Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Cells ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38994968

RESUMO

The incorporation of bacterial ribosome has been reported to induce multipotency in somatic and cancer cells which leads to the conversion of cell lineages. Queried on its universality, we observed that bacterial ribosome incorporation into trypsinized mouse adult fibroblast cells (MAF) led to the formation of ribosome-induced cell clusters (RICs) that showed strong positive alkaline phosphatase staining. Under in vitro differentiation conditions, RICs-MAF were differentiated into adipocytes, osteoblasts, and chondrocytes. In addition, RICs-MAF were able to differentiate into neural cells. Furthermore, RICs-MAF expressed early senescence markers without cell death. Strikingly, no noticeable expression of renowned stemness markers like Oct4, Nanog, Sox2, etc. was observed here. Later RNA-sequencing data revealed the expression of rare pluripotency-associated markers, i.e., Dnmt3l, Sox5, Tbx3 and Cdc73 in RICs-MAF and the enrichment of endogenous ribosomal status. These observations suggested that RICs-MAF might have experienced a non-canonical multipotent state during lineage conversion. In sum, we report a unique approach of an exo-ribosome-mediated plastic state of MAF that is amenable to multi-lineage conversion.


Assuntos
Diferenciação Celular , Fibroblastos , Ribossomos , Animais , Camundongos , Ribossomos/metabolismo , Fibroblastos/metabolismo , Plasticidade Celular , Bactérias/metabolismo , Bactérias/genética , Linhagem da Célula
2.
Heliyon ; 10(7): e28880, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601667

RESUMO

This study investigates the effect of electroactivity and electrical charge distribution on the biological response of human bone marrow stem cells (hBMSCs) cultured in monolayer on flat poly(vinylidene fluoride), PVDF, substrates. Differences in cell behaviour, including proliferation, expression of multipotency markers CD90, CD105 and CD73, and expression of genes characteristic of different mesenchymal lineages, were observed both during expansion in basal medium before reaching confluence and in confluent cultures in osteogenic induction medium. The crystallisation of PVDF in the electrically neutral α-phase or in the electroactive phase ß, both unpoled and poled, has been found to have an important influence on the biological response. In addition, the presence of a permanent positive or negative surface electrical charge distribution in phase ß substrates has also shown a significant effect on cell behaviour.

3.
Cytotherapy ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38661612

RESUMO

BASKGROUND: Previous research has unveiled a stem cell-like transcriptome enrichment in the aldehyde dehydrogenase-expressing (ALDHhigh) mesenchymal stromal cell (MStroC) fraction. However, considering the heterogeneity of MStroCs, with only a fraction of them presenting bona fide stem cells (MSCs), the actual potency of ALDH as an MSC-specific selection marker remains an issue. METHODS: To address this, the proliferative and differentiation potential of individual ALDHhigh and ALDHlow MStroCs incubated at low oxygen concentrations, estimated to mimic stem cell niches (0.1% O2), were assayed using single-cell clonal analysis, compared to standard conditions (20% O2). RESULTS: We confirm that a high proliferative capacity and multi-potent MSCs are enriched in the ALDHhigh MStroC population, especially when cells are cultured at 0.1% O2. Measurements of reduced/oxidized glutathione and mitochondrial superoxide anions with MitoSoX (MSX) indicate that this advantage induced by low oxygen is related to a decrease in the oxidative and reactive oxygen species (ROS) levels in the stem cell metabolic setup. However, ALDH expression is neither specific nor exclusive to MSCs, as high proliferative capacity and multi-potent cells were also found in the ALDHlow fraction. Furthermore, single-cell assays performed after combined cell sorting based on ALDH and MSX showed that the MSXlow MStroC population is enriched in stem/progenitor cells in all conditions, irrespective of ALDH expression or culture oxygen concentration. Importantly, the ALDHhighMSXlow MStroC fraction exposed to 0.1% O2 was almost exclusively composed of genuine MSCs. In contrast, neither progenitors nor stem cells (with a complete absence of colony-forming ability) were detected in the MSXhigh fraction, which exclusively resides in the ALDHlow MStroC population. CONCLUSION: Our study reveals that ALDH expression is not exclusively associated with MSCs. However, cell sorting using combined ALDH expression and ROS content can be utilized to exclude MStroCs lacking stem/progenitor cell properties.

4.
Mech Ageing Dev ; 219: 111935, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614143

RESUMO

Adipose-derived stromal cells (ADSCs) are promising stem cell sources for tissue engineering and cell-based therapy. However, long-term in vitro expansion of ADSCs impedes stemness maintenance, which is partly attributed to deprivation of their original microenvironment. Incompetent cells limit the therapeutic effects of ADSC-based clinical strategies. Therefore, reconstructing a more physiologically and physically relevant niche is an ideal strategy to address this issue and therefore facilitates the extensive application of ADSCs. Here, we transplanted separated ADSCs into local subcutaneous adipose tissues of nude mice as an in vivo cell culture model. We found that transplanted ADSCs maintained their primitive morphology and showed improved proliferation and delayed senescence compared to those of cells cultured in an incubator. Significantly increased expression of stemness-related markers and multilineage differentiation abilities were further observed in in vivo cultured ADSCs. Finally, sequencing revealed that genes whose expression differed between ADSCs obtained under in vivo and in vitro conditions were mainly located in the extracellular matrix and extracellular space and that these genes participate in regulating transcription and protein synthesis. Moreover, we found that an Egr1 signaling pathway might exert a crucial impact on controlling stemness properties. Our findings might collectively pave the way for ADSC-based applications.


Assuntos
Diferenciação Celular , Proliferação de Células , Animais , Ratos , Diferenciação Celular/fisiologia , Camundongos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Camundongos Nus , Células Estromais/metabolismo , Células Estromais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Masculino , Células Cultivadas
5.
J R Soc Interface ; 21(212): 20230537, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38503342

RESUMO

The challenge to understand differentiation and cell lineages in development has resulted in many bioinformatics software tools, notably those working with gene expression data obtained via single-cell RNA sequencing obtained at snapshots in time. Reconstruction methods for trajectories often proceed by dimension reduction, data clustering and then computation of a tree graph in which edges indicate closely related clusters. Cell lineages can then be deduced by following paths through the tree. In the case of multi-potent cells undergoing differentiation, this trajectory reconstruction involves the reconstruction of multiple distinct lineages corresponding to commitment to each of a set of distinct fates. Recent work suggests that there may be cases in which the cell differentiation process involves trajectories that explore, in a dynamic and oscillatory fashion, propensity to differentiate into a number of possible cell fates before commitment finally occurs. Here, we show theoretically that the presence of such oscillations provides intrinsic constraints on the quality and resolution of the trajectory reconstruction process, even for idealized noise-free data. These constraints point to inherent common limitations of current methodologies and serve both to provide additional challenge in the development of software tools and also may help to understand features observed in recent experiments.


Assuntos
Algoritmos , Software , Diferenciação Celular , Biologia Computacional/métodos , Análise de Célula Única/métodos
6.
Proc Natl Acad Sci U S A ; 121(4): e2317929121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227649

RESUMO

The hierarchical model of hematopoiesis posits that self-renewing, multipotent hematopoietic stem cells (HSCs) give rise to all blood cell lineages. While this model accounts for hematopoiesis in transplant settings, its applicability to steady-state hematopoiesis remains to be clarified. Here, we used inducible clonal DNA barcoding of endogenous adult HSCs to trace their contribution to major hematopoietic cell lineages in unmanipulated animals. While the majority of barcodes were unique to a single lineage, we also observed frequent barcode sharing between multiple lineages, specifically between lymphocytes and myeloid cells. These results suggest that both single-lineage and multilineage contributions by HSCs collectively drive continuous hematopoiesis, and highlight a close relationship of myeloid and lymphoid development.


Assuntos
Células-Tronco Adultas , Células-Tronco Hematopoéticas , Animais , Diferenciação Celular , Hematopoese/genética , Linhagem da Célula/genética
7.
Biology (Basel) ; 12(12)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38132334

RESUMO

Germ line development and the origin of the primordial germ cells (PGCs) are very variable and may occur across a range of developmental stages and in several developmental contexts. In establishing and maintaining germ line, a conserved set of genes is involved. On the other hand, these genes are expressed in multipotent/pluripotent cells that may give rise to both somatic and germline cells. To begin elucidating mechanisms by which the germ line is specified in Enchytraeus coronatus embryos, we identified twenty germline/multipotency genes, homologs of Vasa, PL10, Piwi, Nanos, Myc, Pumilio, Tudor, Boule, and Bruno, using transcriptome analysis and gene cloning, and characterized their expression by whole-mount in situ hybridization. To answer the question of the possible origin of PGCs in this annelid, we carried out an additional description of the early embryogenesis. Our results suggest that PGCs derive from small cells originating at the first two divisions of the mesoteloblasts. PGCs form two cell clusters, undergo limited proliferation, and migrate to the developing gonadal segments. In embryos and juvenile E. coronatus, homologs of the germline/multipotency genes are differentially expressed in both germline and somatic tissue including the presumptive germ cell precursors, posterior growth zone, developing foregut, and nervous system.

8.
Cell Rep ; 42(12): 113459, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37988266

RESUMO

Mesenchymal stem cells (MSCs) are present in almost all the tissues in the body, critical for their homeostasis and regeneration. However, the stemness of MSCs is mainly an in vitro observation, and lacking exclusive markers for endogenous MSCs makes it difficult to study the multipotency of MSCs in vivo, especially for human MSCs. To address this hurdle, we injected GFP-tagged human embryonic stem cell (hESC)-derived MSCs (EMSCs) into mouse blastocysts. EMSCs survived well and penetrated both the inner cell mass and trophectoderm, correlating to the higher anti-apoptotic capability of EMSCs than hESCs. Injected EMSCs contributed to skeletal, dermal, and extraembryonic tissues in the resultant chimera and partially rescued skeletal defects in Sox9+/- mouse fetuses. Thus, this study provides evidence for the stemness and developmental capability of human MSCs through chimerization with the mouse blastocyst, serving as a model for studying human mesenchymal and skeletal development.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Diferenciação Celular , Células-Tronco Embrionárias , Blastocisto
9.
J Am Dent Assoc ; 154(12): 1048-1057, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37804275

RESUMO

BACKGROUND: Stem cells are present in most of the tissues in the craniofacial complex and play a major role in tissue homeostasis and repair. These cells are characterized by their capacity to differentiate into multiple cell types and to self-renew to maintain a stem cell pool throughout the life of the tissue. TYPES OF STUDIES REVIEWED: The authors discuss original data from experiments and comparative analyses and review articles describing the identification and characterization of stem cells of the oral cavity. RESULTS: Every oral tissue except enamel, dentin, and cementum contains stem cells for the entire life span. These stem cells self-renew to maintain a pool of cells that can be activated to replace terminally differentiated cells (for example, odontoblasts) or to enable wound healing (for example, dentin bridge in pulp exposures and healing of periodontal tissues after surgery). In addition, dental stem cells can differentiate into functional blood vessels and nerves. Initial clinical trials have shown that transplanting dental pulp stem cells into disinfected necrotic teeth has allowed for the recovery of tooth vitality and vertical and horizontal root growth in immature teeth with incomplete root formation. PRACTICAL IMPLICATIONS: As a consequence of these groundbreaking discoveries, stem cell banks are now offering services for the cryopreservation of dental stem cells. The future use of stem cell-based therapies in the clinic will depend on the collaboration of clinicians and researchers in projects designed to understand whether these treatments are safe, efficacious, and clinically feasible.


Assuntos
Polpa Dentária , Dente , Humanos , Polpa Dentária/metabolismo , Engenharia Tecidual , Células-Tronco/fisiologia , Odontologia
10.
Int J Vet Sci Med ; 11(1): 94-105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655053

RESUMO

Subcutaneous fat tissue is an accessible and abundant source of multipotent stem cells for cell therapy in regenerative medicine. Successful trilineage differentiation is required to define the stemness features of the obtained mesenchymal cells, and adipogenesis is a part of it. Since indomethacin is bound to serum albumin, replacing foetal bovine serum (FBS) with horse serum (HS) in adipogenic induction protocols would suppress its cytotoxic effect and reveal a better adipogenic potential in equine MSCs. The equine subcutaneous adipose-derived stem cells (ASCs) were separately induced in adipogenesis by three different concentrations of 3-isobutyl-1-methylxanthine, IBMX (0.5 mM; 0.25 mM and 0.1 mM) and indomethacin (0.1 mM; 0.05 mM and 0.02 mM) for 48 h. In contrast to the IBMX, indomethacin in all concentrations caused dramatic cellular detachment. Further, the same induction concentrations were used in FBS and HS conditions for adipogenic induction. The MTT assay revealed that the culture media supplemented with HS raised cellular vitality by about 35% compared to those cultured in FBS. Based on those results, an adipogenic cocktail containing indomethacin (0.05 mM) and IBMX (0.5 mM), supplemented with HS and FBS, respectively, was applied for 18 days. The adiponectin gene expression was significantly up-regulated in HS-supplemented media since established changes in PPAR-gamma were insignificant. The tri-lineage differentiation was successful, and a cross-sectional area of adipocytes was performed. The albumin concentration was higher in HS than in FBS. In conclusion, our study revealed that HS is an appropriate supplement in induced adipogenesis since it probably suppresses the indomethacin-related cytotoxic effect and increases adipogenic ability in equine subcutaneous ASCs.

11.
Dev Cell ; 58(22): 2428-2446.e9, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37652013

RESUMO

Thymus is necessary for lifelong immunological tolerance and immunity. It displays a distinctive epithelial complexity and undergoes age-dependent atrophy. Nonetheless, it also retains regenerative capacity, which, if harnessed appropriately, might permit rejuvenation of adaptive immunity. By characterizing cortical and medullary compartments in the human thymus at single-cell resolution, in this study we have defined specific epithelial populations, including those that share properties with bona fide stem cells (SCs) of lifelong regenerating epidermis. Thymic epithelial SCs display a distinctive transcriptional profile and phenotypic traits, including pleiotropic multilineage potency, to give rise to several cell types that were not previously considered to have shared origin. Using here identified SC markers, we have defined their cortical and medullary niches and shown that, in vitro, the cells display long-term clonal expansion and self-organizing capacity. These data substantively broaden our knowledge of SC biology and set a stage for tackling thymic atrophy and related disorders.


Assuntos
Células-Tronco , Timo , Humanos , Diferenciação Celular , Células-Tronco/metabolismo , Timo/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Atrofia/metabolismo
12.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37569849

RESUMO

The enteric nervous system (ENS), known as the intrinsic nervous system of the gastrointestinal tract, is composed of a diverse array of neuronal and glial cell subtypes. Fascinating questions surrounding the generation of cellular diversity in the ENS have captivated ENS biologists for a considerable time, particularly with recent advancements in cell type-specific transcriptomics at both population and single-cell levels. However, the current focus of research in this field is predominantly restricted to the study of enteric neuron subtypes, while the investigation of enteric glia subtypes significantly lags behind. Despite this, enteric glial cells (EGCs) are increasingly recognized as equally important regulators of numerous bowel functions. Moreover, a subset of postnatal EGCs exhibits remarkable plasticity and multipotency, distinguishing them as critical entities in the context of advancing regenerative medicine. In this review, we aim to provide an updated overview of the current knowledge on this subject, while also identifying key questions that necessitate future exploration.

13.
Stem Cell Res Ther ; 14(1): 157, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287077

RESUMO

Due to the limited accessibility of the in vivo situation, the scarcity of the human tissue, legal constraints, and ethical considerations, the underlying molecular mechanisms of disorders, such as preeclampsia, the pathological consequences of fetomaternal microchimerism, or infertility, are still not fully understood. And although substantial progress has already been made, the therapeutic strategies for reproductive system diseases are still facing limitations. In the recent years, it became more and more evident that stem cells are powerful tools for basic research in human reproduction and stem cell-based approaches moved into the center of endeavors to establish new clinical concepts. Multipotent fetal stem cells derived from the amniotic fluid, amniotic membrane, chorion leave, Wharton´s jelly, or placenta came to the fore because they are easy to acquire, are not associated with ethical concerns or covered by strict legal restrictions, and can be banked for autologous utilization later in life. Compared to adult stem cells, they exhibit a significantly higher differentiation potential and are much easier to propagate in vitro. Compared to pluripotent stem cells, they harbor less mutations, are not tumorigenic, and exhibit low immunogenicity. Studies on multipotent fetal stem cells can be invaluable to gain knowledge on the development of dysfunctional fetal cell types, to characterize the fetal stem cells migrating into the body of a pregnant woman in the context of fetomaternal microchimerism, and to obtain a more comprehensive picture of germ cell development in the course of in vitro differentiation experiments. The in vivo transplantation of fetal stem cells or their paracrine factors can mediate therapeutic effects in preeclampsia and can restore reproductive organ functions. Together with the use of fetal stem cell-derived gametes, such strategies could once help individuals, who do not develop functional gametes, to conceive genetically related children. Although there is still a long way to go, these developments regarding the usage of multipotent fetal stem cells in the clinic should continuously be accompanied by a wide and detailed ethical discussion.


Assuntos
Células-Tronco Fetais , Células-Tronco Pluripotentes , Pré-Eclâmpsia , Gravidez , Feminino , Adulto , Criança , Humanos , Células Germinativas , Diferenciação Celular , Biologia
14.
Adv Healthc Mater ; 12(24): e2300666, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37216966

RESUMO

The native extracellular matrix is highly dynamic with continuous mutual feedback between cells being responsible for many important cell function regulators. However, establishing bidirectional interaction between complex adaptive microenvironments and cells remains elusive. Herein an adaptive biomaterial based on lysozyme monolayers self-assembled at a perfluorocarbon FC40-water interface is reported. The dynamic adaptivity of interfacially assembled protein nanosheets is modulated independently of bulk mechanical properties by covalent crosslinking. This provides a scenario to establish bidirectional interactions of cells with liquid interfaces of varying dynamic adaptivity. This is found that growth and multipotency of human mesenchymal stromal cells (hMSCs) are enhanced at the highly adaptive fluid interface. The multipotency retention of hMSCs is mediated by low cell contractility and metabolomic activity involving the continuous mutual feedback between the cells and materials. Consequently, an understanding of the cells' response to dynamic adaptivity has substantial implications for regenerative medicine and tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Proteínas , Humanos , Diferenciação Celular/fisiologia , Proteínas/metabolismo , Materiais Biocompatíveis/metabolismo , Engenharia Tecidual , Células-Tronco Mesenquimais/metabolismo
15.
Methods Mol Biol ; 2647: 105-119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37041331

RESUMO

Mammals are routinely cloned by introducing somatic nuclei into enucleated oocytes. Cloning contributes to propagating desired animals, to germplasm conservation efforts, among other applications. A challenge to more broader use of this technology is the relatively low cloning efficiency, which inversely correlates with donor cell differentiation status. Emerging evidence suggests that adult multipotent stem cells improve cloning efficiency, while the greater potential of embryonic stem cells for cloning remains restricted to the mouse. The derivation of pluripotent or totipotent stem cells from livestock and wild species and their association with modulators of epigenetic marks in donor cells should increase cloning efficiency.


Assuntos
Clonagem de Organismos , Epigênese Genética , Técnicas de Transferência Nuclear , Animais , Camundongos , Clonagem Molecular , Células-Tronco Embrionárias , Mamíferos
16.
Dev Cell ; 58(6): 461-473.e7, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36905926

RESUMO

Organ development involves the sustained production of diverse cell types with spatiotemporal precision. In the vertebrate jaw, neural-crest-derived progenitors produce not only skeletal tissues but also later-forming tendons and salivary glands. Here we identify the pluripotency factor Nr5a2 as essential for cell-fate decisions in the jaw. In zebrafish and mice, we observe transient expression of Nr5a2 in a subset of mandibular postmigratory neural-crest-derived cells. In zebrafish nr5a2 mutants, nr5a2-expressing cells that would normally form tendons generate excess jaw cartilage. In mice, neural-crest-specific Nr5a2 loss results in analogous skeletal and tendon defects in the jaw and middle ear, as well as salivary gland loss. Single-cell profiling shows that Nr5a2, distinct from its roles in pluripotency, promotes jaw-specific chromatin accessibility and gene expression that is essential for tendon and gland fates. Thus, repurposing of Nr5a2 promotes connective tissue fates to generate the full repertoire of derivatives required for jaw and middle ear function.


Assuntos
Receptores Citoplasmáticos e Nucleares , Peixe-Zebra , Camundongos , Animais , Peixe-Zebra/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Diferenciação Celular/fisiologia , Tecido Conjuntivo/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Crista Neural/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
17.
Stem Cell Reports ; 18(4): 869-883, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36963388

RESUMO

When damaged, restoring the function of the hypothalamus is currently impossible. It is unclear whether neural stem cells exist in the hypothalamus. Studies have reported that adult rodent tanycytes around the third ventricle function as hypothalamic neural stem cell-like cells. However, it is currently impossible to collect periventricular cells from humans. We attempted to generate hypothalamic neural stem cell-like cells from human embryonic stem cells (ESCs). We focused on retina and anterior neural fold homeobox (RAX) because its expression is gradually restricted to tanycytes during the late embryonic stage. We differentiated RAX::VENUS knockin human ESCs (hESCs) into hypothalamic organoids and sorted RAX+ cells from mature organoids. The isolated RAX+ cells formed neurospheres and exhibited self-renewal and multipotency. Neurogenesis was observed when neurospheres were transplanted into the mouse hypothalamus. We isolated RAX+ hypothalamic neural stem cell-like cells from wild-type human ES organoids. This is the first study to differentiate human hypothalamic neural stem cell-like cells from pluripotent stem cells.


Assuntos
Células-Tronco Neurais , Células-Tronco Pluripotentes , Camundongos , Animais , Humanos , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Hipotálamo/metabolismo
18.
Cells ; 12(4)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831283

RESUMO

Central nervous system (CNS) repair after injury or disease remains an unresolved problem in neurobiology research and an unmet medical need. Directly reprogramming or converting astrocytes to neurons (AtN) in adult animals has been investigated as a potential strategy to facilitate brain and spinal cord recovery and advance fundamental biology. Conceptually, AtN strategies rely on forced expression or repression of lineage-specific transcription factors to make endogenous astrocytes become "induced neurons" (iNs), presumably without re-entering any pluripotent or multipotent states. The AtN-derived cells have been reported to manifest certain neuronal functions in vivo. However, this approach has raised many new questions and alternative explanations regarding the biological features of the end products (e.g., iNs versus neuron-like cells, neural functional changes, etc.), developmental biology underpinnings, and neurobiological essentials. For this paper per se, we proposed to draw an unconventional distinction between direct cell conversion and direct cell reprogramming, relative to somatic nuclear transfer, based on the experimental methods utilized to initiate the transformation process, aiming to promote a more in-depth mechanistic exploration. Moreover, we have summarized the current tactics employed for AtN induction, comparisons between the bench endeavors concerning outcome tangibility, and discussion of the issues of published AtN protocols. Lastly, the urgency to clearly define/devise the theoretical frameworks, cell biological bases, and bench specifics to experimentally validate primary data of AtN studies was highlighted.


Assuntos
Astrócitos , Reprogramação Celular , Animais , Astrócitos/metabolismo , Neurônios/metabolismo , Sistema Nervoso Central , Medula Espinal
19.
Proc Natl Acad Sci U S A ; 120(6): e2212578120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36724256

RESUMO

Developmental potential is progressively restricted after germ layer specification during gastrulation. However, cranial neural crest cells challenge this paradigm, as they develop from anterior ectoderm, yet give rise to both ectodermal derivatives of the peripheral nervous system and ectomesenchymal bone and cartilage. How cranial neural crest cells differentiate into multiple lineages is poorly understood. Here, we demonstrate that cranial neural crest cells possess a transient state of increased chromatin accessibility. We profile the spatiotemporal emergence of premigratory neural crest and find evidence of lineage bias toward either a neuronal or ectomesenchymal fate, with each expressing distinct factors from earlier stages of development. We identify the miR-302 miRNA family to be highly expressed in cranial neural crest cells and genetic deletion leads to precocious specification of the ectomesenchymal lineage. Loss of mir-302 results in reduced chromatin accessibility in the neuronal progenitor lineage of neural crest and a reduction in peripheral neuron differentiation. Mechanistically, we find that mir-302 directly targets Sox9 to slow the timing of ectomesenchymal neural crest specification and represses multiple genes involved in chromatin condensation to promote accessibility required for neuronal differentiation. Our findings reveal a posttranscriptional mechanism governed by miRNAs to expand developmental potential of cranial neural crest.


Assuntos
MicroRNAs , Crista Neural , Diferenciação Celular/genética , Cromatina , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Processamento Pós-Transcricional do RNA
20.
Front Immunol ; 14: 1108368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817475

RESUMO

T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.


Assuntos
Redes Reguladoras de Genes , Linfócitos T , Camundongos , Animais , Linfócitos T/metabolismo , Imunidade Inata , Linhagem da Célula/genética , Receptores Notch/metabolismo , Linfócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...