUSION: These findings suggest that Mor may ameliorate LPS-induced inflammatory damage and apoptosis in IPE through inhibition of TLR4/JAK2/STAT3 pathway.

11.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37895909

RESUMO

Osteoporosis is a chronic inflammatory disease that severely affects quality of life. Cornus officinalis is a Chinese herbal medicine with various bioactive ingredients, among which morroniside is its signature ingredient. Although anti-bone resorption drugs are the main treatment for bone loss, promoting bone anabolism is more suitable for increasing bone mass. Therefore, identifying changes in bone formation induced by morroniside may be conducive to developing effective intervention methods. In this study, morroniside was found to promote the osteogenic differentiation of bone marrow stem cells (BMSCs) and inhibit inflammation-induced bone loss in an in vivo mouse model of inflammatory bone loss. Morroniside enhanced bone density and bone microstructure, and inhibited the expression of IL6, IL1ß, and ALP in serum (p < 0.05). Furthermore, in in vitro experiments, BMSCs exposed to 0-256 µM morroniside did not show cytotoxicity. Morroniside inhibited the expression of IL6 and IL1ß and promoted the expression of the osteogenic transcription factors Runx2 and OCN. Furthermore, morroniside promoted osteocalcin and Runx2 expression and inhibited TRAF6-mediated NF-κB and MAPK signaling, as well as osteoblast growth and NF-κB nuclear transposition. Thus, morroniside promoted osteogenic differentiation of BMSCs, slowed the occurrence of the inflammatory response, and inhibited bone loss in mice with inflammatory bone loss.

12.
Chem Biol Interact ; 385: 110711, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769864

RESUMO

Morroniside (MOR), a cyclic enol ether terpene glycoside isolated from Cornus officinalis, has been shown to inhibit lipid accumulation, although the mechanism of action is uncertain. The aim of this study was to investigate the potential pathways by which MOR affects renal lipid deposition in diabetic nephropathy (DN). In vitro and in vivo experiments were performed using the PA-induced HK-2 cell model and a KKAy animal model, respectively. Network pharmacological analysis was used to identify potential MOR signaling pathways for DN therapy, with results verified via Western blotting and immunofluorescence experiments. The effect of MOR on lipid metabolism was investigated using BODIPY 493/503 staining. Our results indicate that MOR significantly reduces lipid accumulation both in vitro and in vivo. According to network pharmacology studies, the NF-κB/TNF-α/SREBP1c signaling pathway may be the mechanism of action of MOR in DN. MOR was found to inhibit this pathway by reducing the phosphorylation of NF-κB p65 and the expression of TNF-α and SREBP1c, similar to the effects of Bay11-7082. Additionally, MOR significantly inhibited the expression of lipid factors such as ACC, FAS, and SCD1. In conclusion, MOR can regulate the disruption of lipid metabolism in DN and reduce renal lipid deposition via suppression of the NF-κB/TNF-α/SREBP1c signaling pathway.

13.
J Biomol Struct Dyn ; : 1-18, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37587909

RESUMO

The present study tends to evaluate the possible potential of bio-active Morroniside (MOR), against alloxan (ALX)-induced genotoxicity and hyperglycaemia. In silico prediction revealed the interaction of MOR with Poly (ADP-ribose) polymerase (PARP) protein which corroborated well with experimental in vitro L6 cell line and in vivo mice models. Data revealed the efficacy of MOR in the selective activation of PARP protein and modulating other stress proteins NF-κB, and TNF-α to initiate protective potential against ALX-induced genotoxicity and hyperglycaemia. Further, the strong interaction of MOR with CT-DNA (calf thymus DNA) analyzed through CD spectroscopy, UV-Vis study and ITC data revealed the concerted action of bio-factors involved in inhibiting chromosomal aberration and micronucleus formation associated with DNA damage. Finally, MOR does not play any role in microbial growth inhibition which often occurs due to hyperglycemic dysbiosis. Thus, from the overall findings, we may conclude that MOR could be a potential drug candidate for the therapeutic management of induced-hyperglycaemia and genotoxicity.Communicated by Ramaswamy H. Sarma.

14.
BMC Complement Med Ther ; 23(1): 218, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393274

RESUMO

Parkinson's disease (PD) is the second most common neurodegenera-tive disorder after Alzheimer disease accompanied by the death of dopaminergic neurons and brain nigrostriatal mitochondrial damage in the elderly population. The features of the disease include tremor, rigidity, postural instability, and motor retardation. The pathogenesis of Parkinson's disease is complex, and abnormal lipid metabolism resulting in ferroptosis due to the excessive accumulation of free radicals from oxidative stress in the substantia nigra of the brain was thought to be one of the factors causing the disease. Morroniside has been reported to have significant neuroprotective effects, although it has not been studied in PD. Therefore, this study focused on determining the neuroprotective effects of morroniside (25, 50, and 100 mg/kg) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg)-induced mice models of PD and explored 1-methyl-4-phenylpyridinium MPP+-induced ferroptosis in PC12 cells. Morroniside restored impaired motor function in the PD mice models while reducing neuronal injury. The activation of nuclear factor erythroid 2-related factor 2/antioxidant response elements (Nrf2/ARE) by morroniside promoted antioxidation, the content of reducing agent glutathione (GSH) increased, and the level of the lipid metabolite malondialdehyde (MDA) decreased. Notably, morroniside inhibited ferroptosis in substantia nigra of the brain and PC12 cells, reduced iron levels, and upregulated the expression of the iron-regulated proteins glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), ferritin heavy chain 1 (FTH-1), and ferroportin (FPN). More importantly, morroniside repaired the mitochondrial damage, restored the mitochondrial respiratory chain, and inhibited the production of reactive oxygen species (ROS). These data indicated that morroniside could activate the Nrf2/ARE signaling pathway to increase the antioxidant capacity, thereby inhibiting abnormal lipid metabolism and protecting dopaminergic neurons from ferroptosis in PD.


Assuntos
Cornus , Ferroptose , Fármacos Neuroprotetores , Doença de Parkinson , Idoso , Humanos , Ratos , Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Antioxidantes
15.
In Vitro Cell Dev Biol Anim ; 59(4): 277-288, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37155079

RESUMO

Morroniside can prevent myocardial injury caused by ischemia and hypoxia, which can be used to treat acute myocardial infarction (AMI). Hypoxia can cause apoptosis and autophagic death of cardiomyocytes. Morroniside has the ability to inhibit apoptosis and autophagy. However, the relationship between Morroniside-protected cardiomyocytes and two forms of death is unclear. The effects of Morroniside on the proliferation, apoptosis level, and autophagic activity of rat cardiomyocyte line H9c2 under hypoxia were first observed. Next, the roles of Morroniside in the phosphorylation of JNK and BCL2, BCL2-Beclin1, and BCL2-Bax complexes as well as mitochondrial membrane potential in H9c2 cells were evaluated upon hypoxia. Finally, the significance of BCL2 or JNK in Morroniside-regulated autophagy, apoptosis, and proliferation in H9c2 cells was assessed by combining Morroniside and BCL2 competitive inhibitor (ABT-737) or JNK activator (Anisomycin). Our results showed that hypoxia promoted autophagy and apoptosis of H9c2 cells, and inhibited their proliferation. However, Morroniside could block the effect of hypoxia on H9c2 cells. In addition, Morroniside could inhibit JNK phosphorylation, BCL2 phosphorylation at the Ser70 and Ser87 sites, and the dissociation of BCL2-Beclin1 and BCL2-Bax complexes in H9c2 cells upon hypoxia. Moreover, the reduction of mitochondrial membrane potential in H9c2 cells caused by hypoxia was improved by Morroniside administration. Importantly, the inhibited autophagy, apoptosis, and promoted proliferation in H9c2 cells by Morroniside were reversed by the application of ABT-737 or Anisomycin. Overall, Morroniside inhibits Beclin1-dependent autophagic death and Bax-dependent apoptosis via JNK-mediated BCL2 phosphorylation, thereby improving the survival of cardiomyocytes under hypoxia.


Assuntos
Apoptose , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Proteína Beclina-1 , Proteína X Associada a bcl-2/metabolismo , Fosforilação , Anisomicina/metabolismo , Anisomicina/farmacologia , Autofagia , Hipóxia/metabolismo
16.
Front Pharmacol ; 14: 1260674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273822

RESUMO

Introduction: Acute myocardial infarction (AMI) is characterized by the loss of cardiomyocytes, which impairs cardiac function and eventually leads to heart failure. The induction of cardiomyocyte cell cycle activity provides a new treatment strategy for the repair of heart damage. Our previous study demonstrated that morroniside exerts cardioprotective effects. This study investigated the effects and underlying mechanisms of action of morroniside on cardiomyocyte cell cycle activity and cardiac repair following AMI. Methods: Neonatal rat cardiomyocytes (NRCMs) were isolated and exposed to oxygen-glucose deprivation (OGD) in vitro. A rat model of AMI was established by ligation of the left anterior descending coronary artery (LAD) in vivo. Immunofluorescence staining was performed to detect newly generated cardiomyocytes. Western blotting was performed to assess the expression of cell cycle-related proteins. Electrocardiography (ECG) was used to examine pathological Q waves. Masson's trichrome and wheat germ agglutinin (WGA) staining assessed myocardial fibrosis and hypertrophy. Results: The results showed that morroniside induced cardiomyocyte cell cycle activity and increased the levels of cell cycle proteins, including cyclin D1, CDK4, cyclin A2, and cyclin B1, both in vitro and in vivo. Moreover, morroniside reduced myocardial fibrosis and remodeling. Discussion: In conclusion, our study demonstrated that morroniside stimulates cardiomyocyte cell cycle activity and cardiac repair in adult rats, and that these effects may be related to the upregulation of cell cycle proteins.

17.
Allergol. immunopatol ; 50(6): 93-99, 01 nov. 2022. graf, ilus
Artigo em Inglês | IBECS | ID: ibc-211510

RESUMO

Objective To investigate the effects of morroniside on inflammatory and oxidative stress in lipopolysaccharide (LPS)-induced inflammatory bowel disease (IBD) cell model. Methods NCM460 cells were treated with 2-, 5-, or 10-μg/mL LPS for 24 h to develop an IBD cell model. MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) colorimetric assay was performed to uncover the role of morroniside on the viability of LPS-treated NCM460 cells. Flow cytometry and immunoblot assays were performed to confirm the effects of morroniside on the apoptosis of LPS-treated NCM460 cells. Quantitative polymerase chain reaction and enzyme-linked-immunosorbent serologic assays were performed to confirm the effects of morroniside on inflammatory and oxidative stress by measuring the levels of tumor necrosis factor-α, interleukin-1β, IL-6, superoxide dismutase, malondialdehyde, total antioxidant capacity, and myeloperoxidase. In addition, immunoblot and immunofluorescence assays were performed to detect the effects of morroniside on NLRP3 and NF-κB pathways. Results Monosine attenuated LPS-induced injury of NCM460 cells. Monosine reduced LPS-induced inflammation in NCM460 cells. In addition, morroniside reduced LPS-induced oxidative stress in NCM460 cells. Mechanically, morroniside suppressed NLRP3 and NF-κB pathways, and alleviated LPS-induced inflammatory and oxidative stress in IBD. Conclusion Morroniside could serve as a promising drug for treating IBD (AU)


Assuntos
Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Estresse Oxidativo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo
18.
Allergol Immunopathol (Madr) ; 50(6): 93-99, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36335451

RESUMO

OBJECTIVE: To investigate the effects of morroniside on inflammatory and oxidative stress in lipopolysaccharide (LPS)-induced inflammatory bowel disease (IBD) cell model. METHODS: NCM460 cells were treated with 2-, 5-, or 10-µg/mL LPS for 24 h to develop an IBD cell model. MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) colorimetric assay was performed to uncover the role of morroniside on the viability of LPS-treated NCM460 cells. Flow cytometry and immunoblot assays were performed to confirm the effects of morroniside on the apoptosis of LPS-treated NCM460 cells. Quantitative polymerase chain reaction and enzyme-linked-immunosorbent serologic assays were performed to confirm the effects of morroniside on inflammatory and oxidative stress by measuring the levels of tumor necrosis factor-α, interleukin-1ß, IL-6, superoxide dismutase, malondialdehyde, total antioxidant capacity, and myeloperoxidase. In addition, immunoblot and immunofluorescence assays were performed to detect the effects of morroniside on NLRP3 and NF-κB pathways. RESULTS: Monosine attenuated LPS-induced injury of NCM460 cells. Monosine reduced LPS-induced inflammation in NCM460 cells. In addition, morroniside reduced LPS-induced oxidative stress in NCM460 cells. Mechanically, morroniside suppressed NLRP3 and NF-κB pathways, and alleviated LPS-induced inflammatory and oxidative stress in IBD. CONCLUSION: Morroniside could serve as a promising drug for treating IBD.


Assuntos
Doenças Inflamatórias Intestinais , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Transdução de Sinais , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico
19.
Front Pharmacol ; 13: 942435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188539

RESUMO

Intervertebral disc (IVD) degeneration (IVDD) which is highly prevalent within the elderly population, is a leading cause of chronic low back pain and disability. Nucleus pulposus (NP) cell senescence plays an indispensable role in the pathogenesis of IVDD. Morroniside is a major iridoid glycoside and one of the quality control metrics of Cornus officinalis Siebold & Zucc (CO). An increasing body of evidence suggests that morroniside and CO-containing formulae share many similar biological effects, including anti-inflammatory, anti-oxidative, and anti-apoptotic properties. In a previous study, we reported that Liuwei Dihuang Decoction, a CO-containing formula, is effective for treating IVDD by targeting p53 expression; however, the therapeutic role of morroniside on IVDD remains obscure. In this study, we assessed the pharmacological effects of morroniside on NP cell senescence and IVDD pathogenesis using a lumbar spine instability surgery-induced mouse IVDD model and an in vitro H2O2-induced NP cell senescence model. Our results demonstrated that morroniside administration could significantly ameliorate mouse IVDD progression, concomitant with substantial improvement in extracellular matrix metabolism and histological grading score. Importantly, in vivo and in vitro experiments revealed that morroniside could significantly reduce the increase in SA-ß-gal activities and the expression of p53 and p21, which are the most widely used indicators of senescence. Mechanistically, morroniside suppressed ROS-induced aberrant activation of Hippo signaling by inhibiting Mst1/2 and Lats1/2 phosphorylation and reversing Yap/Taz reduction, whereas blockade of Hippo signaling by Yap/Taz inhibitor-1 or Yap/Taz siRNAs could antagonize the anti-senescence effect of morroniside on H2O2-induced NP cell senescence model by increasing p53 expression and activity. Moreover, the inhibition of Hippo signaling in the IVD tissues by morroniside was further verified in mouse IVDD model. Taken together, our findings suggest that morroniside protects against NP cell senescence to alleviate IVDD progression by inhibiting the ROS-Hippo-p53 pathway, providing a potential novel therapeutic approach for IVDD.

20.
Exp Biol Med (Maywood) ; 247(19): 1764-1775, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35957534

RESUMO

Morroniside is known to improve osteoporosis by promoting osteoblastogenesis. The activation of PI3K/Akt/mTOR signaling is a significant mechanism in morroniside-promoted osteoblastogenesis. It is well known that protective autophagy is an important factor in osteoblastogenesis. However, the activation of mTOR signaling can inhibit autophagy. This study aimed to investigate the relationship between mTOR signaling and autophagy in morroniside-regulated osteoblastogenesis. In this study, we investigated the effect of morroniside on the autophagic activity (LC3 conversion rate, LC3-puncta formation, and autophagosome number) of differentiated osteoblast precursors (MC3T3-E1 cells). Then, we identified the roles of mTOR knockdown in morroniside-regulated alterations of autophagy and osteogenic parameters in MC3T3-E1 cells. Next, mTOR knockdown and overexpression were used to observe the roles of mTOR in morroniside-regulated alterations of autophagic molecules (Atg7, Atg13, and Beclin1). Subsequently, the additional value of the above autophagic molecules on morroniside-regulated osteogenic parameters in MC3T3-E1 cells was analyzed based on lentiviral transduction. Finally, combined with morroniside and TAT-Beclin1, the roles of Beclin1 upregulation in the in vivo effects of morroniside was investigated. Our experimental data showed that morroniside promoted both the mTOR activity and autophagy in MC3T3-E1 cells. Morroniside-upregulated autophagic activity and Atg13 or Beclin1 protein level in MC3T3-E1 cells were enhanced by mTOR knockdown. Furthermore, Morroniside-upregulated Atg13 and Beclin1 expression was reversed by mTOR overexpression. Importantly, autophagy upregulation with overexpression of the autophagic gene, Atg13 or BECN1 (gene form of Beclin1), significantly promoted osteoblastogenesis regulated by morroniside. The promotional effect of morroniside on bone microarchitecture, bone mass, and bone parameters (including trabecular bone area and OCN expression in trabecular bone) in ovariectomized (OVX) mice was enhanced by TAT-Beclin1 administration. In conclusion, the autophagy-enhancing drugs related to Beclin1 or Atg13 may be an effective adjuvant therapy in the treatment of osteoporosis with morroniside.


Assuntos
Proteínas Reguladoras de Apoptose , Proteína Beclina-1 , Osteoporose , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Autofagia , Proteína Beclina-1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA