Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.354
Filtrar
1.
Biochem Biophys Res Commun ; 727: 150336, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38959731

RESUMO

Myocardial fibrosis involves the loss of cardiomyocytes, myocardial fibroblast proliferation, and a reduction in angiogenesis, ultimately leading to heart failure, Given its significant implications, it is crucial to explore novel therapies for myocardial fibrosis. Recently one emerging avenue has been the use of small extracellular vesicles (sEV)-carried miRNA. In this review, we summarize the regulatory role of sEV-carried miRNA in myocardial fibrosis. We explored not only the potential diagnostic value of circulating miRNA as biomarkers for heart disease but also the therapeutic implications of sEV-carried miRNA derived from various cellular sources and applications of modified sEV. This exploration is paramount for researchers striving to develop innovative, cell-free therapies as potential drug candidates for the management of myocardial fibrosis.

2.
J Clin Med ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892986

RESUMO

Myocardial fibrosis is an important factor in the progression of cardiovascular diseases. However, there is still no universal lifetime method of myocardial fibrosis assessment that has a high prognostic significance. The aim of the study was to determine the significance of ventricular endomyocardial biopsies for the assessment of myocardial fibrosis and to identify the severity of myocardial fibrosis in different cardiovascular diseases. Material and Methods: Endomyocardial biopsies (EMBs) of 20 patients with chronic lymphocytic myocarditis (CM), endomyocardial fragments obtained during septal reduction of 21 patients with hypertrophic cardiomyopathy (HCM), and 36 patients with a long history of hypertensive and ischemic heart disease (HHD + IHD) were included in the study. The control group was formed from EMBs taken on 12-14 days after heart transplantation (n = 28). Also, for one patient without clinical and morphological data for cardiovascular pathology, postmortem myocardial fragments were taken from typical EMB and septal reduction sites. The relative area of fibrosis was calculated as the ratio of the total area of collagen fibers to the area of the whole biopsy. Endocardium and subendocardial fibrosis were not included in the total biopsy area. Results: The relative fibrosis area in the EMBs in the CM patient group was 5.6 [3.3; 12.6]%, 11.1 [6.6; 15.9]% in the HHD + IHD patient group, 13.4 [8.8; 16.7]% in the HCM patient group, and 2.7 [1.5; 4.6]% in the control group. When comparing the fibrosis area of the CM patients in repeat EMBs, it was found that the fibrosis area in the first EMBs was 7.6 [4.8; 12.0]%, and in repeat EMBs, it was 5.3 [3.2; 7.6]%. No statistically significant differences were found between the primary and repeat EMBs (p = 0.15). In ROC analysis, the area of fibrosis in the myocardium of 1.1% (or lower than one) was found to be highly specific for the control group of patients compared to the study patients. Conclusions: EMB in the assessment of myocardial fibrosis has a questionable role because of the heterogeneity of fibrotic changes in the myocardium.

3.
Environ Sci Technol ; 58(26): 11268-11279, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38875123

RESUMO

Numerous studies indicate that fine particulate matters (PM2.5) and its organic components are urgent risk factors for cardiovascular diseases (CVDs). Combining toxicological experiments, effect-directed analyses, and nontarget identification, this study aims to explore whether PM2.5 exposure in coal-combustion areas induces myocardial fibrosis and how to identify the effective organic components and their toxic structures to support regional risk control. First, we constructed an animal model of real-world PM2.5 exposure during the heating season and found that the exposure impaired cardiac systolic function and caused myocardial fibrosis, with chemokine Ccl2-mediated inflammatory response being the key cause of collagen deposition. Then, using the molecular event as target coupled with two-stage chromatographic isolation and mass spectrometry analyses, we identified a total of 171 suspect organic compounds in the PM2.5 samples. Finally, using hierarchical characteristic fragment analysis, we predicted that 40 of them belonged to active compounds with 6 alert structures, including neopentane, butyldimethylamine, 4-ethylphenol, hexanal, decane, and dimethylaniline. These findings provide evidence for risk management and prevention of CVDs in polluted areas.


Assuntos
Material Particulado , Animais , Camundongos , Masculino , Poluentes Atmosféricos , Fibrose
4.
Biomedicines ; 12(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927520

RESUMO

Myocardial infarction (MI) often leads to heart failure (HF) through acute or chronic maladaptive remodeling processes. This establishes coronary artery disease (CAD) and HF as significant contributors to cardiovascular illness and death. Therefore, treatment strategies for patients with CAD primarily focus on preventing MI and lessening the impact of HF after an MI event. Myocardial fibrosis, characterized by abnormal extracellular matrix (ECM) deposition, is central to cardiac remodeling. Understanding these processes is key to identifying new treatment targets. Recent studies highlight SGLT2 inhibitors (SGLT2i) and GLP-1 receptor agonists (GLP1-RAs) as favorable options in managing type 2 diabetes due to their low hypoglycemic risk and cardiovascular benefits. This review explores inflammation's role in cardiac fibrosis and evaluates emerging anti-diabetic medications' effectiveness, such as SGLT2i, GLP1-RAs, and dipeptidyl peptidase-4 inhibitors (DPP4i), in preventing fibrosis in patients with diabetes post-acute MI. Recent studies were analyzed to identify effective medications in reducing fibrosis risk in these patients. By addressing these areas, we can advance our understanding of the potential benefits of anti-diabetic medications in reducing cardiac fibrosis post-MI and improve patient outcomes in individuals with diabetes at risk of HF.

5.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928407

RESUMO

Radiotherapy (RT) may have a cardiotoxic effect on the heart and cardiovascular system. Postulated mechanisms mediating these complications include vascular endothelium damage and myocardial fibrosis. The aim of our study was to assess endothelial damage and myocardial fibrosis in the early period after RT on the basis of cardiac biomarkers and in relation to the radiation dose applied to individual heart structures in patients treated for non-small-cell lung cancer. This single-center prospective study included consecutive patients with lung cancer (LC) who were referred for treatment with radiochemotherapy (study group) or chemotherapy (control group). The study protocol included performing an echocardiographic examination, a standard ECG examination, and collecting blood samples for laboratory tests before starting treatment for lung cancer in the first week after completing RT (after four cycles of chemotherapy in the control group) and after 12 weeks from the end of treatment. The study included 23 patients in the study group and 20 patients in the control group. Compared to the baseline values, there was a significant increase in total cholesterol concentration in the study group immediately after the end of RT, which persisted for three months after the end of therapy. After taking into account the use of statins in the analysis, it was found that an increase in total cholesterol concentration after oncological treatment was observed only among patients who did not use statins. Taking into account the assessment of myocardial fibrosis markers, there were no significant changes in the concentration of matrix metallopeptidase 9 (MMP-9) and tissue inhibitors of metalloproteinases 1 (TIMP-1) in the study group. In patients treated with radiochemotherapy, there was a significant increase in the concentration of intercellular adhesion molecule 1 (ICAM-1) immediately after RT, when compared to the baseline. After taking into account the use of statins, an increase in ICAM-1 concentration immediately after RT was observed only in patients who did not use statins. There was also a significant correlation between the radiation dose received by the left anterior descending coronary artery (LAD) and left circumferential coronary artery, and vascular cell adhesion protein 1 (VCAM-1) concentration measured at three months after the end of RT. Immediately after completion of radiotherapy, a significant increase in the level of ICAM-1 is observed indicating endothelial damage. The radiation dose to coronary arteries should be minimized, as it correlates with the concentration of VCAM-1. The use of statins may prevent the increase in total cholesterol and ICAM-1 concentration after irradiation for lung cancer; however, further studies designed for this specific purpose are necessary to confirm the effectiveness of statins in this area.


Assuntos
Fibrose , Neoplasias Pulmonares , Humanos , Masculino , Feminino , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Endotélio Vascular/efeitos da radiação , Endotélio Vascular/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/sangue , Miocárdio/patologia , Miocárdio/metabolismo , Radioterapia/efeitos adversos , Inibidor Tecidual de Metaloproteinase-1/sangue , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Colesterol/sangue , Biomarcadores/sangue
7.
Sci Rep ; 14(1): 12653, 2024 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825590

