Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 21, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189875

RESUMO

Bioturbation plays an important role in structuring microbial communities in coastal sediments. This study investigates the bacterial community composition in sediment associated with the ghost shrimp Lepidophthalmus louisianensis at two locations in the Northern Gulf of Mexico (Bay St. Louis, MS, and Choctawhatchee Bay, FL). Bacteria were analysed for shrimp burrows and for three different depths of bioturbated intertidal sediment, using second-generation sequencing of the 16S rRNA gene. Burrow walls held a unique bacterial community, which was significantly different from those in the surrounding sediment communities. Communities in burrow walls and surrounding sediment communities also differed between the two geographic locations. The burrow wall communities from both locations were more similar to each other than to sediment communities from same location. Alpha- and Gammaproteobacteria were more abundant in burrows and surface sediment than in the subsurface, whereas Deltaproteobacteria were more abundant in burrows and subsurface sediment, suggesting sediment mixing by the bioturbator. However, abundance of individual ASVs was geographic location-specific for all samples. Therefore, it is suggested that the geographic location plays an important role in regional microbial communities distinctiveness. Bioturbation appears to be an important environmental driver in structuring the community around burrows. Sampling was conducted during times of the year and water salinity, tidal regime and temperature were variable, nevertheless the structure microbial communities appeared to remain realatively stable suggesting that these environmental variable played only a minor role.


Assuntos
Gammaproteobacteria , Microbiota , Golfo do México , RNA Ribossômico 16S/genética , Bactérias/genética
2.
Microorganisms ; 11(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37512938

RESUMO

Flying pigeons (Columbia livia) are extensively studied for their physical endurance and superior sense of orientation. The extreme physical endurance of which these birds are capable creates a unique opportunity to investigate the possible impact of long-distance flying on the taxonomy and metabolic function of the gut microbiota. This project was enabled by access to two groups of pigeons raised by the same breeder in the same conditions, except that one group was trained in long-distance flying and participated in multiple races covering a total distance of over 2600 km over a 9-week period. In contrast, the second group did not fly. The fecal microbiota was analyzed using 16S amplicon sequencing, and the taxonomy and metabolic function were inferred from this sequence data. Based on phylogenetic distance and metabolic function, flying and non-flying pigeons were found to harbor distinct bacterial microbiota. The microbiota taxonomy varied extensively between the birds, whereas the inferred metabolic potential was relatively stable. Age was not a significant determinant of the fecal microbiota profile. In flying birds, the metabolic pathways annotated with biosynthesis were enriched, representing 60% of the 20 metabolic pathways that were most closely associated with flying.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA