Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cancer Med ; 13(11): e7283, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826095

RESUMO

BACKGROUND: Lung cancer remains the foremost reason of cancer-related mortality, with invasion and metastasis profoundly influencing patient prognosis. N-acetyltransferase 10 (NAT10) catalyzes the exclusive N (4)-acetylcytidine (ac4C) modification in eukaryotic RNA. NAT10 dysregulation is linked to various diseases, yet its role in non-small cell lung cancer (NSCLC) invasion and metastasis remains unclear. Our study delves into the clinical significance and functional aspects of NAT10 in NSCLC. METHODS: We investigated NAT10's clinical relevance using The Cancer Genome Atlas (TCGA) and a group of 98 NSCLC patients. Employing WB, qRT-PCR, and IHC analyses, we assessed NAT10 expression in NSCLC tissues, bronchial epithelial cells (BECs), NSCLC cell lines, and mouse xenografts. Further, knockdown and overexpression techniques (siRNA, shRNA, and plasmid) were employed to evaluate NAT10's effects. A series of assays were carried out, including CCK-8, colony formation, wound healing, and transwell assays, to elucidate NAT10's role in proliferation, invasion, and metastasis. Additionally, we utilized lung cancer patient-derived 3D organoids, mouse xenograft models, and Remodelin (NAT10 inhibitor) to corroborate these findings. RESULTS: Our investigations revealed high NAT10 expression in NSCLC tissues, cell lines and mouse xenograft models. High NAT10 level correlated with advanced T stage, lymph node metastasis and poor overall survive. NAT10 knockdown curtailed proliferation, invasion, and migration, whereas NAT10 overexpression yielded contrary effects. Furthermore, diminished NAT10 levels correlated with increased E-cadherin level whereas decreased N-cadherin and vimentin expressions, while heightened NAT10 expression displayed contrasting results. Notably, Remodelin efficiently attenuated NSCLC proliferation, invasion, and migration by inhibiting NAT10 through the epithelial-mesenchymal transition (EMT) pathway. CONCLUSIONS: Our data underscore NAT10 as a potential therapeutic target for NSCLC, presenting avenues for targeted intervention against lung cancer through NAT10 inhibition.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Acetiltransferase N-Terminal E , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Animais , Camundongos , Acetiltransferase N-Terminal E/metabolismo , Acetiltransferase N-Terminal E/genética , Masculino , Feminino , Progressão da Doença , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Pessoa de Meia-Idade , Acetiltransferases N-Terminal
2.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853940

RESUMO

In gene therapy, delivery vectors are a key component for successful gene delivery and safety, based on which adeno-associated viruses (AAVs) gained popularity in particular for the liver, but also for other organs. Traditionally, rodents have been used as animal models to develop and optimize treatments, but species and organ specific tropism of AAV desire large animal models more closely related to humans for preclinical in-depth studies. Relevant AAV variants with the potential for clinical translation in liver gene therapy were previously evolved in vivo in a xenogeneic mouse model transplanted with human hepatocytes. Here, we selected and evaluated efficient AAV capsids using chimeric mice with a >90% xenografted pig hepatocytes. The pig is a valuable preclinical model for therapy studies due to its anatomic and immunological similarities to humans. Using a DNA-barcoded recombinant AAV library containing 47 different capsids and subsequent Illumina sequencing of barcodes in the AAV vector genome DNA and transcripts in the porcine hepatocytes, we found the AAVLK03 and AAVrh20 capsid to be the most efficient delivery vectors regarding transgene expression in porcine hepatocytes. In attempting to validate these findings with primary porcine hepatocytes, we observed capsid-specific differences in cell entry and transgene expression efficiency where the AAV2, AAVAnc80, and AAVDJ capsids showed superior efficiency to AAVLK03 and AAVrh20. This work highlights intricacies of in vitro testing with primary hepatocytes and the requirements for suitable pre-clinical animal models but suggests the chimeric mouse to be a valuable model to predict AAV capsids to transduce porcine hepatocytes efficiently.

3.
Mol Imaging Biol ; 26(3): 459-472, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811467

RESUMO

PURPOSE: Our study aimed to accelerate the acquisition of four-dimensional (4D) spectral-spatial electron paramagnetic resonance (EPR) imaging for mouse tumor models. This advancement in EPR imaging should reduce the acquisition time of spectroscopic mapping while reducing quality degradation for mouse tumor models. PROCEDURES: EPR spectra under magnetic field gradients, called spectral projections, were partially measured. Additional spectral projections were later computationally synthesized from the measured spectral projections. Four-dimensional spectral-spatial images were reconstructed from the post-processed spectral projections using the algebraic reconstruction technique (ART) and assessed in terms of their image qualities. We applied this approach to a sample solution and a mouse Hs766T xenograft model of human-derived pancreatic ductal adenocarcinoma cells to demonstrate the feasibility of our concept. The nitroxyl radical imaging agent 2H,15N-DCP was exogenously infused into the mouse xenograft model. RESULTS: The computation code of 4D spectral-spatial imaging was tested with numerically generated spectral projections. In the linewidth mapping of the sample solution, we achieved a relative standard uncertainty (standard deviation/| mean |) of 0.76 µT/45.38 µT = 0.017 on the peak-to-peak first-derivative EPR linewidth. The qualities of the linewidth maps and the effect of computational synthesis of spectral projections were examined. Finally, we obtained the three-dimensional linewidth map of 2H,15N-DCP in a Hs766T tumor-bearing leg in vivo. CONCLUSION: We achieved a 46.7% reduction in the acquisition time of 4D spectral-spatial EPR imaging without significantly degrading the image quality. A combination of ART and partial acquisition in three-dimensional raster magnetic field gradient settings in orthogonal coordinates is a novel approach. Our approach to 4D spectral-spatial EPR imaging can be applied to any subject, especially for samples with less variation in one direction.


Assuntos
Estudos de Viabilidade , Animais , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Linhagem Celular Tumoral , Camundongos , Modelos Animais de Doenças , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Processamento de Imagem Assistida por Computador/métodos
4.
Cell Mol Life Sci ; 81(1): 145, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498222

RESUMO

Cisplatin is a chemotherapy drug that causes a plethora of DNA lesions and inhibits DNA transcription and replication, resulting in the induction of apoptosis in cancer cells. However, over time, patients develop resistance to cisplatin due to repeated treatment and thus the treatment efficacy is limited. Therefore, identifying an alternative therapeutic strategy combining cisplatin treatment along with targeting factors that drive cisplatin resistance is needed. CRISPR/Cas9 system-based genome-wide screening for the deubiquitinating enzyme (DUB) subfamily identified USP28 as a potential DUB that governs cisplatin resistance. USP28 regulates the protein level of microtubule-associated serine/threonine kinase 1 (MAST1), a common kinase whose expression is elevated in several cisplatin-resistant cancer cells. The expression level and protein turnover of MAST1 is a major factor driving cisplatin resistance in many cancer types. Here we report that the USP28 interacts and extends the half-life of MAST1 protein by its deubiquitinating activity. The expression pattern of USP28 and MAST1 showed a positive correlation across a panel of tested cancer cell lines and human clinical tissues. Additionally, CRISPR/Cas9-mediated gene knockout of USP28 in A549 and NCI-H1299 cells blocked MAST1-driven cisplatin resistance, resulting in suppressed cell proliferation, colony formation ability, migration and invasion in vitro. Finally, loss of USP28 destabilized MAST1 protein and attenuated tumor growth by sensitizing cells to cisplatin treatment in mouse xenograft model. We envision that targeting the USP28-MAST1 axis along with cisplatin treatment might be an alternative therapeutic strategy to overcome cisplatin resistance in cancer patients.


Assuntos
Cisplatino , Neoplasias , Animais , Humanos , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proteínas Associadas aos Microtúbulos , Microtúbulos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Ubiquitina Tiolesterase
5.
Sci Rep ; 14(1): 6515, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499634

RESUMO

Human pancreatic ductal adenocarcinoma (PDAC) is a highly malignant and lethal tumor of the exocrine pancreas. Cannabinoids extracted from the hemp plant Cannabis sativa have been suggested as a potential therapeutic agent in several human tumors. However, the anti-tumor effect of cannabinoids on human PDAC is not entirely clarified. In this study, the anti-proliferative and apoptotic effect of cannabinoid solution (THC:CBD at 1:6) at a dose of 1, 5, and 10 mg/kg body weight compared to the negative control (sesame oil) and positive control (5-fluorouracil) was investigated in human PDAC xenograft nude mice model. The findings showed that cannabinoids significantly decreased the mitotic cells and mitotic/apoptotic ratio, meanwhile dramatically increased the apoptotic cells. Parallelly, cannabinoids significantly downregulated Ki-67 and PCNA expression levels. Interestingly, cannabinoids upregulated BAX, BAX/BCL-2 ratio, and Caspase-3, meanwhile, downregulated BCL-2 expression level and could not change Caspase-8 expression level. These findings suggest that cannabinoid solution (THC:CBD at 1:6) could inhibit proliferation and induce apoptosis in human PDAC xenograft models. Cannabinoids, including THC:CBD, should be further studied for use as the potent PDCA therapeutic agent in humans.


Assuntos
Canabinoides , Cannabis , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Camundongos Nus , Xenoenxertos , Proteína X Associada a bcl-2 , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2
6.
Bioorg Med Chem ; 101: 117634, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359754

RESUMO

Synthesis and biological evaluation of a small, focused library of 1,3-disubstituted-1,2,4-triazin-6-ones for in vitro inhibitory activity against androgen-receptor-dependent (22Rv1) and androgen-receptor independent (PC3) castration-resistant prostate cancer (CRPC) cells led to highly active compounds with in vitro IC50 values against 22Rv1 cells of <200 nM, and with apparent selectivity for this cell type over PC3 cells. From metabolic/PK evaluations of these compounds, a 3-benzyl-1-(2,4-dichlorobenzyl) derivative had superior properties and showed considerably stronger activity, by nearly an order of magnitude, against AR-dependent LNCaP and C4-2B cells compared to AR-independent DU145 cells. This lead compound decreased AR expression in a dose and time dependent manner and displayed promising therapeutic effects in a 22Rv1 CRPC xenograft mouse model. Computational target prediction and subsequent docking studies suggested three potential known prostate cancer targets: p38a MAPK, TGF-ß1, and HGFR/c-Met, with the latter case of c-Met appearing stronger, owing to close structural similarity of the lead compound to known pyridazin-3-one derivatives with potent c-Met inhibitory activity. RNA-seq analysis showed dramatic reduction of AR signalling pathway and/or target genes by the lead compound, subsequently confirmed by quantitative PCR analysis. The lead compound was highly inhibitory against HGF, the c-Met ligand, which fitted well with the computational target prediction and docking studies. These results suggest that this compound could be a promising starting point for the development of an effective therapy for the treatment of CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Triazinas , Animais , Humanos , Masculino , Camundongos , Androgênios/metabolismo , Linhagem Celular Tumoral , Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Triazinas/química , Triazinas/farmacologia
7.
Int J Cancer ; 154(7): 1272-1284, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38151776

RESUMO

Despite recent advances in the development of therapeutic antibodies, the prognosis of unresectable or metastatic gastric cancer (GC) remains poor. Here, we searched for genes involved in the malignant phenotype of GC and investigated the potential of one candidate gene to serve as a novel therapeutic target. Analysis of transcriptome datasets of GC identified natriuretic peptide receptor 1 (NPR1), a plasma membrane protein, as a potential target. We employed a panel of human GC cell lines and gene-specific small interfering RNA-mediated NPR1 silencing to investigate the roles of NPR1 in malignancy-associated functions and intracellular signaling pathways. We generated an anti-NPR1 polyclonal antibody and examined its efficacy in a mouse xenograft model of GC peritoneal dissemination. Associations between NPR1 expression in GC tissue and clinicopathological factors were also evaluated. NPR1 mRNA was significantly upregulated in several GC cell lines compared with normal epithelial cells. NPR1 silencing attenuated GC cell proliferation, invasion, and migration, and additionally induced the intrinsic apoptosis pathway associated with mitochondrial dysfunction and caspase activation via downregulation of BCL-2. Administration of anti-NPR1 antibody significantly reduced the number and volume of GC peritoneal tumors in xenografted mice. High expression of NPR1 mRNA in clinical GC specimens was associated with a significantly higher rate of postoperative recurrence and poorer prognosis. NPR1 regulates the intrinsic apoptosis pathway and plays an important role in promoting the GC malignant phenotype. Inhibition of NPR1 with antibodies may have potential as a novel therapeutic modality for unresectable or metastatic GC.


Assuntos
Receptores do Fator Natriurético Atrial , Neoplasias Gástricas , Humanos , Camundongos , Animais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Apoptose , Proliferação de Células , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
8.
Stud Health Technol Inform ; 308: 329-340, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38007757

RESUMO

Various damage-associated molecular patterns (DAMPs) associated with immunogenic cell death (ICD) have been discovered, potentially leading to cancer cell elimination. Certain platinum-based compounds can trigger both cancer cell apoptosis and ICD. This study aims to investigate the effect of the therapy of anti- PDL1 with Oxaliplatin by increasing amount and increasing treatment duration of anti-PDL1 with Oxaliplatin in SK-Br-3, both in vitro and in vivo conditions. The study will use HER-2 (3+) breast cancer cell line, SKBr3. The cells will be treated with increasing concentrations of Oxaliplatin with anti-PDL1 for different durations. In vitro death of cancer cells will be measured by MTT assay, HMGB1 will be measured by western blot. Additionally, ATP release will be measured, mice will be injected with SK-Br-3 and treated with the combo therapy of anti-PDL1 with Oxaliplatin, and in vivo tumor growth will be recorded weekly for xenograft. The positive control for the experiments is cisplatin, and the negative control is IgG solution instead of aPDL1 and Oxaliplatin in PBS.There are three main possible results: (1) The combo therapy of Oxaliplatin with anti-PDL1 induces robust ICD in HER-2 triple positive breast cancer cells. (2) The combo therapy of Oxaliplatin with anti-PDL1 act as a stimulant for robust ICD in HER-2(3+) positive breast cancer cells. (3) The combo-therapy of Oxaliplatin with anti-PDL1 has no significant effect on inducing robust ICD in HER-2(3+) positive breast cancer cells. The result of the study will provide important insight into the preclinical effectiveness of Oxaliplatin with anti-PDL1 in treating HER-2 (3+) breast cancer, and it also sets the basis for future clinical studies of the drug. Future studies should focus on investigating the mechanism underlying Oxaliplatin with anti-PDL1 effectiveness in SK-Br-3.


Assuntos
Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Morte Celular Imunogênica , Linhagem Celular Tumoral
9.
Cancers (Basel) ; 15(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37894446

RESUMO

A cancer-specific anti-PDPN mAb, LpMab-23 (mouse IgG1, kappa), was established in our previous study. We herein produced a humanized IgG1 version (humLpMab-23) and defucosylated form (humLpMab-23-f) of an anti-PDPN mAb to increase ADCC activity. humLpMab-23 recognized PDPN-overexpressed Chinese hamster ovary (CHO)-K1 (CHO/PDPN), PDPN-positive PC-10 (human lung squamous cell carcinoma), and LN319 (human glioblastoma) cells via flow cytometry. We then demonstrated that humLpMab-23-f induced ADCC and complement-dependent cytotoxicity against CHO/PDPN, PC-10, and LN319 cells in vitro and exerted high antitumor activity in mouse xenograft models, indicating that humLpMab-23-f could be useful as an antibody therapy against PDPN-positive lung squamous cell carcinomas and glioblastomas.

10.
Antioxidants (Basel) ; 12(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759969

RESUMO

The introduction of selenium (Se) into organic scaffolds has been demonstrated to be a promising framework in the field of medicinal chemistry. A novel design of nonsteroidal anti-inflammatory drug (NSAID) derivatives based on a bioisosteric replacement via the incorporation of Se as diacyl diselenide is reported. The antioxidant activity was assessed using the DPPH radical scavenging assay. The new Se-NSAID derivatives bearing this unique combination showed antioxidant activity in a time- and dose-dependent manner, and also displayed different antiproliferative profiles in a panel of eight cancer cell lines as determined by the MTT assay. Ibuprofen derivative 5 was not only the most antioxidant agent, but also selectively induced toxicity in all the cancer cell lines tested (IC50 < 10 µM) while sparing nonmalignant cells, and induced apoptosis partially without enhancing the caspase 3/7 activity. Furthermore, NSAID derivative 5 significantly suppressed tumor growth in a subcutaneous colon cancer xenograft mouse model (10 mg/kg, TGI = 72%, and T/C = 38%) without exhibiting any apparent toxicity. To our knowledge, this work constitutes the first report on in vitro and in vivo anticancer activity of an unprecedented Se-NSAID hybrid derivative and its rational use for developing precursors for bioisosteric selenocompounds with appealing therapeutic applications.

11.
Cancers (Basel) ; 15(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36980588

RESUMO

The chorioallantoic membrane (CAM) assay is an alternative in vivo model that allows for minimally invasive research of cancer biology. Using the CAM assay, we investigated phenotypical and functional characteristics (tumor grade, mitosis rate, tumor budding, hormone receptor (HR) and HER2 status, Ki-67 proliferation index) of two breast cancer cell lines, MCF-7 and MDA-MB-231, which resemble the HR+ (luminal) and triple-negative breast cancer (TNBC) subgroups, respectively. Moreover, the CAM results were directly compared with murine MCF-7- and MDA-MB-231-derived xenografts and human patient TNBC tissue. Known phenotypical and biological features of the aggressive triple-negative breast cancer cell line (MDA-MB-231) were confirmed in the CAM assay, and mouse xenografts. Furthermore, the histomorphological and immunohistochemical variables assessed in the CAM model were similar to those in human patient tumor tissue. Given the confirmation of the classical biological and growth properties of breast cancer cell lines in the CAM model, we suggest this in vivo model to be a reliable alternative test system for breast cancer research to reduce murine animal experiments.

12.
Bioorg Chem ; 131: 106318, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36527992

RESUMO

Targeting sphingosine-1-phosphate receptor 2 (S1PR2) has been proved as a promising strategy to reverse 5-fluorouracil (5-FU) resistance. Here, we report the discovery of the novel JTE-013 derivative compound 37 h as a more effective S1PR2 antagonist to reverse 5-FU resistance in SW620/5-FU and HCT116DPD cells than JTE-013 and previously reported compound 5. Compound 37 h could effectively bind S1PR2 and reduce its expression, thus leading to decreased expression of JMJD3 and dihydropyrimidine dehydrogenase (DPD), while also increasing the level of H3K27me3 to decrease the degradation of 5-FU and thereby increase its intracellular concentration in SW620/5-FU, HCT116DPD, and L02 cells. Furthermore, compound 37 h showed good selectivity to other S1PRs and normal colon cell line NCM460. Western blot analysis demonstrated that compound 37 h could abrogate the FBAL-stimulated upregulation of DPD expression by S1PR2. Importantly, compound 37 h also showed favorable metabolic stability with a long half-life (t1/2) of 7.9 h. Moreover, compound 37 h significantly enhanced the antitumor efficacy of 5-FU in the SW620/5-FU animal model. Thus, the JTE-013-based derivative compound 37 h represents a promising lead compound for the development of novel 5-FU sensitizers for colorectal cancer (CRC) therapy.


Assuntos
Neoplasias Colorretais , Fluoruracila , Animais , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Receptores de Esfingosina-1-Fosfato , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Di-Hidrouracila Desidrogenase (NADP)/metabolismo
13.
Eur J Med Chem ; 246: 114982, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495632

RESUMO

A series of 1-benzyloxy-5-phenyltetrazole derivatives and similar compounds were synthesized and evaluated for their in vitro inhibitory activity against androgen-receptor-dependent (22Rv1) and androgen-receptor independent (PC3) prostate cancer cells. The most active compounds had in vitro IC50 values against 22Rv1 cells of <50 nM and showed apparent selectivity for this cell type over PC3 cells; however, these active compounds had short half-lives when incubated with mouse liver microsomes and/or when plasma concentration was monitored during in vivo pharmacokinetic studies in mice or rats. Importantly, lead compound 1 exhibited promising inhibitory effects on cell proliferation, expression of AR and its splicing variant AR-v7 as well as AR regulated target genes in 22Rv1 cells, which are so called castration-resistant prostate cancer (CRPC) cells, and a 22Rv1 CRPC xenograft tumour model in mice. Structural changes which omitted the N-O-benzyl moiety led to dramatic or total loss of activity and S-benzylation of a cysteine derivative, as a surrogate for in vivo S-nucleophiles, by representative highly active compounds, suggested a possible chemical reactivity basis for this "activity cliff" and poor pharmacokinetic profile. However, representative highly active compounds did not inhibit a cysteine protease, indicating that the mode of activity is unlikely to be protein modification by S-benzylation. Despite our efforts to elucidate the mode of action, the mechanism remains unclear.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Camundongos , Ratos , Animais , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Androgênios/metabolismo , Androgênios/farmacologia , Linhagem Celular Tumoral , Antagonistas de Receptores de Andrógenos/farmacologia , Proliferação de Células
14.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-993149

RESUMO

Objective:To evaluate the effects of high mobility group protein box 1 (HMGB1) on clinical prognosis of esophagus squamous cell carcinoma (ESCC) patients treated with chemoradiotherapy and the radiosensitivity of xenograft in nude mice.Methods:A total of 90 endoscopic biopsy specimens were obtained from ESCC patients treated with chemoradiotherapy. The expression level of HMGB1 was determined by immunohistochemical staining. High expression level was defined when staining was observed on ≥50% of the tumor cells. All patients were divided into the high expression group ( n=48) and low expression group ( n=42), and their survival information was retrospectively analyzed. Cell transfection was performed with the plasmid carrying human HMGB1-shRNA to knockdown HMGB1 expression in ECA109 cells and xenograft mouse models were established. The tumor volume and mass were calculated after irradiation with a dose of 15 Gy. The cell apoptosis in xenograft tissues were detected. Survival analysis was performed using Kaplan-Meier method. Univariate prognostic analysis was conducted by log-rank test. Intergroup comparison was performed by analysis of variance (ANOVA). Results:The expression level of HMGB1 was significantly associated with gross tumor volume, longest diameter of tumor, T staging and distant metastasis ( χ2=9.663, 5.625, 4.068, 7.146, all P<0.05). In the low expression group, the overall survival (OS) ( χ2=4.826, P=0.028), progression-free survival (PFS) ( χ2=4.390, P=0.036) were longer compared with that in the high expression group. Further analysis of HMGB1-high expression patients showed that the radiation dose and the combination of chemoradiotherapy did not significantly affect the OS or PFS of ESCC patients. We observed that knockdown of HMGB1 slowed the growth rate of xenograft, decreased the tumor volume and increased the apoptosis rate after irradiation. Conclusions:ESCC patients with high expression level of HMGB1 obtain poor prognosis after chemoradiotherapy, which can be enhanced by increasing the sensitivity to radiotherapy and chemotherapy. HMGB1 knockdown can effectively increase the radiosensitivity of xenograft in ESCC nude mice.

15.
J Photochem Photobiol B ; 234: 112500, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35816857

RESUMO

BACKGROUND AND AIM: A photosensitizer (PS) delivery and comprehensive tumor targeting platform was developed that is centered on the photosensitization of key pharmacological targets in solid tumors (cancer cells, tumor vascular endothelium, and cellular and non-cellular components of the tumor microenvironment) before photodynamic therapy (PDT). Interstitially targeted liposomes (ITLs) encapsulating zinc phthalocyanine (ZnPC) and aluminum phthalocyanine (AlPC) were formulated for passive targeting of the tumor microenvironment. In previous work it was established that the PEGylated ITLs were taken up by cultured cholangiocarcinoma cells. The aim of this study was to verify previous results in cancer cells and to determine whether the ITLs can also be used to photosensitize cells in the tumor microenvironment and vasculature. Following positive results, rudimentary in vitro and in vivo experiments were performed with ZnPC-ITLs and AlPC-ITLs as well as their water-soluble tetrasulfonated derivatives (ZnPCS4 and AlPCS4) to assemble a research dossier and bring this platform closer to clinical transition. METHODS: Flow cytometry and confocal microscopy were employed to determine ITL uptake and PS distribution in cholangiocarcinoma (SK-ChA-1) cells, endothelial cells (HUVECs), fibroblasts (NIH-3T3), and macrophages (RAW 264.7). Uptake of ITLs by endothelial cells was verified under flow conditions in a flow chamber. Dark toxicity and PDT efficacy were determined by cell viability assays, while the mode of cell death and cell cycle arrest were assayed by flow cytometry. In vivo systemic toxicity was assessed in zebrafish and chicken embryos, whereas skin phototoxicity was determined in BALB/c nude mice. A PDT efficacy pilot was conducted in BALB/c nude mice bearing human triple-negative breast cancer (MDA-MB-231) xenografts. RESULTS: The key findings were that (1) photodynamically active PSs (i.e., all except ZnPCS4) were able to effectively photosensitize cancer cells and non-cancerous cells; (2) following PDT, photodynamically active PSs were highly toxic-to-potent as per anti-cancer compound classification; (3) the photodynamically active PSs did not elicit notable systemic toxicity in zebrafish and chicken embryos; (4) ITL-delivered ZnPC and ZnPCS4 were associated with skin phototoxicity, while the aluminum-containing PSs did not exert detectable skin phototoxicity; and (5) ITL-delivered ZnPC and AlPC were equally effective in their tumor-killing capacity in human tumor breast cancer xenografts and superior to other non-phthalocyanine PSs when appraised on a per mole administered dose basis. CONCLUSIONS: AlPC(S4) are the safest and most effective PSs to integrate into the comprehensive tumor targeting and PS delivery platform. Pending further in vivo validation, these third-generation PSs may be used for multi-compartmental tumor photosensitization.


Assuntos
Colangiocarcinoma , Compostos Organometálicos , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Células Endoteliais , Humanos , Lipossomos , Camundongos , Camundongos Nus , Compostos Organometálicos/farmacologia , Compostos Organometálicos/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Microambiente Tumoral , Peixe-Zebra
16.
Mol Ther Oncolytics ; 25: 225-235, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35615265

RESUMO

Malignant soft tissue tumors, particularly highly malignant leiomyosarcomas, are resistant to chemotherapy and associated with a poor prognosis. T-01, a third-generation genetically modified herpes simplex virus type 1, replicates in tumor cells alone and exerts a cell-killing effect. The current study aimed to investigate the antitumor effect of T-01, which is a novel treatment for leiomyosarcoma. In vitro, six human cell lines and one mouse sarcoma cell line were assessed for T-01 cytotoxicity. In vivo, the efficacy of T-01 was examined in subcutaneously transplanted leiomyosarcoma (SK-LMS-1) cells and subcutaneously or intraperitoneally transplanted mouse sarcoma (CCRF S-180II) cells. Cytokines were assessed using ELISpot assay with splenocytes from the allogeneic models for immunological evaluation. T-01 showed cytotoxicity in all seven cell lines (p < 0.001). In the SK-LMS-1 xenotransplantation model, tumor growth was suppressed by T-01 administration (p = 0.02). In the CCRF S-180II subcutaneous tumor model, bilateral tumor growth was significantly suppressed in the T-01-treated group compared with the control group (p < 0.001). In the peritoneal dissemination model, T-01 treatment caused significant survival prolongation compared with the control (p < 0.01). In conclusion, third-generation genetically modified herpes simplex virus type 1 may be an effective novel therapy against refractory sarcomas.

17.
Cell Rep ; 38(5): 110323, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108532

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric muscle sarcoma characterized by expression of the myogenic lineage transcription factors (TFs) MYOD1 and MYOG. Despite high expression of these TFs, RMS cells fail to terminally differentiate, suggesting the presence of factors that alter their functions. Here, we demonstrate that the developmental TF SIX1 is highly expressed in RMS and critical for maintaining a muscle progenitor-like state. SIX1 loss induces differentiation of RMS cells into myotube-like cells and impedes tumor growth in vivo. We show that SIX1 maintains the RMS undifferentiated state by controlling enhancer activity and MYOD1 occupancy at loci more permissive to tumor growth over muscle differentiation. Finally, we demonstrate that a gene signature derived from SIX1 loss correlates with differentiation status and predicts RMS progression in human disease. Our findings demonstrate a master regulatory role of SIX1 in repression of RMS differentiation via genome-wide alterations in MYOD1 and MYOG-mediated transcription.


Assuntos
Proteínas de Homeodomínio/metabolismo , Desenvolvimento Muscular/genética , Rabdomiossarcoma/genética , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Diferenciação Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Camundongos , Desenvolvimento Muscular/fisiologia , Proteína MyoD/metabolismo , Miogenina/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma Embrionário , Peixe-Zebra
18.
Eur J Med Chem ; 232: 114166, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35152092

RESUMO

Hepatocellular carcinoma is one of the most common primary hepatic malignancy. Herein, a series of semisynthesized derivatives (2-30) of the natural product (+)-sclerotiorin (1) was prepared and evaluated the cytotoxic activities against six cancer cell lines. Among them, 3 and 5 were the most effective compounds against human hepatocellular carcinoma Bel-7402 cell line with IC50 values of 1.45 and 1.15 µM, respectively. Molecular mechanism study showed that 5 disrupted the mitochondrial membrane potential and induced apoptosis in a caspase-dependent manner. In addition, 5 affected AKT and ERK signaling pathways and induced AKT and ERK proteins degradation through ubiquitin-proteasome system. Furthermore, 5 displayed significant in vivo anticancer effects in the xenograft models with decreasing the tumor mass by 52.5%. The safety evaluation was confirmed by acute toxicity subchronic toxicity tests, paraffin sections of mice organ and blood routine examination. Taken together, 5 can be developed as a potential therapeutic agent for hepatocellular carcinoma.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Benzopiranos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Antioxid Redox Signal ; 36(1-3): 57-69, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33847172

RESUMO

Aims: This work aimed to establish an accelerated imaging system for redox-sensitive mapping in a mouse tumor model using electron paramagnetic resonance (EPR) and nitroxyl radicals. Results: Sparse sampling of EPR spectral projections was demonstrated for a solution phantom. The reconstructed three-dimensional (3D) images with filtered back-projection (FBP) and compressed sensing image reconstruction were quantitatively assessed for the solution phantom. Mouse xenograft models of a human-derived pancreatic ductal adenocarcinoma cell line, MIA PaCa-2, were also measured for redox-sensitive mapping with the sparse sampling technique. Innovation: A short-lifetime redox-sensitive nitroxyl radical (15N-labeled perdeuterated Tempone) could be measured to map the decay rates of the EPR signals for the mouse xenograft models. Acceleration of 3D EPR image acquisition broadened the choices of nitroxyl radical probes with various redox sensitivities to biological environments. Conclusion: Sparse sampling of EPR spectral projections accelerated image acquisition in the 3D redox-sensitive mapping of mouse tumor-bearing legs fourfold compared with conventional image acquisition with FBP. Antioxid. Redox Signal. 36, 57-69.


Assuntos
Imageamento Tridimensional , Neoplasias , Animais , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Imageamento Tridimensional/métodos , Camundongos , Oxirredução , Imagens de Fantasmas
20.
Curr Res Toxicol ; 2: 322-328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522900

RESUMO

Photoinitiators are utilized in the production of a wide range of commonly used products. However, some photoinitiators exert toxic effects. We previously demonstrated the endocrine-disrupting effects of photoinitiators in vitro. The present study investigated the estrogenic activities of three photoinitiators: 1-hydroxycyclohexyl phenyl ketone (1-HCHPK), methyl 2-benzoylbenzoate (MBB), and 2-methyl-4'-(methylthio)-2-morpholinopropiophenone (MTMP), which were subcutaneously injected into mouse xenografts with MCF-7 breast cancer cells. The results obtained showed that 1-HCHPK, MBB, and MTMP promoted breast tumor growth in these xenografts. A pretreatment with the estrogen receptor antagonist tamoxifen blocked the tumor growth-promoting effects of each photoinitiator. Collectively, the present results suggest that the three photoinitiators exhibit estrogenic agonist activities in vivo. Furthermore, as a factor for breast tumor growth, these photoinitiators potentially have estrogenic properties in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...