RESUMO

Nonischaemic myocardial fibrosis is associated with cardiac dysfunction, malignant arrhythmias and sudden cardiac death. In the absence of a specific aetiology, its finding as late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging is often attributed to preceding viral myocarditis. Athletes presenting with ventricular arrhythmias often have nonischaemic LGE. Previous studies have demonstrated an adverse effect of exercise on the course of acute viral myocarditis. In this study, we have investigated, for the first time, the impact of endurance training on longer-term outcomes such as myocardial fibrosis and arrhythmogenicity in a murine coxsackievirus B3 (CVB)-induced myocarditis model. Male C57BL/6J mice (n = 72) were randomly assigned to 8 weeks of forced treadmill running (EEX) or no exercise (SED). Myocarditis was induced 2 weeks later by a single intraperitoneal injection with CVB, versus vehicle in the controls (PBS). In a separate study, mice (n = 30) were subjected to pretraining for 13 weeks (preEEX), without continuation of exercise during myocarditis. Overall, continuation of exercise resulted in a milder clinical course of viral disease, with less weight loss and better preserved running capacity. CVB-EEX and preEEX-CVB mice tended to have a lower mortality rate. At sacrifice (i.e. 6 weeks after inoculation), the majority of virus was cleared from the heart. Histological assessment demonstrated prominent myocardial inflammatory infiltration and cardiomyocyte loss in both CVB groups. Inflammatory lesions in the CVB-EEX group contained higher numbers of pro-inflammatory cells (iNOS-reactive macrophages and CD8+ T lymphocytes) compared to these in CVB-SED. Treadmill running during myocarditis increased interstitial fibrosis [82.4% (CVB-EEX) vs. 56.3% (CVB-SED); P = 0.049]. Additionally, perivascular and/or interstitial fibrosis with extensive distribution was more likely to occur with exercise [64.7% and 64.7% (CVB-EEX) vs. 50% and 31.3% (CVB-SED); P = 0.048]. There was a numerical, but not significant, increase in the number of scars per cross-section (1.9 vs. 1.2; P = 0.195), with similar scar distribution and histological appearance in CVB-EEX and CVB-SED. In vivo electrophysiology studies did not induce sustained monomorphic ventricular tachycardia, only nonsustained (usually polymorphic) runs. Their cumulative beat count and duration paralleled the increased fibrosis between CVB-EEX and CVB-SED, but the difference was not significant (P = 0.084 for each). Interestingly, in mice that were subjected to pretraining only without continuation of exercise during myocarditis, no differences between pretrained and sedentary mice were observed at sacrifice (i.e. 6 weeks after inoculation and training cessation) with regard to myocardial inflammation, fibrosis, and ventricular arrhythmogenicity. In conclusion, endurance exercise during viral myocarditis modulates the inflammatory process with more pro-inflammatory cells and enhances perivascular and interstitial fibrosis development. The impact on ventricular arrhythmogenesis requires further exploration.


Assuntos
Arritmias Cardíacas , Infecções por Coxsackievirus , Modelos Animais de Doenças , Enterovirus Humano B , Fibrose , Camundongos Endogâmicos C57BL , Miocardite , Condicionamento Físico Animal , Animais , Miocardite/virologia , Miocardite/patologia , Masculino , Camundongos , Arritmias Cardíacas/etiologia , Infecções por Coxsackievirus/patologia , Infecções por Coxsackievirus/complicações , Miocárdio/patologia , Treino Aeróbico
8.
Am J Hypertens ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850192

RESUMO

BACKGROUND: Salt-sensitive hypertension is often more prone to induce damage to target organs such as the heart and kidneys. Abundant recent studies have demonstrated a close association between ferroptosis and cardiovascular diseases.Therefore, we hypothesize that ferroptosis may be closely associated with organ damage in salt-sensitive hypertension. This study aimed to investigate whether ferroptosis is involved in the occurrence and development of myocardial fibrosis and renal fibrosis in salt-sensitive hypertensive rats. METHODS: Ten 7-week-old male Dahl salt-sensitive (Dahl-SS) rats were adaptively fed for 1 week, then randomly divided into two groups and fed either a normal diet (0.3% NaCl, NDS group) or a high-salt diet (8% NaCl, HDS group) for 8 weeks. Blood pressure of the rats was observed, and analysis of the hearts and kidneys of Dahl-SS rats was conducted via HE-staining, Masson-staining, Prussian-blue-staining, TEM, tissue iron content detection, MDA content detection, immunofluorescence, and Western blot. RESULTS: Compared to the NDS group, rats in the HDS group increases in systolic blood pressure(SBP) and diastolic blood pressure(DBP)(P<0.05);collagen fiber accumulation was observed in the heart and kidney tissues (P<0.01), accompanied by alterations in mitochondrial ultrastructure,reduced mitochondrial volume, and increased density of the mitochondrial double membrane. Additionally,there were significant increases in both iron content and MDA levels(P<0.05). Immunofluorescence and Western blot results both indicated significant downregulation (P<0.05) of xCT and GPX4 proteins associated with ferroptosis in the HDS group. CONCLUSION: Ferroptosis is involved in the damage and fibrosis of the heart and kidney tissues in salt-sensitive hypertensive rats.

9.
Zhen Ci Yan Jiu ; 49(6): 551-557, 2024 Jun 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38897798

RESUMO

OBJECTIVES: To observe the effect of moxibustion at "Xinshu" (BL15) and "Feishu" (BL13) on transient receptor potential vanilloid type 1(TRPV1), calcitonin gene-related peptide (CGRP), and serum interleukin-10 (IL-10) in the myocardial tissue of rats with chronic heart failure (CHF), so as to explore its underlying mechanisms in improvement of CHF. METHODS: Male SD rats were randomly divided into the normal, model, moxibustion, capsaicin, moxibustion + capsaicin, and moxibustion + solvent groups, with 10 rats in each group. The CHF model was established by permanent ligation of the anterior descending branch of the left coronary artery. Mild moxibustion was applied to bilateral BL13 and BL15 for 30 min once daily for 4 weeks. Rats in the capsaicin group were smeared with capsaicin in the acupoint area once a day for 4 weeks. For rats of the moxibustion + capsaicin and moxibustion + solvent groups, capsaicin and solvent were applied to the acupoint area before moxibustion for 4 weeks, respectively. The ejection fraction (EF) and left ventricular fractional shortening rate (FS) were examined by echocardiography. HE staining was used to observe the myecardial morphological structure. The mRNA and protein expression levels of TRPV1, CGRP and galectin-3 (Gal-3) in myocardial tissue were detected by real-time quantitative PCR and Western blot, respectively. The content of IL-10 in serum was detected by ELISA. RESULTS: After modeling, the pathological changes of myocardium (as cardiac muscle fiber disorder, inflammatory cell infiltration, etc.) were obvious, and the EF, FS, serum IL-10, protein and mRNA exspression of TRPV1 and CGRP were significantly decreased (P<0.01) in the model group compared with the normal group, while the protein and mRNA exspression of Gal-3 were significantly up-regulated (P<0.01). Following the interventions, the above-mentioned indexes were all reversed in moxibustion, capsaicin, and moxibustion + capsaicin groups (P<0.01), and the effect of moxibustion + capsaicin was the best (P<0.05, P<0.01). CONCLUSIONS: Moxibustion can reduce myocardial injury and improve cardiac function in CHF rats, which may be related to its effects in up-regulating the expression of TRPV1 and CGRP, and down-regulating the expression of Gal-3 to alleviate myocardial fibrosis.


Assuntos
Pontos de Acupuntura , Peptídeo Relacionado com Gene de Calcitonina , Insuficiência Cardíaca , Interleucina-10 , Moxibustão , Miocárdio , Ratos Sprague-Dawley , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Masculino , Ratos , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Humanos , Miocárdio/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-38848015

RESUMO

Myocardial fibrosis is a common finding in victims of sudden cardiac death (SCD). Whole exome sequencing was performed in 127 victims of SCD with primary myocardial fibrosis as the only pathological finding. These cases are derived from the Fingesture study which has collected data from autopsy-verified SCD victims in Northern Finland. A computational approach was used to identify protein interactions in cardiomyocytes. Associations of the identified variants with cardiac disease endpoints were investigated in the Finnish national genetic study (FinnGen) dataset. We identified 21 missense and one nonsense variant. Four variants were estimated to affect protein function, significantly associated with SCD/primary myocardial fibrosis (Fingesture) and associated with cardiac diseases in Finnish population (FinnGen). These variants locate in cartilage acidic protein 1 (CRATC1), calpain 1 (CAPN1), unc-45 myosin chaperone A (UNC45A) and unc-45 myosin chaperone B (UNC45B). The variants identified contribute to function of extracellular matrix and cardiomyocytes.

11.
Int J Gen Med ; 17: 1651-1664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706743

RESUMO

Background: Heart failure (HF) is a chronic disease with a poor prognosis, making it extremely important to assess the prognosis of patients with HF for accurate treatment. Secreted modular calcium-binding protein 2 (SMOC2) is a cysteine-rich acidic secreted protein that plays a pathophysiological role in many diseases, including regulation of vascular growth factor activity. It has previously been found that SMOC2 plays an essential role in cardiac fibrosis in our previous preclinical study, but whether it can be used as a clinical marker in heart failure patients remains unclear. The purpose of this research was to evaluate the correlation between plasma levels of SMOC2 and the prognosis for individuals with HF. Methods: HF patients diagnosed with ischemic cardiomyopathy were enrolled from January to December 2021. Baseline plasma levels of SMOC2 were measured after demographic and clinical features were collected. Linear and nonlinear multivariate Cox regression models were used to determine the association between plasma SMOC2 and patient outcomes during follow-up. All analysis was performed using SPSS, EmpowerStats, and R software. Results: The study included 188 patients, and the average follow-up time was 489.5±88.3 days. The plasma SMOC2 concentrations were positively correlated with N-terminal pro-B-type Natriuretic Peptide (NT-proBNP), left ventricular end-diastolic diameter (LVEDd), and length of hospital stay and were negatively correlated with left ventricular ejection fraction (LVEF) at baseline. A total of 53 patients (28.2%) were rehospitalized due to cardiac deterioration, 14 (7.4%) died, and 37 (19.7%) developed malignant arrhythmias. A fully adjusted multivariate COX regression model showed that SMOC2 is associated with readmission (HR = 1.02, 95% CI:1.012-1.655). A significant increase in rehospitalization risk was observed in group Q2 (HR =1.064, 95% CI: 1.037, 3.662, p=0.005) and group Q3 (HR =1.085, 95% CI:1.086, 3.792, p=0.009) in comparison with group Q1. The p for trend also shows a linear correlation across the three models (P < 0.001). SMOC2 was associated with the severity of HF in patients, but not with all-cause deaths and arrhythmias during follow-up. Conclusion: Plasma SMOC2 is associated with the severity of HF and readmission rate, and is a good predictor of the risk of readmission in patients.

12.
Curr Cardiol Rep ; 26(7): 705-715, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38748329

RESUMO

PURPOSE OF REVIEW: This review offers an evidence-based analysis of established and emerging cardiovascular magnetic resonance (CMR) techniques used to assess the severity of primary mitral regurgitation (MR), identify adverse cardiac remodeling and its prognostic effect. The aim is to provide different insights regarding clinical decision-making and enhance the clinical outcomes of patients with MR. RECENT FINDINGS: Cardiac remodeling and myocardial replacement fibrosis are observed frequently in the presence of substantial LV volume overload, particularly in cases with severe primary MR. CMR serves as a useful diagnostic imaging modality in assessing mitral regurgitation severity, early detection of cardiac remodeling, myocardial dysfunction, and myocardial fibrosis, enabling timely intervention before irreversible damage ensues. Incorporating myocardial remodeling in terms of left ventricular (LV) dilatation and myocardial fibrosis with quantitative MR severity assessment by CMR may assist in defining optimal timing of intervention.


Assuntos
Fibrose , Insuficiência da Valva Mitral , Índice de Gravidade de Doença , Remodelação Ventricular , Humanos , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/fisiopatologia , Prognóstico , Imagem Cinética por Ressonância Magnética/métodos , Miocárdio/patologia , Valva Mitral/diagnóstico por imagem , Valva Mitral/fisiopatologia , Valva Mitral/patologia
13.
Aging (Albany NY) ; 16(9): 8260-8278, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38728374

RESUMO

RATIONALE: Myocardial fibrosis is an important pathological change that occurs during ventricular remodeling in patients with hypertension and is an important pathophysiological basis of cardiovascular disease. However, the molecular mechanism underlying this ventricular remodeling is unclear. METHODS: Bioinformatics analysis identified HLA-B and TIMP1 as hub genes in the process of myocardial fibrosis. Expression and correlation analyses of significant hub genes with ventricular remodeling were performed. Weighted gene co-expression network analysis (WGCNA) was performed to verify the role of HLA-B. ceRNA network was constructed to identify the candidate molecule drugs. Receiver operating characteristic (ROC) curves were analyzed. RESULTS: RT-qPCR was performed to verify the roles of HLA-B and TIMP1 in seven control individuals with hypertension and seven patients with hypertension and ventricular remodeling. The WGCNA showed that HLA-B was in the brown module and the correlation coefficient between HLA-B and ventricular remodeling was 0.67. Based on univariate logistic proportional regression analysis, HLA-B influences ventricular remodeling (P<0.05). RT-qPCR showed that the relative expression levels of HLA-B and TIMP1 were significantly higher in HLVR samples compared with their expression in the control group. CONCLUSIONS: HLA-B and TIMP1 might provide novel research targets for the diagnosis and treatment of HLVR.


Assuntos
Antígenos HLA-B , Hipertensão , Inibidor Tecidual de Metaloproteinase-1 , Remodelação Ventricular , Humanos , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Remodelação Ventricular/genética , Antígenos HLA-B/genética , Hipertensão/genética , Masculino , Feminino , Pessoa de Meia-Idade , Redes Reguladoras de Genes , Biologia Computacional , Idoso , Fibrose/genética
14.
Cardiovasc Pathol ; 72: 107652, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38750778

RESUMO

BACKGROUND AND AIMS: Viral infections are the leading cause of myocarditis. Besides acute cardiac complications, late-stage sequelae such as myocardial fibrosis may develop, importantly impacting the prognosis. Coxsackievirus B3 (CVB)-induced myocarditis in mice is the most commonly used translational model to study viral myocarditis and has provided the majority of our current understanding of the disease pathophysiology. Nevertheless, the late stages of disease, encompassing fibrogenesis and arrhythmogenesis, have been underappreciated in viral myocarditis research to date. The present study investigated the natural history of CVB-induced myocarditis in C57BL/6J mice, expanding the focus beyond the acute phase of disease. In addition, we studied the impact of sex and inoculation dose on the disease course. METHODS AND RESULTS: C57BL/6J mice (12 weeks old; n=154) received a single intraperitoneal injection with CVB to induce viral myocarditis, or vehicle (PBS) as control. Male mice (n=92) were injected with 5 × 105 (regular dose) (RD) or 5 × 106 (high dose) (HD) plaque-forming units of CVB, whereas female mice received the RD only. Animals were sacrificed 1, 2, 4, 8, and 11 weeks after CVB or PBS injection. Virally inoculated mice developed viral disease with a temporary decline in general condition and weight loss, which was less pronounced in female animals (P<.001). In male CVB mice, premature mortality occurred between days 8 and 23 after inoculation (RD: 21%, HD: 20%), whereas all female animals survived. Over the course of disease, cardiac inflammation progressively subsided, with faster resolution in female mice. There were no substantial group differences in the composition of the inflammatory cell infiltrates: predominance of cytotoxic T cells at day 7 and 14, and a switch from arginase1-reactive macrophages to iNOS-reactive macrophages from day 7 to 14 were the main findings. There was concomitant development and maturation of different patterns of myocardial fibrosis, with enhanced fibrogenesis in male mice. Virus was almost completely cleared from the heart by day 14. Serum biomarkers of cardiac damage and cardiac expression of remodeling genes were temporarily elevated during the acute phase of disease. Cardiac CTGF gene upregulation was less prolonged in female CVB animals. In vivo electrophysiology studies at weeks 8 and 11 demonstrated that under baseline conditions (i.e. in the absence of proarrhythmogenic drugs), ventricular arrhythmias could only be induced in CVB animals. The cumulative arrhythmia burden throughout the entire stimulation protocol was not significantly different between CVB and control groups. CONCLUSION: CVB inoculation in C57BL/6J mice represents a model of acute self-limiting viral myocarditis, with progression to different patterns of myocardial fibrosis. Sex, but not inoculation dose, seems to modulate the course of disease.

15.
Acta Physiol (Oxf) ; 240(7): e14163, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38752665

RESUMO

AIM: To reveal the contribution of Irisin in the beneficial effects of resistance exercise on myocardial fibrosis (MF) and cardiac function in the mice with myocardial infarction (MI). METHODS: The MI model was built by ligating the left anterior descending coronary artery in Fndc5 knockout mice (Fndc5-/-). Resistance exercise was started one week after surgery and continued for four weeks. In addition, H2O2, AICAR, recombinant human Irisin protein (rhIRISIN), and Sirt1 shRNA lentivirus (LV-Sirt1 shRNA) were used to intervene primary isolated cardiac fibroblasts (CFs). MF was observed through Masson staining, and apoptosis was assessed using TUNEL staining. MDA and T-SOD contents were detected by biochemical kits. The expression of proteins and genes was detected by Western blotting and RT-qPCR. RESULTS: Resistance exercise increased Fndc5 mRNA level, inhibited the activation of TGFß1-TGFßR2-Smad2/3 pathway, activated AMPK-Sirt1 pathway, reduced the levels of oxidative stress, apoptosis, and MF in the infarcted heart, and promoted cardiac function. However, Fndc5 knockout attenuated the protective effects of resistance exercise on the MI heart. Results of the in vitro experiments showed that AICAR and rhIRISIN intervention activated the AMPK-Sirt1 pathway and inactivated the TGFß1-Smad2/3 pathway, and promoted apoptosis in H2O2-treated CFs. Notably, these effects of rhIRISIN intervention, except for the TGFßR2 expression, were attenuated by LV-Sirt1 shRNA. CONCLUSION: Resistance exercise upregulates Fndc5 expression, activates AMPK-Sirt1 pathway, inhibits the activation of TGFß1-Smad2/3 pathway, attenuates MF, and promotes cardiac function after MI.


Assuntos
Proteínas Quinases Ativadas por AMP , Fibronectinas , Fibrose , Camundongos Knockout , Infarto do Miocárdio , Sirtuína 1 , Fator de Crescimento Transformador beta1 , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Sirtuína 1/metabolismo , Sirtuína 1/genética , Fibronectinas/metabolismo , Fibronectinas/genética , Camundongos , Fibrose/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteína Smad2/metabolismo , Regulação para Cima , Treinamento Resistido , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Proteína Smad3/metabolismo , Proteína Smad3/genética , Condicionamento Físico Animal/fisiologia , Camundongos Endogâmicos C57BL , Transdução de Sinais
16.
J Transl Med ; 22(1): 494, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790051

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM), a serious complication of diabetes, leads to structural and functional abnormalities of the heart and ultimately evolves to heart failure. IL-37 exerts a substantial influence on the regulation of inflammation and metabolism. Whether IL-37 is involved in DCM is unknown. METHODS: The plasma samples were collected from healthy controls, diabetic patients and DCM patients, and the level of IL-37 and its relationship with heart function were observed. The changes in cardiac function, myocardial fibrosis and mitochondrial injury in DCM mice with or without IL-37 intervention were investigated in vivo. By an in vitro co-culture approach involving HG challenge of cardiomyocytes and fibroblasts, the interaction carried out by cardiomyocytes on fibroblast profibrotic activation was studied. Finally, the possible interactive mediator between cardiomyocytes and fibroblasts was explored, and the intervention role of IL-37 and its relevant molecular mechanisms. RESULTS: We showed that the level of plasma IL-37 in DCM patients was upregulated compared to that in healthy controls and diabetic patients. Both recombinant IL-37 administration or inducing IL-37 expression alleviated cardiac dysfunction and myocardial fibrosis in DCM mice. Mechanically, hyperglycemia impaired mitochondria through SIRT1/AMPK/PGC1α signaling, resulting in significant cardiomyocyte apoptosis and the release of extracellular vesicles containing mtDNA. Fibroblasts then engulfed these mtDNA-enriched vesicles, thereby activating TLR9 signaling and the cGAS-STING pathway to initiate pro-fibrotic process and adverse remodeling. However, the presence of IL-37 ameliorated mitochondrial injury by preserving the activity of SIRT1-AMPK-PGC1α axis, resulting in a reduction in release of mtDNA-enriched vesicle and ultimately attenuating the progression of DCM. CONCLUSIONS: Collectively, our study demonstrates a protective role of IL-37 in DCM, offering a promising therapeutic agent for this disease.


Assuntos
DNA Mitocondrial , Cardiomiopatias Diabéticas , Fibrose , Interleucina-1 , Miócitos Cardíacos , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Apoptose/efeitos dos fármacos , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , DNA Mitocondrial/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Interleucina-1/metabolismo , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167267, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810917

RESUMO

Small non-coding ribonucleic acids (sncRNAs) play an important role in cell regulation and are closely related to the pathogenesis of heart diseases. However, the role and molecular mechanism of transfer RNA-derived small RNAs (tsRNAs) in myocardial fibrosis after myocardial infarction (MI) remain unknown. In this study, we identified and validated sncRNAs (mainly miRNA and tsRNA) associated with myocardial fibrosis after MI through PANDORA sequencing of rat myocardial tissue. As a key enzyme of N4-acetylcytidine (ac4C) acetylation modification, N-acetyltransferase 10 (NAT10) plays an important role in regulating messenger RNA (mRNA) stability and translation efficiency. We found that NAT10 is highly expressed in infarcted myocardial tissue, and the results of acetylated RNA immunoprecipitation sequencing (acRIP-seq) analysis suggest that early growth response 3 (EGR3) may be an important molecule in the pathogenesis of NAT10-mediated myocardial fibrosis. Both in vivo and in vitro experiments have shown that inhibition of NAT10 can reduce the expression of EGR3 and alleviate myocardial fibrosis after MI. tsRNA can participate in gene regulation by inhibiting target genes. The expression of tsr007330 was decreased in myocardial infarction tissue. We found that overexpression of tsr007330 in rat myocardial tissue could antagonize NAT10, improve myocardial function in MI and alleviate myocardial fibrosis. In conclusion, tsRNAs (rno-tsr007330) may regulate the occurrence of myocardial fibrosis by regulating NAT10-mediated EGR3 mRNA acetylation. This study provides new insights into the improvement of myocardial fibrosis after MI by targeting tsRNA therapy.


Assuntos
Infarto do Miocárdio , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Acetilação , Ratos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fibrose/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Citidina/análogos & derivados , Citidina/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Sprague-Dawley , Humanos , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Acetiltransferases N-Terminal
18.
Eur J Pharm Sci ; 199: 106794, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788908

RESUMO

Myocardial fibrosis can induce cardiac dysfunction and remodeling. Great attention has been paid to traditional chinese medicine (TCM) 's effectiveness in treating MF. Radix Angelica sinensis (Oliv.) Diels and Radix Astragalus mongholicus Bunge ultrafiltration extract (RAS-RA), which is a key TCM compound preparation, have high efficacy in regulating inflammation. However, studies on its therapeutic effect on radiation-induced myocardial fibrosis (RIMF) are rare. In this study, RAS-RA had therapeutic efficacy in RIMF and elucidated its mechanism of action. First, we formulated the prediction network that described the relation of RAS-RA with RIMF according to data obtained in different databases. Then, we conducted functional enrichment to investigate the functions and pathways associated with potential RIMF targets for RAS-RA. In vivo experiments were also performed to verify these functions and pathways. Second, small animal ultrasound examinations, H&E staining, Masson staining, transmission electron microscopy, Enzyme-linked immunosorbent assay (ELISA), Western-blotting, Immunohistochemical method and biochemical assays were conducted to investigate the possible key anti-RIMF pathway in RAS-RA. In total, 440 targets were detected in those 21 effective components of RAS-RA; meanwhile, 1,646 RIMF-related disease targets were also discovered. After that, PPI network analysis was conducted to identify 20 key targets based on 215 overlap gene targets. As indicated by the gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis results, inflammation and PI3K/AKT/mTOR pathways might have important effects on the therapeutic effects on RIMF. Molecular docking analysis revealed high binding of effective components to targets (affinity < -6 kcal/mol). Based on experimental verification results, RAS-RA greatly mitigated myocardial fibrosis while recovering the cardiac activity of rats caused by X-rays. According to relevant protein expression profiles, the PI3K/AKT/mTOR pathway was important for anti-fibrosis effect of RAS-RA. Experimental studies showed that RAS-RA improved cardiac function, decreased pathological damage and collagen fiber deposition in cardiac tissues, and improved the mitochondrial structure of the heart of rats. RAS-RA also downregulated TNF-α, IL-6, and IL-1ß levels. Additionally, RAS-RA improved the liver and kidney functions and pathological injury of rat kidney and liver tissues, enhanced liver and kidney functions, and protected the liver and kidneys. RAS-RA also increased PI3K, AKT and mTOR protein levels within cardiac tissues and downregulated α-SMA, Collagen I, and Collagen III. The findings of this study suggested that RAS-RA decreased RIMF by suppressing collagen deposition and inflammatory response by inhibiting the PI3K/AKT/mTOR pathway. Thus, RAS-RA was the potential therapeutic agent used to alleviate RIMF.


Assuntos
Angelica sinensis , Medicamentos de Ervas Chinesas , Fibrose , Farmacologia em Rede , Ratos Sprague-Dawley , Animais , Angelica sinensis/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Masculino , Ratos , Astrágalo/química , Miocárdio/patologia , Miocárdio/metabolismo , Ultrafiltração/métodos , Transdução de Sinais/efeitos dos fármacos , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Serina-Treonina Quinases TOR/metabolismo
19.
J Tradit Chin Med ; 44(3): 448-457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38767628

RESUMO

OBJECTIVE: Exploring the effect of Optimized New Shengmai powder (, ONSMP) on myocardial fibrosis in heart failure (HF) based on rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway. METHODS: Randomized 70 Sprague-Dawley rats into sham (n = 10) and operation (n = 60) groups, then established the HF rat by ligating the left anterior descending branch of the coronary artery. We randomly divided the operation group rats into the model, ONSMP [including low (L), medium (M), and high (H) dose], and enalapril groups. After the 4-week drug intervention, echocardiography examines the cardiac function and calculates the ratios of the whole/left heart to the rat's body weight. Finally, we observed the degree of myocardial fibrosis by pathological sections, determined myocardium collagen (COL) I and COL Ⅲ content by enzyme-linked immunosorbent assay, detected the mRNA levels of COL I, COL Ⅲ, α-smooth muscle actin (α-SMA), and c-Fos proto-oncogene (c-Fos) by universal real-time, and detected the protein expression of p-RAS, p-RAF, p-MEK1/2, p-ERK1/2, p-ETS-like-1 transcription factor (p-ELK1), p-c-Fos, α-SMA, COL I, and COL Ⅲ by Western blot. RESULTS: ONSMP can effectively improve HF rat's cardiac function, decrease cardiac organ coefficient, COL volume fraction, and COL I/Ⅲ content, down-regulate the mRNA of COL I/Ⅲ, α-SMA and c-Fos, and the protein of p-RAS, p-RAF, p-MEK1/ 2, p-ERK1/2, p-ELK1, c-Fos, COL Ⅰ/Ⅲ, and α-SMA. CONCLUSIONS: ONSMP can effectively reduce myocardial fibrosis in HF rats, and the mechanism may be related to the inhibition of the RAS/RAF/MEK/ERK signaling pathway.


Assuntos
Combinação de Medicamentos , Medicamentos de Ervas Chinesas , Fibrose , Insuficiência Cardíaca , Ratos Sprague-Dawley , Animais , Medicamentos de Ervas Chinesas/administração & dosagem , Ratos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/etiologia , Masculino , Fibrose/tratamento farmacológico , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Transdução de Sinais/efeitos dos fármacos , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/metabolismo
20.
J Clin Med ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792470

RESUMO

Chronic aortic regurgitation (AR) leads to volume overload in the left ventricle (LV), which is well tolerated for years. In this condition, the LV usually dilates with minimal reduction in the ejection fraction (EF), even in the absence of symptoms. Echocardiography is the primary imaging test used to quantify AR. However, no single assessment of Doppler measures is accurate and precise in individual patients; therefore, the integration of multiple parameters is necessary. Recent guidelines recommend surgical treatment for severe AR in patients who are symptomatic or have an LVEF < 55% and an end-systolic diameter > 50 mm. Nevertheless, advances in imaging technology have improved the quantification of AR and the assessment of LV subclinical dysfunction. It is widely recognized that patients who undergo aortic valve replacement/repair (AVR) due to symptoms or a low LVEF experience worse outcomes than those undergoing AVR for non-Class I indications. In fact, subclinical irreversible myocardial damage may occur in clinically well-compensated and closely monitored patients while awaiting formal surgical indications. This condition could be prevented by the use of multimodal imaging parameters, in particular longitudinal LV strain and magnetic resonance imaging. In addition, better cut-off values for mortality predictors should be established. This review aims to identify simple models that integrate several echocardiographic and cardiac magnetic resonance-derived parameters to predict the optimal timing of surgical treatment in asymptomatic patients with chronic severe AR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...