Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Diagnostics (Basel) ; 14(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38893598

RESUMO

Respiratory tract infections (RTIs) can lead to both recurrent seasonal epidemic outbreaks and devastating pandemics. The aim of this study was to evaluate the epidemiologic characteristics and pathogen spectrum of RTIs using a multiplex RT-PCR panel. A total of 9354 cases with suspected RTIs between February 2021 and July 2023 were included in this study. A total of 11,048 nasopharyngeal and oropharyngeal samples from these patients were analyzed for 23 respiratory tract pathogens using multiplex RT-PCR. H. influenzae and S. pneumoniae were considered as colonizing bacteria. At least one pathogen was detected in 70.66% of the samples; viral pathogens were detected in 48.41% of the samples, bacterial pathogens were detected in 16.06% of the samples, and viral + bacterial pathogens were detected in 35.53% of the samples. The most frequently detected viral pathogen was rhinovirus/enterovirus (RV/EV) (19.99%). Interestingly, in 2021, respiratory syncytial virus A/B showed atypical activity and replaced RV/EV as the most prevalent pathogen. Human bocavirus, H. influenzae, and S. pneumoniae were detected at higher rates in males (p: 0.038, p: 0.042, and p: 0.035, respectively), while SARS-CoV-2 and B. pertussis were detected at higher rates in females (p < 0.001 and p: 0.033). RTIs were found at higher rates in children (p < 0.001). SARS-CoV-2 and human coronaviruses 229E were detected at higher rates in adults (p < 0.001 and p: 0.001). This comprehensive study with a large sample size investigating RTI pathogens was the first in Türkiye. Understanding the current viral circulation using multiplex RT-PCR panels enables clinicians to predict the most likely pathogens affecting patients and contributes to patient management, in addition to anticipating potential threats.

2.
Virology ; 593: 110012, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38367473

RESUMO

Using marker vaccines to control bovine alphaherpesvirus-1 (BoHV-1) is a novel strategy for differentiation between infected and vaccinated animals (DIVA). In this study, multiplex real-time PCR targeting gD and gE genes was applied for BoHV-1 screening on 60 clinical samples from cattle with a history of vaccination, in some cases by US2-deleted marker vaccines, that were suffering from severe respiratory symptoms. Conventional PCR targeting the gC and US2 flanking region was done for molecular characterization and identification of the US2-deleted vaccine strain. Six samples were positive for BoHV-1 by both RT-PCR and conventional PCR. Surprisingly, a conventional PCR DIVA trial based on the US2 gene revealed that only one sample that exhibited the US2 gene was a wild virus, while others that did not exhibit the US2 gene were vaccine viruses. Phylogenetic characterization classifies the samples as BoHV-1.1. This finding reveals the circulation of vaccine virus in field-diseased animals, which threatens the eradication program.


Assuntos
Doenças dos Bovinos , Infecções por Herpesviridae , Herpesvirus Bovino 1 , Animais , Bovinos , Herpesvirus Bovino 1/genética , Vacinas Marcadoras/genética , Egito/epidemiologia , Filogenia , Reação em Cadeia da Polimerase em Tempo Real
3.
Viruses ; 15(12)2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38140554

RESUMO

Reptarenaviruses cause Boid Inclusion Body Disease (BIBD), a fatal disease of boid snakes with an economic and ecological impact, as it affects both captive and wild constrictor snakes. The clinical picture of BIBD is highly variable but often only limited. Intracytoplasmic inclusion bodies (IB), which develop in most cell types including blood cells, are the pathognomonic hallmark of BIBD; their detection represents the diagnostic gold standard of the disease. However, IBs are not consistently present in clinically healthy reptarenavirus carriers, which can, if undetected, lead to and maintain the spread of the disease within and between snake populations. Sensitive viral detection tools are required for screening and control purposes; however, the genetic diversity of reptarenaviruses hampers the reverse transcription (RT) PCR-based diagnostics. Here, we describe a multiplex RT-PCR approach for the molecular diagnosis of reptarenavirus infection in blood samples. The method allows the detection of a wide range of reptarenaviruses with the detection limit reaching 40 copies per microliter of blood. Using 245 blood samples with a reference RT-PCR result, we show that the technique performs as well as the segment-specific RT-PCRs in our earlier studies. It can identify virus carriers and serve to limit reptarenavirus spreading in captive snake collections.


Assuntos
Infecções por Arenaviridae , Arenaviridae , Boidae , Animais , Arenaviridae/genética , Transcrição Reversa , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Boidae/genética
4.
Trop Med Infect Dis ; 8(10)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37888594

RESUMO

Acute febrile syndrome is a frequent reason for medical consultations in tropical and subtropical countries where the cause could have an infectious origin. Malaria and dengue are the primary etiologies in Colombia. As such, constant epidemiological surveillance and new diagnostic tools are required to identify the causative agents. A descriptive cross-sectional study was conducted to evaluate the circulation and differential diagnosis of six pathogens in two regions of Colombia. The results obtained via multiplex reverse transcription polymerase chain reaction combined with a microwell hybridization assay (m-RT-PCR-ELISA) were comparable to those obtained using rapid tests conducted at the time of patient enrollment. Of 155 patients evaluated, 25 (16.1%) and 16 (10.3%) were positive for malaria and dengue, respectively; no samples were positive for any of the other infectious agents tested. In most cases, m-RT-PCR-ELISA confirmed the results previously obtained through rapid testing.

5.
J Adv Vet Anim Res ; 10(2): 211-221, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37534083

RESUMO

Objectives: Ducks suffer a huge economic loss as a result of infections with Pasteurella multocida and Riemerella anatipestifer, which cause high morbidity and mortality. Because these pathogens induce similar clinical symptoms when coinfections occur, it is very difficult to differentiate between them based just on clinical signs. Hence, these major pathogens must be quickly and accurately detected. Materials and Methods: A total of 104 birds ranging from 2 days to 4 weeks old were collected from Egyptian farms, and the outcomes were compared statistically. Conventional cultural identification procedures and a direct multiplex polymerase chain reaction assay were utilized to recognize both pathogens in a single tube reaction simultaneously. Then, the obtained isolates were characterized phenotypically and genotypically. Results: Clinical signs appear at 2-4 weeks of age with respiratory distress (dyspnea), white fluid feces, and stunting. The scrutinized data demonstrated a significantly higher detection rate by PCR directly compared to classical culture procedures. Pasteurella multocida was detected only by PCR. The disc diffusion technique against ten antibiotics showed absolute susceptibilities to amikacin, doxycycline, and florfenicol. High levels of beta-lactam resistance were observed. Riemerella anatipestifer isolates were screened for pathogenicity and plasmid-borne blaTEM genes. All six isolates harbored five virulence genes: aspC, RA46, m28, pstS, and Nlp/P60. Moreover, blaTEM was identified into four isolates and deposited to GenBank with accession numbers OP347083, OP347084, OP347085, and OP347086. Conclusion: These results suggest advanced PCR assays can be applied to the field for rapid and valuable diagnosis of two significant pathogens and focus on the worth of ducks in the propagation of transferable antibiotic resistance genes into the environment.

6.
Anal Biochem ; 678: 115267, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516424

RESUMO

MiRNAs are biomarkers widely used in research but their clinical application is still challenging due to their low expression levels. Current methods for miRNA detection involve separate transcription and quantification for each target, which is costly and unsuitable for large sample sizes. This study provides a strategy for designing and screening miRNA-specific stem-loop reverse transcription (RT) primers, which enable the simultaneous transcription of three miRNAs and U6, and the concurrent detection of miRNA and U6 in the same transcript using TaqMan probes labeled with different dyes. The strategy was successfully employed to establish multiplex RT-PCR and dual-quantitative PCR (qPCR) quantification systems for 21 differentially expressed miRNAs during wound healing. The corresponding system can accurately quantify the cell culture samples containing miR-7a-5p mimic, miR-7a-5p inhibitor, or negative control. In summary, our results demonstrate that this strategy could efficiently accomplish the design, screening, and analysis of stem-loop RT primers for multiplex miRNA detection. Compared with the commercially customized miRNA assay kits, our system showed a higher degree of automation, more accurate qPCR assay capabilities, and lower assay costs, which could provide practical value for clinical diagnosis.


Assuntos
MicroRNAs , MicroRNAs/análise , Biomarcadores , Reação em Cadeia da Polimerase Multiplex , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos
7.
Infect Genet Evol ; 112: 105463, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295484

RESUMO

Recent reports on identification of canine coronavirus (CCoV) in humans have emphasized the urgency to strengthen surveillance of animal CoVs. The fact that recombinations between CCoV with feline, porcine CoVs brought about new types of CoVs indicated that more attention should be paid to domestic animals like dogs, cats and pigs, and the CoVs they carried. However, there are about ten kinds of CoVs that infect above animals, and thus representative CoVs with zoonotic potentials were considered in this study. Multiplex RT-PCR against CCoV, Feline coronavirus (FCoV), porcine deltacoronavirus and porcine acute diarrhea syndrome coronavirus was developed to investigate the prevalence of CoVs from domestic dogs in Chengdu, Southwest China. Samples from a total of 117 dogs were collected from a veterinary hospital, and only CCoV (34.2%, 40/117) was detected. Therefore, this study focused on CCoV and its characteristics of S, E, M, N and ORF3abc genes. Compared with CoVs that are capable of infecting humans, CCoV strains showed highest nucleotide identity with the novel canine-feline recombinant detected from humans (CCoV-Hupn-2018). Phylogenetic analysis based on S gene, CCoV strains were not only clustered with CCoV-II strains, but also closely related to FCoV-II strains ZJU1617 and SMU-CD59/2018. As for assembled ORF3abc, E, M, N sequences, CCoV strains had the closest relationship with CCoV-II (B203_GZ_2019, B135_JS_2018 and JS2103). What's more, specific amino acid variations were found, especially in S and N proteins, and some mutations were consistent with FCoV, TGEV strains. Altogether, this study provided a novel insight into the identification, diversification and evolution of CoVs from domestic dogs. It is of top priority to recognize zoonotic potential of CoVs, and continued comprehensive surveillance will help better understand the emergence, spreading, and ecology of animal CoVs.


Assuntos
Infecções por Coronavirus , Coronavirus Canino , Doenças do Cão , Animais , Cães , Gatos , Humanos , Suínos , Coronavirus Canino/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Filogenia , Epidemiologia Molecular , Mutação , Animais Domésticos , China/epidemiologia , Doenças do Cão/epidemiologia
8.
Porcine Health Manag ; 9(1): 29, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349807

RESUMO

BACKGROUND: The aim of this work was to study the prevalence and distribution of Porcine astrovirus (PAstV), Porcine kobuvirus (PKoV), Porcine torovirus (PToV), Mammalian orthoreovirus (MRV) and Porcine mastadenovirus (PAdV) as well as their association with widely recognized virus that cause diarrhoea in swine such as coronavirus (CoVs) and rotavirus (RVs) in diarrhoea outbreaks from Spanish swine farms. Furthermore, a selection of the viral strains was genetically characterized. RESULTS: PAstV, PKoV, PToV, MRV and PAdV were frequently detected. Particularly, PAstV and PKoV were detected in almost 50% and 30% of the investigated farms, respectively, with an age-dependent distribution; PAstV was mainly detected in postweaning and fattening pigs, while PKoV was more frequent in sucking piglets. Viral co-infections were detected in almost half of the outbreaks, combining CoVs, RVs and the viruses studied, with a maximum of 5 different viral species reported in three investigated farms. Using a next generation sequencing approach, we obtained a total of 24 ARN viral genomes (> 90% genome sequence), characterizing for first time the full genome of circulating strains of PAstV2, PAstV4, PAstV5 and PToV on Spanish farms. Phylogenetic analyses showed that PAstV, PKoV and PToV from Spanish swine farms clustered together with isolates of the same viral species from neighboring pig producing countries. CONCLUSIONS: Although further studies to evaluate the role of these enteric viruses in diarrhoea outbreaks are required, their wide distribution and frequent association in co-infections cannot be disregard. Hence, their inclusion into routine diagnostic panels for diarrhoea in swine should be considered.

9.
Medicina (Kaunas) ; 59(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37109664

RESUMO

Background and Objectives: Impaired wound healing represents an unsolved medical issue with a high impact on patients' quality of life and global health care. Even though hypoxia is a significant limiting factor for wound healing, it reveals stimulating effects in gene and protein expression at cellular levels. In particular, hypoxically treated human adipose tissue-derived stem cells (ASCs) have previously been used to stimulate tissue regeneration. Therefore, we hypothesized that they could promote lymphangiogenesis or angiogenesis. Materials and Methods: Dermal regeneration matrices were seeded with human umbilical vein endothelial cells (HUVECs) or human dermal lymphatic endothelial cells (LECs) that were merged with ASCs. Cultures were maintained for 24 h and 7 days under normoxic or hypoxic conditions. Finally, gene and protein expression were measured regarding subtypes of VEGF, corresponding receptors, and intracellular signaling pathways, especially hypoxia-inducible factor-mediated pathways using multiplex-RT-qPCR and ELISA assays. Results: All cell types reacted to hypoxia with an alteration of gene expression. In particular, vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor B (VEGFB), vascular endothelial growth factor C (VEGFC), vascular endothelial growth factor receptor 1 (VEGFR1/FLT1), vascular endothelial growth factor receptor 2 (VEGFR2/KDR), vascular endothelial growth factor receptor 3 (VEGFR3/FLT4), and prospero homeobox 1 (PROX1) were overexpressed significantly depending on upregulation of hypoxia-inducible factor 1 alpha (HIF-1a). Moreover, co-cultures with ASCs showed a more intense change in gene and protein expression profiles and gained enhanced angiogenic and lymphangiogenic potential. In particular, long-term hypoxia led to continuous stimulation of HUVECs by ASCs. Conclusions: Our findings demonstrated the benefit of hypoxic conditioned ASCs in dermal regeneration concerning angiogenesis and lymphangiogenesis. Even a short hypoxic treatment of 24 h led to the stimulation of LECs and HUVECs in an ASC-co-culture. Long-term hypoxia showed a continuous influence on gene expressions. Therefore, this work emphasizes the supporting effects of hypoxia-conditioned-ASC-loaded collagen scaffolds on wound healing in dermal regeneration.


Assuntos
Fator A de Crescimento do Endotélio Vascular , Fator B de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator B de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Linfangiogênese , Células Endoteliais/metabolismo , Qualidade de Vida , Hipóxia Celular/genética , Hipóxia , Células-Tronco
10.
J Biomater Appl ; 37(10): 1858-1873, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37082911

RESUMO

BACKGROUND: Commercial fibrin glue is increasingly finding its way into clinical practice in surgeries to seal anastomosis, and initiate hemostasis or tissue repair. Human biological glue is also being discussed as a possible cell carrier. To date, there are only a few studies addressing the effects of fibrin glue on the cell-molecular level. This study examines the effects of fibrin glue on angiogenesis and lymphangiogenesis, as well as adipose-derived stem cells (ASCs) with a focus on gene and protein expression in scaffolds regularly used for tissue engineering approaches. METHODS: Collagen-based dermal regeneration matrices (DRM) were seeded with human umbilical vein endothelial cells (HUVEC), human dermal lymphatic endothelial cells (LECs), or adipose-derived stem cells (ASC) and fixed with or without fibrin glue according to the experimental group. Cultures were maintained for 1 and 7 days. Finally, angiogenic and lymphangiogenic gene and protein expression were measured with special regard to subtypes of vascular endothelial growth factor (VEGF) and corresponding receptors using Multiplex-qPCR and ELISA assays. In addition, the hypoxia-induced factor 1-alpha (HIF1a) mediated intracellular signaling pathways were included in assessments to analyze a hypoxic encapsulating effect of fibrin polymers. RESULTS: All cell types reacted to fibrin glue application with an alteration of gene and protein expression. In particular, vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor B (VEGFB), vascular endothelial growth factor C (VEGFC), vascular endothelial growth receptor 1 (VEGFR1/FLT1), vascular endothelial growth receptor 2 (VEGFR2/KDR), vascular endothelial growth receptor 3 (VEGFR3/FLT4) and Prospero Homeobox 1 (PROX1) were depressed significantly depending on fibrin glue. Especially short-term fibrin effect led to a continuous downregulation of respective gene and protein expression in HUVECs, LECs, and ASCs. CONCLUSION: Our findings demonstrate the impact of fibrin glue application in dermal regeneration with special regard to angiogenesis and lymphangiogenesis. In particular, a short fibrin treatment of 24 hours led to a decrease in gene and protein levels of LECS, HUVECs, and ASCs. In contrast, the long-term application showed less effect on gene and protein expressions. Therefore, this work demonstrated the negative effects of fibrin-treated cells in tissue engineering approaches and could affect wound healing during dermal regeneration.


Assuntos
Linfangiogênese , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linfangiogênese/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo , Adesivo Tecidual de Fibrina/farmacologia , Adesivo Tecidual de Fibrina/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo
11.
J Clin Virol ; 161: 105423, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36934591

RESUMO

BACKGROUND: Human Respiratory Syncytial Virus (RSV) infections pose a significant risk to human health worldwide, especially for young children. Whole genome sequencing (WGS) provides a useful tool for global surveillance to better understand the evolution and epidemiology of RSV and provide essential information that may impact on antibody treatments, antiviral drug sensitivity and vaccine effectiveness. OBJECTIVES: Here we report the development of a rapid and simplified amplicon-based one-step multiplex reverse-transcription polymerase chain reaction (mRT-PCR) for WGS of both human RSV-A and RSV-B viruses. STUDY DESIGN: Two mRT-PCR reactions for each sample were designed to generate amplicons for RSV WGS. This new method was tested and evaluated by sequencing 206 RSV positive clinical samples collected in Australia in 2020 and 2021 with RSV Ct values between 10 and 32. RESULTS: In silico analysis and laboratory testing revealed that the primers used in the new method covered most of the currently circulating RSV-A and RSV-B. Amplicons generated were suitable for both Illumina and Oxford Nanopore Technologies (ONT) NGS platforms. A success rate of 83.5% with a full coverage for the genome of 98 RSV-A and 74 RSV-B was achieved from all clinical samples tested. CONCLUSIONS: This assay is simple to set up, robust, easily scalable in sample preparation and relatively inexpensive, and as such, provides a valuable addition to existing NGS RSV WGS methods.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Criança , Humanos , Pré-Escolar , Vírus Sincicial Respiratório Humano/genética , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/epidemiologia , Reação em Cadeia da Polimerase Multiplex , Antivirais , Sensibilidade e Especificidade
12.
Viruses ; 15(2)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36851685

RESUMO

Reverse transcription polymerase chain reaction (RT-PCR) on respiratory tract swabs has become the gold standard for sensitive and specific detection of influenza virus, respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this retrospective analysis, we report on the successive implementation and routine use of multiplex RT-PCR testing for patients admitted to the Internal Medicine Emergency Department (ED) at a tertiary care center in Western Austria, one of the hotspots in the early coronavirus disease 2019 (COVID-19) pandemic in Europe. Our description focuses on the use of the Cepheid® Xpert® Xpress closed RT-PCR system in point-of-care testing (POCT). Our indications for RT-PCR testing changed during the observation period: From the cold season 2016/2017 until the cold season 2019/2020, we used RT-PCR to diagnose influenza or RSV infection in patients with fever and/or respiratory symptoms. Starting in March 2020, we used the RT-PCR for SARS-CoV-2 and a multiplex version for the combined detection of all these three respiratory viruses to also screen subjects who did not present with symptoms of infection but needed in-hospital medical treatment for other reasons. Expectedly, the switch to a more liberal RT-PCR test strategy resulted in a substantial increase in the number of tests. Nevertheless, we observed an immediate decline in influenza virus and RSV detections in early 2020 that coincided with public SARS-CoV-2 containment measures. In contrast, the extensive use of the combined RT-PCR test enabled us to monitor the re-emergence of influenza and RSV detections, including asymptomatic cases, at the end of 2022 when COVID-19 containment measures were no longer in place. Our analysis of PCR results for respiratory viruses from a real-life setting at an ED provides valuable information on the epidemiology of those infections over several years, their contribution to morbidity and need for hospital admission, the risk for nosocomial introduction of such infection into hospitals from asymptomatic carriers, and guidance as to how general precautions and prophylactic strategies affect the dynamics of those infections.


Assuntos
COVID-19 , Influenza Humana , Orthomyxoviridae , Vírus Sincicial Respiratório Humano , Humanos , SARS-CoV-2/genética , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Estudos Retrospectivos , COVID-19/diagnóstico , COVID-19/epidemiologia , Vírus Sincicial Respiratório Humano/genética , Serviço Hospitalar de Emergência , Orthomyxoviridae/genética
13.
Plant Dis ; 107(9): 2653-2664, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36723958

RESUMO

Viruses transmitted by the whitefly (Bemisia tabaci) are an increasing threat to cucurbit production in the southwestern United States and many other cucurbit production regions of the world. The crinivirus cucurbit yellow stunting disorder virus (CYSDV) has severely impacted melon production in California and Arizona since its 2006 introduction to the region. Within the past few years, another crinivirus, cucurbit chlorotic yellows virus (CCYV), and the whitefly-transmitted ipomovirus squash vein yellowing virus (SqVYV) were found infecting melon plants in California's Imperial Valley. CYSDV, CCYV, and an aphid-transmitted polerovirus, cucurbit aphid-borne yellows virus (CABYV), occur together in the region and produce identical yellowing symptoms on cucurbit plants. Mixed infections of these four viruses in the Sonoran Desert and other regions pose challenges for disease management and efforts to develop resistant varieties. A multiplex single-step RT-PCR method was developed that differentiates among these viruses, and this was used to determine the prevalence and distribution of the viruses in melon samples from fields in the Sonoran Desert melon production region of California and Arizona during the spring and fall melon seasons from 2019 through 2021. TaqMan probes were developed, optimized, and applied in a single-step multiplex RT-qPCR to quantify titers of these four viruses in plant samples, which frequently carry mixed infections. Results of the multiplex RT-PCR analysis demonstrated that CYSDV is the predominant virus during the fall, whereas CCYV was by far the most prevalent virus during the spring each year. Multiplex RT-qPCR was used to evaluate differential accumulation and spatiotemporal distribution of viruses within plants and suggested differences in competitive accumulation of CCYV and CYSDV within melon. This study provides the first official report of SqVYV in Arizona and offers an efficient method for virus detection and quantification for breeding and disease management in areas impacted by cucurbit yellowing viruses.


Assuntos
Coinfecção , Cucurbitaceae , Potyviridae , Vírus , Estações do Ano , Arizona , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Prevalência , Melhoramento Vegetal , Produtos Agrícolas , Potyviridae/genética , California
14.
Virol J ; 19(1): 219, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527114

RESUMO

BACKGROUND: Viral pathogens causing significant economic losses in lilies (Lilium spp. and hybrids) include Lily symptomless virus (LSV), Lily mottle virus (LMoV), Cucumber mosaic virus (CMV), and Plantago asiatica mosaic virus (PlAMV). Rapid and efficient virus detection methods are pivotal to prevent the spread of these viruses. RESULTS: In this study, four specific primer pairs designed from conserved regions of genomic sequences of each virus were used to amplify a 116 bp product for LSV, a 247 bp product for LMoV, a 359 bp product for CMV, and a 525 bp product for PlAMV in a multiplex reverse transcription-polymerase chain reaction (multiplex RT-PCR). The amplified products were clearly separated by 2% agarose gel electrophoresis. The optimal reaction annealing temperature and cycle number were 53.8 °C and 35, respectively. The developed multiplex RT-PCR method was then used to test virus infections from lily samples collected from different regions of China. CONCLUSIONS: An effective multiplex RT-PCR assay was established for the simultaneous detection and differentiation of LSV, LMoV, CMV, and PlAMV in lilies, which offers a useful tool for routine molecular diagnosis and epidemiological studies of these viruses.


Assuntos
Cucumovirus , Infecções por Citomegalovirus , Lilium , Potyvirus , Lilium/genética , Cucumovirus/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Potyvirus/genética , Doenças das Plantas
15.
Curr Issues Mol Biol ; 44(12): 6117-6131, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36547078

RESUMO

The COVID-19 pandemic necessitated an extensive testing for active SARS-CoV-2 infection. However, securing affordable diagnostic tests is a struggle for low-resource settings. We report herein the development and validation of an in-house multiplex real-time RT-PCR diagnostic test for the detection of active COVID-19 infection (ScriptTaq COVID PCR). Furthermore, we describe two methods for RNA extraction using either an in-house silica column or silica-coated magnetic beads to replace commercial RNA extraction kits. Different buffer formulations for silica column and silica-coated magnetic beads were tested and used for RNA isolation. Taq polymerase enzyme and thermostable reverse transcriptase enzyme were purified from bacterial clones. Primers/probes sequences published by the WHO and CDC were used for the qualitative detection of the RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) genes, respectively. ScriptTaq COVID PCR assay was able to detect up to 100 copies per reaction of the viral RdRP and N genes. The test demonstrated an overall agreement of 95.4%, a positive percent agreement (PPA) of 90.2%, and a negative percent agreement (NPA) of 100.0% when compared with two commercially available kits. ScriptTaq COVID PCR diagnostic test is a specific, sensitive, and low-cost alternative for low-resource settings.

16.
Front Vet Sci ; 9: 1033864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425116

RESUMO

Porcine enteric coronaviruses are pathogens that cause viral diarrhea in pigs and are widely prevalent worldwide. Moreover, studies have shown that some porcine enteric coronaviruses can infect humans and poultry. In order to effectively monitor these viruses, it is necessary to establish a multiple detection method to understand their prevalence and conduct in-depth research. Common porcine enteric coronaviruses include Porcine epidemic diarrhea virus (PEDV), Porcine transmissible gastroenteritis virus (TGEV), Porcine delta coronavirus (PDCoV), and Swine acute diarrhea syndrome coronavirus (SADS-CoV). Pigs infected with these viruses have the common clinical symptoms that are difficult to distinguish. A quadruplex RT-PCR (reverse transcription-polymerase chain reaction) method for the simultaneous detection of PEDV, PDCoV, TGEV and SADS-CoV was developed. Four pairs of specific primers were designed for the PEDV M gene, PDCoV N gene, TGEV S gene and SADS-CoV RdRp gene. Multiplex RT-PCR results showed that the target fragments of PDCoV, SADS-CoV, PEDV and TGEV could be amplified by this method. and the specific fragments with sizes of 250 bp, 368 bp, 616 bp and 801 bp were amplified, respectively. This method cannot amplify any fragment of nucleic acids of Seneca Valley virus (SVV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Atypical Porcine Pestivirus (APPV), and has good specificity. The lowest detection limits of PDCoV, PEDV, TGEV and SADS-CoV were 5.66 × 105 copies/µL, 6.48 × 105 copies/µL, 8.54 × 105 copies/µL and 7.79 × 106 copies/µL, respectively. A total of 94 samples were collected from pig farms were analyzed using this method. There were 15 positive samples for PEDV, 3 positive samples for mixed infection of PEDV and PDCoV, 2 positive samples for mixed infection of PEDV and TGEV, and 1 positive sample for mixed infection of PEDV, TGEV, and PDCoV. Multiplex RT-PCR method could detect four intestinal coronaviruses (PEDV, PDCoV, TGEV, and SADS-CoV) in pigs efficiently, cheaply and accurately, which can be used for clinical large-scale epidemiological investigation and diagnosis.

17.
Front Genet ; 13: 942713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226173

RESUMO

Immunocompromised patients can experience prolonged SARS-CoV-2 infections in the setting of a lack of protectivity immunity despite vaccination. As circulating SARS-CoV-2 strains become more heterogeneous, concomitant infection with multiple SARS-CoV-2 variants has become an increasing concern. Immunocompromised patient populations represent potential reservoirs for the emergence of novel SARS-CoV-2 variants through mutagenic change or coinfection followed by recombinatory events. Identification of SARS-CoV-2 coinfections is challenging using traditional next generation sequencing pipelines; however, targeted genotyping approaches can facilitate detection. Here we describe five COVID-19 cases caused by coinfection with different SARS-CoV-2 variants (Delta/Omicron BA.1 and Omicron BA.1/BA.2) as identified by multiplex fragment analysis.

19.
Plant Pathol J ; 38(5): 533-540, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36221925

RESUMO

Thunberg fritillary (Fritillaria thunbergii), a perennial used in traditional Chinese herbal medicine, is a members of the family Liliaceae. The degeneration of germplasm is a severe problem in the production of Fritillaria thunbergii var. chekiangensis. However, no information about viral infections of F. thunbergii var. chekiangensis has been reported. In this study, we sequenced the small RNAs of F. thunbergii var. chekiangensis from leaves and bulbs, and viruses were identified using a phylogenetic analysis and BLAST search for sequence. In addition, multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) was used to rapidly detect viruses in this variety. Our study first reported that five viruses infected F. thunbergii var. chekiangensis. Among them, fritillary virus Y (FVY), lily mottle virus (LMoV), Thunberg fritillary mosaic virus (TFMV), and hop yellow virus (HYV) had been reported in F. thunbergii, while apple stem grooving virus was first reported in the genus Fritillaria. A multiplex RT-PCR method was developed to rapidly test the four viruses FVY, LMoV, TFMV, and HYV in F. thunbergii var. chekiangensis. Our results provide a better understanding of the infection of F. thunbergii var. chekiangensis by viruses and a basic reference for the better design of suitable control measures.

20.
Klin Lab Diagn ; 67(10): 613-620, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36315178

RESUMO

Simultaneous quantitative measurement of mRNA of the WT1, BAALC, EVI1, PRAME and HMGA2 genes in whole blood samples reflects the specific pathological proliferative activity in acute leukemia and their ratio is promising as a diagnostic marker. The transcriptome profile of acute leukemia cells is usually assessed using NGS or microarray techniques after a preliminary procedure for isolation of mononuclear cells. However, the results of using the multiplex PCR reaction for the simultaneous determination of all above mRNAs in whole blood samples have not been published so far. Determination of mRNA of WT1, BAALC, EVI1, PRAME and HMGA2 genes in venous blood level samples by multiplex RT-PCR. The study included 127 blood samples from patients who diagnosis of acute leukemia was subsequently confirmed. In the comparison group, 87 samples of patients without oncohematological diagnosis were selected, including 31 samples (K1) with a normal blood formula and 56 samples (K2) with a violation of the cellular composition - anemia, leukocytosis and thrombocytopenia. RNA isolation and reverse transcription were performed using the Ribozol-D and Reverta-L kits (TsNIIE, Russia). Determination of the mRNA expression level of the WT1, BAALC, EVI1, PRAME and HMGA2 genes by multiplex real-time PCR using a homemade multiplex PCR kit. The mRNA level was characterized by high interindividual variation and did not correlate with the rate of circulating leukocytes or blood blasts. Expression of WT1 mRNA was observed in whole blood only in one patient from the control group and in 112 (88%) patients with leukemia and was combined with a decrease in the level of HMGA2 mRNA expression and BAALC mRNA values. In contrast to the control groups, patients with leukemia had higher levels of BAALC mRNA in AML and ALL, increased PRAME mRNA in AML and APL, but lower levels of HMGA2 in APL.


Assuntos
Leucemia Mieloide Aguda , Trombocitopenia , Humanos , RNA Mensageiro/genética , Prognóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Transcriptoma , Biomarcadores Tumorais/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Antígenos de Neoplasias , Proteínas WT1/genética , Proteínas WT1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...