Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.655
Filtrar
1.
World J Radiol ; 16(9): 446-452, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39355395

RESUMO

BACKGROUND: Cases of myelin oligodendrocyte glycoprotein (MOG) antibody-related disease have a history of coronavirus disease 2019 infection or its vaccination before disease onset. Severe acute respiratory syndrome virus 2 (SARS-CoV-2) infection has been considered to be a trigger of central nervous system autoimmune diseases. CASE SUMMARY: Here we report a 20-year male with MOG-associated transverse myelitis after a SARS-CoV-2 infection. The patient received a near-complete recovery after standard immunological treatments. CONCLUSION: Attention should be paid to the evaluation of typical or atypical neurological symptoms that may be triggered by SARS-CoV-2 infection.

2.
Exp Neurol ; 382: 114981, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362479

RESUMO

Peripheral nerve injury (PNI) induces neuroma formation at the severed nerve stump resulting in impaired nerve regeneration and functional recovery in patients. So far, molecular mechanisms and cell types present in the neuroma impeding on regeneration have only sparsely been analyzed. Herein we compare resected human neuroma tissue with intact donor nerves from the same patient. Neuroma from several post-injury timepoints (1-13 months) were included, thereby allowing for temporal correlation with molecular and cellular processes. We observed reduced axonal area and percentage of myelin producing Schwann cells (SCs) compared to intact nerves. However, total SOX10 positive SC numbers were comparable. Notably, markers for SCs in a repair mode including c-JUN, the low-affinity neurotrophin receptor (NTR) p75, SHH (sonic hedgehog) and SC proliferation (phospho-histone H3) were upregulated in neuroma, suggesting presence of SCs in repair status. In agreement, in neuroma, pro-regenerative markers such as phosphorylated i.e. activated CREB (pCREB), ATF3, GAP43 and SCG10 were upregulated. In addition, neuroma tissue was infiltrated by several types of macrophages. Finally, when taken in culture, neuroma SCs were indistinguishable from controls SCs with regard to proliferation and morphology. However, cultured neuroma SCs retained a different molecular signature from control SCs including increased inflammation and reduced gene expression for differentiation markers such as myelin genes. In summary, human neuroma tissue consists of SCs with a repair status and is infiltrated strongly by several types of macrophages.

3.
Mol Ther Methods Clin Dev ; 32(4): 101337, 2024 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-39391837

RESUMO

To achieve cell-type-specific gene expression, using target cell-type-tropic different adeno-associated virus (AAV) capsids is advantageous. However, their tropism across brain cell types in nonhuman primates has not been fully elucidated. We assessed the tropism of nine AAV serotype capsids (AAV1, 2, 5, 6, 7, 8, 9, rh10, and DJ) expressing EGFP by chicken ß-actin hybrid (CBh) promoter in marmoset cerebral cortical cells. All nine AAV capsid vectors, especially AAV9 and AAVrh10, caused highly neuron-selective EGFP expression. Some AAV capsids, including AAV5, induced EGFP expression to a lesser extent in oligodendrocytes. Different ubiquitous cytomegalovirus (CMV) and CMV early enhancer/chicken ß-actin (CAG) promoters exhibited similar neuron-predominant transgene expression. Conversely, all nine AAV capsid vectors with the astrocyte-specific hGFA(ABC1D) promoter selectively expressed EGFP in astrocytes, except AAV5, which modestly expressed EGFP in oligodendrocytes. Oligodendrocyte-specific mouse myelin basic protein (mMBP) promoter in AAV5 vectors expressed EGFP in oligodendrocytes specifically and efficiently. The following are optimal combinations of capsids and promoters for cell-type-specific expression: AAV9 or AAVrh10 and ubiquitous CBh or CMV promoter for neuron-specific transgene expression, AAV2 or AAV7 and hGFA(ABC1D) promoters for astrocyte-specific transgene expression, and AAV5 and mMBP promoters for oligodendrocyte-specific transgene expression.

4.
Exp Neurol ; : 114985, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368532

RESUMO

Neutrophils are a vital part of the innate immune system. Many of their functions eliminate bacteria & viruses, like neutrophil extracellular traps (NETs), which trap bacteria, enhancing macrophage phagocytosis. It was surprising when it was demonstrated that neutrophils are a part of Wallerian degeneration, a process that is essential for nerve regeneration after a nerve injury. It is not known what signals attract neutrophils into the nerve and how they aid Wallerian degeneration. Neutrophils accumulate in the distal nerve within one day after an injury and are found in the nerve from one to three days. We demonstrate that CXCR2 mediates the trafficking of neutrophils into the distal nerve, and without CXCR2 Wallerian degeneration, as indicated by luxol fast blue staining, was reduced seven days after a sciatic nerve crush or transection injury. NETs were detected in the distal nerve after a sciatic nerve transection. NET formation has been shown to require protein arginine deiminase 4 (PAD4), which citrullinates histone 3. Inhibiting PAD4 reduced NET formation significantly in the distal nerve at two days and myelin clearance at seven days indicating that NETs aid myelin clearance. These results demonstrate another function for NETs other than clearing pathogens. Neutrophils have been detected after injuries to the central nervous system and diseases in humans and animal models. Our results demonstrate neutrophils aid myelin clearance, suggesting a role for their presence in central nervous system injuries and diseases.

5.
J Neurochem ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374171

RESUMO

Oligodendrocytes, a type of glial cell in the central nervous system, have a critical role in the formation of myelin around axons, facilitating saltatory conduction, and maintaining the integrity of nerve axons. The dysregulation of oligodendrocyte differentiation and homeostasis have been implicated in a wide range of neurological diseases, including dysmyelinating disorders (e.g., Pelizaeus-Merzbacher disease), demyelinating diseases (e.g., multiple sclerosis), Alzheimer's disease, and psychiatric disorders. Therefore, unraveling the mechanisms of oligodendrocyte development, differentiation, and homeostasis is essential for understanding the pathogenesis of these diseases and the development of therapeutic interventions. Numerous studies have identified and analyzed the functions of transcription factors, RNA metabolic factors, translation control factors, and intracellular and extracellular signals involved in the series of processes from oligodendrocyte fate determination to terminal differentiation. DEAD-box proteins, multifunctional RNA helicases that regulate various intracellular processes, including transcription, RNA processing, and translation, are increasingly recognized for their diverse roles in various aspects of oligodendrocyte development, differentiation, and maintenance of homeostasis. This review introduces the latest insights into the regulatory networks of oligodendrocyte biology mediated by DEAD-box proteins.

6.
Cureus ; 16(9): e68563, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39364495

RESUMO

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a central nervous system demyelinating disease that has become a major source of morbidity among children and adults. In the first case, we present an 18-year-old Hispanic female with a recently resolved upper respiratory infection who presented with fever, headache, progressive quadriparesis, urinary retention, and encephalopathy. The hospital course involved autonomic dysfunction and prolonged intubation requiring tracheostomy and gastrostomy. Cerebrospinal fluid (CSF) showed pleocytosis and a positive MOG titer (1:40). Magnetic resonance imaging (MRI) showed longitudinally extensive cervicothoracic T2 hyperintensity and brain multifocal T2 hyperintensities. After high-dose intravenous methylprednisolone (IVMP) and intravenous immunoglobulin (IVIG), she had full neurological recovery by the last follow-up. The second case is of a 22-year-old Hispanic male who presented with progressive lower extremity paresthesia and weakness over six weeks. CSF demonstrated pleocytosis, elevated protein, oligoclonal bands, and MOG antibody. MRI revealed multiple subcortical T2-hyperintense lesions and enhancing midcervical and lower thoracic lesions. Treatment with IVMP led to minor improvement with discharge on steroid taper and azathioprine. The patient's disease progressed with a fluctuating course requiring two readmissions with upper extremity weakness, right optic neuritis, and urinary sphincteric dysfunction with neuroradiologic worsening. Treatment throughout multiple admissions included intravenous steroids, IVIG, plasmapheresis, mycophenolate mofetil, and rituximab with minimal improvement, symptom recurrence, and progression of multifocal lesions. The patient died four months after the symptom onset. These cases had markedly different treatment responses despite similar baseline characteristics. The difference in morbidity and disability burden highlights the importance of further investigation of this condition through clinical trials.

7.
Mult Scler Relat Disord ; 91: 105914, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39369629

RESUMO

BACKGROUND: Little is known about the quality of life (QOL) of patients with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). We compared QOL and associated factors in patients with MOGAD and aquaporin4 IgG (AQP4-IgG) positive neuromyelitis optica spectrum disorder (NMOSD). METHODS: This multicenter questionnaire study compared the QOL of 41 patients with MOGAD and 78 with AQP4-IgG positive NMOSD. Patients who were positive for AQP4-IgG or MOG antibodies were included. WHO Quality of Life Scale Brief Version was used to assess QOL in physical, psychological, social, and environmental domains. QOL, sleep quality, pain, fatigue, and depression were compared between the two groups. The factors associated with QOL in each group and the entire cohort were analyzed. RESULTS: The proportion of patients with poor QOL was not significantly different between MOGAD (51.22 %) and AQP4-IgG positive NMOSD (58.97 %, p = 0.054). In the MOGAD group, the pain score (ß=-1.032, p = 0.001) and depression score (ß=-0.694, p = 0.007) were negatively associated with physical and psychological QOL, respectively. Sleep quality was negatively associated with physical (ß=-1.506, p = 0.034) and psychological (ß =-2.064, p = 0.033) QOL. When the entire cohort was analyzed, a positive MOG antibody was independently associated with worse psychological QOL (ß=-8.998, p = 0.013) compared to positive AQP4-Ab after adjustment for sleep quality, depression, fatigue, and pain. CONCLUSIONS: The overall QOL of the patients of MOGAD was comparable to that of AQP4-IgG positive NMOSD. Patients with MOGAD were experiencing sleep disorder, fatigue, and depression at similar degrees to those of patients with AQP4-IgG positive NMOSD. Further consideration of sleep quality and psychological QOL is required to improve QOL in patients with MOGAD.

8.
Magn Reson Med ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370873

RESUMO

PURPOSE: To compare the myelin water fraction (MWF) measurements between 3 T and 7 T and between in vivo and ex vivo human brains, and to investigate the relationship between multi-echo gradient-echo (mGRE)-based 3D MWF and myelin content using histological staining, which has not been validated in the human brain. METHODS: In this study, we performed 3D mGRE-based MWF measurements on five ex vivo human brain hemispheres and five healthy volunteers at 3 T and 7 T with 1 mm isotropic resolution. The data were fitted with the T 2 * $$ {\mathrm{T}}_2^{\ast } $$ based on a three compartment complex-valued model to estimate MWF. We obtained myelin basic protein (MBP) staining from two tissue blocks and co-registered the MWF map and histology image for voxel-wise correlation between the two. RESULTS: The MWF values measured from 7 T were overall higher than 7 T, but data between the two field strength demonstrated high correlations both in vivo (r = 0.88) and ex vivo (r = 0.83) across 19 white matter regions. Moreover, the MWF measurements showed a good agreement between in vivo and ex vivo assessments at 3 T (r = 0.61) and 7 T (r = 0.54). Based on MBP staining, the MWF values exhibited strong positive correlations with myelin content on both 3 T (r = 0.68 and r = 0.78 for the two tissue blocks) and 7 T (r = 0.64 and r = 0.82 for the two tissue blocks). CONCLUSION: The findings demonstrated that the mGRE-based MWF mapping can be used to quantify myelin content in the human brain, despite the field-strength dependency of the measurements.

9.
Glia ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344832

RESUMO

The molecules that constitute myelin are critical for the integrity of axon/myelin-units and thus speed and precision of impulse propagation. In the CNS, the protein composition of oligodendrocyte-derived myelin has evolutionarily diverged and differs from that in the PNS. Here, we hypothesized that the CNS myelin proteome also displays variations within the same species. We thus used quantitative mass spectrometry to compare myelin purified from mouse brains at three developmental timepoints, from brains of male and female mice, and from four CNS regions. We find that most structural myelin proteins are of approximately similar abundance across all tested conditions. However, the abundance of multiple other proteins differs markedly over time, implying that the myelin proteome matures between P18 and P75 and then remains relatively constant until at least 6 months of age. Myelin maturation involves a decrease of cytoskeleton-associated proteins involved in sheath growth and wrapping, along with an increase of all subunits of the septin filament that stabilizes mature myelin, and of multiple other proteins which potentially exert protective functions. Among the latter, quinoid dihydropteridine reductase (QDPR) emerges as a highly specific marker for mature oligodendrocytes and myelin. Conversely, female and male mice display essentially similar myelin proteomes. Across the four CNS regions analyzed, we note that spinal cord myelin exhibits a comparatively high abundance of HCN2-channels, required for particularly long sheaths. These findings show that CNS myelination involves developmental maturation of myelin protein composition, and regional differences, but absence of evidence for sexual dimorphism.

10.
J Imaging ; 10(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39330433

RESUMO

Quantitative MRI techniques could be helpful to noninvasively and longitudinally monitor dynamic changes in spinal cord white matter following injury, but imaging and postprocessing techniques in small animals remain lacking. Unilateral C5 hemisection lesions were created in a rat model, and ultrashort echo time magnetization transfer (UTE-MT) and diffusion-weighted sequences were used for imaging following injury. Magnetization transfer ratio (MTR) measurements and preferential diffusion along the longitudinal axis of the spinal cord were calculated as fractional anisotropy or an apparent diffusion coefficient ratio over transverse directions. The area of myelinated white matter was obtained by thresholding the spinal cord using mean MTR or diffusion ratio values from the contralesional side of the spinal cord. A decrease in white matter areas was observed on the ipsilesional side caudal to the lesions, which is consistent with known myelin and axonal changes following spinal cord injury. The myelinated white matter area obtained through the UTE-MT technique and the white matter area obtained through diffusion imaging techniques showed better performance to distinguish evolution after injury (AUCs > 0.94, p < 0.001) than the mean MTR (AUC = 0.74, p = 0.01) or ADC ratio (AUC = 0.68, p = 0.05) values themselves. Immunostaining for myelin basic protein (MBP) and neurofilament protein NF200 (NF200) showed atrophy and axonal degeneration, confirming the MRI results. These compositional and microstructural MRI techniques may be used to detect demyelination or remyelination in the spinal cord after spinal cord injury.

11.
Metab Brain Dis ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340612

RESUMO

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) that led to brain atrophy. The purpose of this study was to investigate the effects of pre-and post-conditioning with exercise on demyelination and brain morphology. Thirty male rats were randomly divided into five groups (n = 6 per group), consisting of a healthy control group (Control), an MS group, and three exercise groups: the group that performed the exercise protocol (running on a treadmill 5 days/week for 6 weeks) before the MS induction (EX + MS), the group that performed the exercise protocol during the MS induction (MS + EX), and the group that performed the exercise protocol before and during the MS induction (EX + MS + EX). The expression of Myelin basic protein (MBP), and demyelination in the corpus callosum and the volume, weight, length, width, and height of the brain were measured. The EX + MS + EX showed a significant increase in the expression of MBP compared to other MS groups (**p < 0.01) as well as a significant decrease in the area of demyelination of the corpus callosum compared to MS and MS + EX groups (**p < 0.01). However, there were no significant differences between the MS group and exercised groups for brain morphology. The exercise showed neuroprotective effects, as evidenced by decreased areas of demyelination and improved MBP expression.

12.
Handb Clin Neurol ; 205: 283-295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39341659

RESUMO

Much of clinical neurology is concerned with diseases of-or involving-the brain's subcortical white matter. Common to these disorders is the loss of myelin, reflecting the elimination or dysfunction of oligodendrocytes and fibrous astrocytes. As such, the introduction of glial progenitor cells, which can give rise to new oligodendrocytes and astrocytes alike, may be a feasible strategy for treating a broad variety of conditions in which white matter loss is causally involved. This review first covers the sourcing and production of human glial progenitor cells, and the preclinical evidence for their efficacy in achieving myelin restoration in vivo. It then discusses both pediatric and adult disease targets for which transplanted glial progenitors may prove of therapeutic value, those challenges that remain in the clinical application of a glial cell replacement strategy, and the clinical endpoints by which the efficacy of this approach may be assessed.


Assuntos
Transplante de Células-Tronco , Humanos , Animais , Transplante de Células-Tronco/métodos , Doenças Desmielinizantes/terapia , Doenças Desmielinizantes/patologia , Bainha de Mielina , Neuroglia/transplante , Células-Tronco/fisiologia
13.
Acta Neuropathol Commun ; 12(1): 154, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300502

RESUMO

Aging is the greatest known risk factor for most neurodegenerative diseases. Myelin degeneration is an early pathological indicator of these diseases and a normal part of aging; albeit, to a lesser extent. Despite this, little is known about the contribution of age-related myelin degeneration on neurodegenerative disease. Microglia participate in modulating white matter events from demyelination to remyelination, including regulation of (de)myelination by the microglial innate immune receptor triggering receptor expressed on myeloid cells 2 (TREM2). Here, we demonstrate Trem2-deficiency aggravates and accelerates age-related myelin degeneration in the striatum. We show TREM2 is necessary for remyelination by recruiting reparative glia and mediating signaling that promotes OPC differentiation/maturation. In response to demyelination, TREM2 is required for phagocytosis of large volumes of myelin debris. In addition to lysosomal regulation, we show TREM2 can modify the ER stress response, even prior to overt myelin debris, that prevents lipid accumulation and microglial dysfunction. These data support a role for Trem2-dependent interactions in age-related myelin degeneration and suggest a basis for how early dysfunctional microglia could contribute to disease pathology through insufficent repair, defective phagocytosis, and the ER stress response.


Assuntos
Envelhecimento , Glicoproteínas de Membrana , Microglia , Bainha de Mielina , Receptores Imunológicos , Animais , Camundongos , Envelhecimento/patologia , Envelhecimento/metabolismo , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/genética , Estresse do Retículo Endoplasmático/fisiologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/deficiência , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Fagocitose/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/deficiência , Remielinização/fisiologia , Masculino , Feminino
14.
Glia ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39318247

RESUMO

Formation of myelin by Schwann cells is tightly coupled to peripheral nervous system development and is important for neuronal function and long-term maintenance. Perturbation of myelin causes a number of specific disorders that are among the most prevalent diseases affecting the nervous system. Schwann cells synthesize myelin lipids de novo rather than relying on uptake of circulating lipids, yet one unresolved matter is how acetyl CoA, a central metabolite in lipid formation is generated during myelin formation and maintenance. Recent studies have shown that glucose-derived acetyl CoA itself is not required for myelination. However, the importance of mitochondrially-derived acetyl CoA has never been tested for myelination in vivo. Therefore, we have developed a Schwann cell-specific knockout of the ATP citrate lyase (Acly) gene to determine the importance of mitochondrial metabolism to supply acetyl CoA in nerve development. Intriguingly, the ACLY pathway is important for myelin maintenance rather than myelin formation. In addition, ACLY is required to maintain expression of a myelin-associated gene program and to inhibit activation of the latent Schwann cell injury program.

15.
Transl Pediatr ; 13(8): 1312-1326, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39263295

RESUMO

Background: Early enteral nutrition and the gut microbiota profoundly influence neonatal brain development, with short-chain fatty acids (SCFAs) from the microbiota playing a pivotal role. Understanding the relationship between dysbiosis, SCFAs, and brain development is crucial. In this study, we investigated the impact of antibiotics on the concentration of SCFAs in neonatal feces. Additionally, we developed a model of gut dysbiosis in neonatal mice to examine the potential relationship between this imbalance, SCFAs production, and brain function development. Methods: We measured the SCFAs content in the feces of two groups of neonates, categorized based on whether antibiotics were used, and conducted the Neonatal Behavioral Neurological Assessment (NBNA) test on all neonates. Then we evaluated fecal SCFAs levels in neonates and neonatal mice post-antibiotic treatment using liquid chromatography-mass spectrometry (LC-MS) analysis. Morris water maze (MWM) tests assessed behavioral performance, and western blot analysis examined brain tissue-related proteins-neuron-specific enolase (NSE), ionized calcium binding adaptor molecule-1 (IBA1), and myelin basic proteins (MBP). Results: The use of antibiotics did not affect the NBNA scores of the two groups of neonates, but it did reduce the SCFAs content in their feces. Antibiotic administration induced gut dysbiosis in mice, resulting in decreased IBA1 and MBP expression. Interventions to restore gut microbiota ameliorated these effects. Mice with dysbiosis displayed cognitive deficits in the MWM test. SCFAs levels decreased during dysbiosis, and increased upon microbiota recovery. Conclusions: Neonatal dysbiosis affects the microbiota-gut-brain axis, impairing cognitive function and nervous system development. Reduced SCFAs may contribute significantly to these alterations.

16.
J Ginseng Res ; 48(5): 481-493, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39263309

RESUMO

Background: Post-weaning social isolation (SI) reduces sociability, gene expressions including myelin genes in the medial prefrontal cortex (mPFC), and alters microbiome compositions in rodent models. Korean Red Ginseng (KRG) and its major ginsenoside Rb1 have been reported to affect myelin formation and gut metabolites. However, their effects under post-weaning SI have not been investigated. This study investigated the effects of KRG and Rb1 on sociability, gene expressions in the mPFC, and gut metabolites under post-weaning SI. Methods: C57BL/6J mice were administered with water or KRG (150, 400 mg/kg) or Rb1 (0.1 mg/kg) under SI or regular environment (RE) for 2 weeks during the post-weaning period (P21-P35). After this period, mice underwent a sociability test, and then brains and ceca were collected for qPCR/immunohistochemistry and non-targeted metabolomics, respectively. Results: SI reduced sociability compared to RE; however, KRG (400 mg/kg) and Rb1 significantly restored sociability under SI. In the mPFC, expressions of genes related to myelin, neurotransmitter, and oxidative stress were significantly reduced in mice under SI compared to RE conditions. Under SI, KRG and Rb1 recovered the altered expressions of several genes in the mPFC. In gut metabolomics, 313 metabolites were identified as significant among 3027 detected metabolites. Among the significantly changed metabolites in SI, some were recovered by KRG or Rb1, including metabolites related to stress axis, inflammation, and DNA damage. Conclusion: Altered sociability, gene expression levels in the mPFC, and gut metabolites induced by two weeks of post-weaning SI were at least partially recovered by KRG and Rb1.

17.
Front Immunol ; 15: 1426236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267735

RESUMO

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) has highly heterogeneous clinical presentations, in which encephalitis is an important phenotype. Moreover, MOGAD has been reported to exhibit diverse imaging findings. However, there have been no previous reports of cases with perivascular radial gadolinium enhancement in periventricular regions, commonly reported in autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy. In this paper, we present two cases of MOGAD with this MRI feature, both of which underwent brain biopsy for the lesions. Brain biopsies revealed perivenous demyelination and inflammation consistent with acute disseminated encephalomyelitis (ADEM), with pronounced axonal damage in Case 1 and minimal axonal involvement in Case 2. Case 1 exhibited more severe cerebral atrophy than Case 2, correlating with the extent of axonal damage. Through these cases, we highlight the heterogeneity of radiological manifestations of MOGAD, expanding the spectrum beyond previously defined MRI patterns. Furthermore, histopathological analysis revealed distinct axonal involvement as a potential prognostic marker of brain atrophy. These observations emphasize the importance of considering MOGAD in the differential diagnosis, even in cases with atypical imaging findings, and highlight the significance of brain biopsy in guiding both diagnosis and prognosis.


