RESUMO
Multifarious sources of selection shape visual signals and can produce phenotypic divergence. Theory predicts that variance in warning signals should be minimal due to purifying selection, yet polymorphism is abundant. While in some instances divergent signals can evolve into discrete morphs, continuously variable phenotypes are also encountered in natural populations. Notwithstanding, we currently have an incomplete understanding of how combinations of selection shape fitness landscapes, particularly those which produce polymorphism. We modelled how combinations of natural and sexual selection act on aposematic traits within a single population to gain insights into what combinations of selection favours the evolution and maintenance of phenotypic variation. With a rich foundation of studies on selection and phenotypic divergence, we reference the poison frog genus Oophaga to model signal evolution. Multifarious selection on aposematic traits created the topology of our model's fitness landscape by approximating different scenarios found in natural populations. Combined, the model produced all types of phenotypic variation found in frog populations, namely monomorphism, continuous variation and discrete polymorphism. Our results afford advances into how multifarious selection shapes phenotypic divergence, which, along with additional modelling enhancements, will allow us to further our understanding of visual signal evolution.
Assuntos
Evolução Biológica , Seleção Sexual , Animais , Anuros/genéticaRESUMO
Patterns of genomic divergence between hybridizing taxa can be heterogeneous along the genome. Both differential introgression and local adaptation may contribute to this pattern. Here, we analysed two teosinte subspecies, Zea mays ssp. parviglumis and ssp. mexicana, to test whether their divergence has occurred in the face of gene flow and to infer which environmental variables have been important drivers of their ecological differentiation. We generated 9,780 DArTseqTM SNPs for 47 populations, and used an additional data set containing 33,454 MaizeSNP50 SNPs for 49 populations. With these data, we inferred features of demographic history and performed genome wide scans to determine the number of outlier SNPs associated with climate and soil variables. The two data sets indicate that divergence has occurred or been maintained despite continuous gene flow and/or secondary contact. Most of the significant SNP associations were to temperature and to phosphorus concentration in the soil. A large proportion of these candidate SNPs were located in regions of high differentiation that had been identified previously as putative inversions. We therefore propose that genomic differentiation in teosintes has occurred by a process of adaptive divergence, with putative inversions contributing to reduced gene flow between locally adapted populations.