Assuntos
Autoanticorpos , Gadolínio , Imageamento por Ressonância Magnética , Glicoproteína Mielina-Oligodendrócito , Humanos , Glicoproteína Mielina-Oligodendrócito/imunologia , Masculino , Feminino , Autoanticorpos/imunologia , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Adulto , Pessoa de Meia-Idade , Biópsia , Encefalomielite Aguda Disseminada/diagnóstico por imagem , Encefalomielite Aguda Disseminada/imunologia , Encefalomielite Aguda Disseminada/patologia
18.
Front Immunol ; 15: 1455355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295869

RESUMO

Objectives: Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is frequently preceded by infections. The underlying pathomechanism, however, remains poorly understood. Here, we present the clinical data of two MOGAD patients with concurrent syphilis infection and investigate the reactivity of patient-derived antibodies to MOG and Treponema pallidum (T. pallidum). Methods: Longitudinal serum samples and soluble immunoglobulins in single B cell supernatants were measured for MOG reactivity by a live cell-based assay. Reactivity against T. pallidum was assessed by enzyme-linked immunosorbent assay. Results: The two patients presented MOGAD and concurrent latent syphilis infection, manifesting as cervical myelitis and unilateral optic neuritis, respectively. The first patient had been living with HIV on antiretroviral therapy, and the second was concomitantly diagnosed with chronic hepatitis B infection. Upon screening of B cell supernatants, we identified reactivity to MOG or T. pallidum. Notably, one B cell showed reactivity to both antigens. Discussion: The coexistence of MOGAD diagnoses and latent syphilis, alongside the identification of antibody reactivity to MOG and T. pallidum, underscores the potential pathomechanistic link between syphilis infection and subsequent autoimmune neuroinflammation. Cross-reactivity between MOG and T. pallidum antibodies remains to be validated on a molecular level, and further characterization of infectious triggers associated with MOGAD is needed.


Assuntos
Autoanticorpos , Glicoproteína Mielina-Oligodendrócito , Sífilis , Treponema pallidum , Humanos , Glicoproteína Mielina-Oligodendrócito/imunologia , Masculino , Autoanticorpos/imunologia , Autoanticorpos/sangue , Treponema pallidum/imunologia , Sífilis/imunologia , Sífilis/diagnóstico , Sífilis/sangue , Sífilis/complicações , Pessoa de Meia-Idade , Infecção Latente/imunologia , Infecção Latente/diagnóstico , Adulto , Feminino , Linfócitos B/imunologia
19.
Radiol Case Rep ; 19(12): 5589-5594, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39296754

RESUMO

Myelin oligodendrocyte glycoprotein antibody-associated disease is a group of central nervous system demyelinating disorders caused by autoantibodies. While myelin oligodendrocyte glycoprotein antibody-associated disease typically presents as optic neuritis and myelitis in adults, this case report details a patient with brainstem lesions. A 45-year-old male presented with episodes of vertigo, nystagmus, and diplopia in left lateral gaze, which had persisted for 2 months, accompanied by headache. Computed tomography showed hyperdensity extending from the left side of the pons to the middle cerebellar peduncle. Magnetic resonance imaging revealed lesions exhibiting heterogeneous diffusion restriction, with enhancement that included granular and linear patterns. 18F-fluorodeoxyglucose positron emission tomography demonstrated increased uptake in these lesions. Following further evaluation, myelin oligodendrocyte glycoprotein antibody-associated disease was diagnosed. Treatment with high-dose corticosteroids initially alleviated symptoms, but symptoms flared upon reduction of the steroids. This case underscores the importance of considering myelin oligodendrocyte glycoprotein antibody-associated disease in the differential diagnosis of brainstem lesions and discusses distinguishing imaging features from similar conditions.

20.
Rev Neurol (Paris) ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39277477

RESUMO

In this mini-review, we focus on novelties in the field of neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody associated disease (MOGAD). We first describe the proposed criteria for MOGAD and evaluate their impact and potential limitations, with a highlight on the subgroups of patients tested MOG-antibody positive only in the cerebrospinal fluid. We then propose a brief state of the art on the current knowledge on the so-call "double seronegative" NMOSD group, regarding nosology, clinical, biological and imaging features and the unmet need in this field. The last part is dedicating to the present and future of acute treatment in NMSOD and MOGAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA