Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
1.
Sci Rep ; 14(1): 14220, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902332

RESUMO

Glucose transporter-2 (GLUT2) monitors cellular glucose uptake. Astrocyte GLUT2 controls glucose counterregulatory hormone secretion. In vivo gene silencing and laser-catapult-microdissection tools were used here to investigate whether ventromedial hypothalamic nucleus (VMN) GLUT2 may regulate dorsomedial (VMNdm) and/or ventrolateral (VMNvl) γ-aminobutyric acid (GABA) neurotransmission to control this endocrine outflow in female rats. VMN GLUT2 gene knockdown suppressed or stimulated hypoglycemia-associated glutamate decarboxylase (GAD)1 and GAD2 mRNA expression in VMNdm versus VMNvl GABAergic neurons, respectively. GLUT2 siRNA pretreatment also modified co-expressed transmitter marker gene profiles in each cell population. VMNdm GABA neurons exhibited GLUT2 knockdown-sensitive up-regulated 5'-AMP-activated protein kinase-alpha1 (AMPKα1) and -alpha2 (AMPKα2) transcripts during hypoglycemia. Hypoglycemic augmentation of VMNvl GABA neuron AMPKα2 was refractory to GLUT2 siRNA. GLUT2 siRNA blunted (VMNdm) or exacerbated (VMNvl) hypoglycemic stimulation of GABAergic neuron steroidogenic factor-1 (SF-1) mRNA. Results infer that VMNdm and VMNvl GABA neurons may exhibit divergent, GLUT2-dependent GABA neurotransmission patterns in the hypoglycemic female rat. Data also document differential GLUT2 regulation of VMNdm versus VMNvl GABA nerve cell SF-1 gene expression. Evidence for intensification of hypoglycemic hypercorticosteronemia and -glucagonemia by GLUT2 siRNA infers that VMN GLUT2 function imposes an inhibitory tone on these hormone profiles in this sex.


Assuntos
Neurônios GABAérgicos , Transportador de Glucose Tipo 2 , Hipoglicemia , Núcleo Hipotalâmico Ventromedial , Animais , Feminino , Ratos , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Neurônios GABAérgicos/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Hipoglicemia/metabolismo , Hipoglicemia/genética , Regulação da Expressão Gênica , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/genética , Ratos Sprague-Dawley , Glucose/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
2.
Antioxidants (Basel) ; 13(5)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38790700

RESUMO

Facial nerve injury can cause significant functional impairment, impacting both the peripheral and central nervous systems. The present study evaluated changes in facial motor function, numbers of cholinergic neurons and microglia, and nNOS levels in the facial nucleus of the central nervous system (CNS) following peripheral facial nerve injury. Facial nerve function, as determined by eyeblink and whisker-movement reflexes, was evaluated at baseline and 1, 2, 3, 4, 8, and 12 weeks after inducing facial nerve injury through compression or axotomy. The expression of choline acetyltransferase (ChAT), ionized calcium-binding adaptor molecule 1 (Iba-1), and neuronal nitric oxide synthase (nNOS) in the facial nucleus of the CNS was analyzed 2, 4, and 12 weeks after peripheral facial nerve injury. Compression-induced facial nerve injury was found to lead to temporary facial motor impairment, whereas axotomy resulted in persistent impairment. Moreover, both compression and axotomy reduced ChAT expression and increased Iba-1 and nNOS expression in the facial nucleus, indicating upregulation of an inflammatory response and neurodegeneration. These results indicate that, compared with compression-induced injury, axotomy-induced facial nerve injury results in greater facial motor dysfunction and more persistent microglial and nitric oxide activation in the facial nucleus of the CNS.

3.
Front Physiol ; 15: 1352242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784116

RESUMO

Introduction: Nitric oxide (NO) is a vasodilator gas that plays a critical role in mitochondrial respiration and skeletal muscle function. NO is endogenously generated by NO synthases: neuronal NO synthase (nNOS), endothelial NO synthase (eNOS), or inducible NO synthase (iNOS). NO in skeletal muscle is partly generated by nNOS, and nNOS deficiency can contribute to muscular dystrophic diseases. However, we and others discovered an alternative nitrate/nitrite reductive pathway for NO generation: nitrate to nitrite to NO. We hypothesized that nitrate supplementation would increase nitrate accumulation in skeletal muscle and promote a nitrate/nitrite reductive pathway for NO production to compensate for the loss of nNOS in skeletal muscle. Methods: Wild-type (WT) and genetic nNOS knockout (nNOS-/-) mice were fed normal chow (386.9 nmol/g nitrate) and subjected to three treatments: high-nitrate water (1 g/L sodium nitrate for 7 days), low-nitrate diet (46.8 nmol/g nitrate for 7 days), and low-nitrate diet followed by high-nitrate water for 7 days each. Results: High-nitrate water supplementation exhibited a greater and more significant increase in nitrate levels in skeletal muscle and blood in nNOS-/- mice than in WT mice. A low-nitrate diet decreased blood nitrate and nitrite levels in both WT and nNOS-/- mice. WT and nNOS-/- mice, treated with low-nitrate diet, followed by high-nitrate water supplementation, showed a significant increase in nitrate levels in skeletal muscle and blood, analogous to the increases observed in nNOS-/- mice supplemented with high-nitrate water. In skeletal muscle of nNOS-/- mice on high-nitrate water supplementation, on low-nitrate diet, and in low-high nitrate treatment, the loss of nNOS resulted in a corresponding increase in the expression of nitrate/nitrite reductive pathway-associated nitrate transporters [sialin and chloride channel 1 (CLC1)] and nitrate/nitrite reductase [xanthine oxidoreductase (XOR)] but did not show a compensatory increase in iNOS or eNOS protein and eNOS activation activity [p-eNOS (Ser1177)]. Discussion: These findings suggest that a greater increase in nitrate levels in skeletal muscle of nNOS-/- mice on nitrate supplementation results from reductive processes to increase NO production with the loss of nNOS in skeletal muscle.

4.
Brain ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701344

RESUMO

The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) in depression is a topic of debate, and the underlying mechanisms remain largely unclear. We now elucidate hippocampal excitation-inhibition (E/I) balance underlies the regulatory effects of 5-HT2CR in depression. Molecular biological analyses showed that chronic mild stress (CMS) reduced the expression of 5-HT2CR in hippocampus. We revealed that inhibition of 5-HT2CR induced depressive-like behaviors, reduced GABA release and shifted the E/I balance towards excitation in CA3 pyramidal neurons by using behavioral analyses, microdialysis coupled with mass spectrum, and electrophysiological recording. Moreover, 5-HT2CR modulated neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS (CAPON) interaction through influencing intracellular Ca2+ release, as determined by fiber photometry and coimmunoprecipitation. Notably, disruption of nNOS-CAPON by specific small molecule compound ZLc-002 or AAV-CMV-CAPON-125C-GFP, abolished 5-HT2CR inhibition-induced depressive-like behaviors, as well as the impairment in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly-mediated GABA vesicle release and a consequent E/I imbalance. Importantly, optogenetic inhibition of CA3 GABAergic neurons prevented the effects of AAV-CMV-CAPON-125C-GFP on depressive behaviors in the presence of 5-HT2CR antagonist. Conclusively, our findings disclose the regulatory role of 5-HT2CR in depressive-like behaviors and highlight the hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioral consequences of 5-HT2CR inhibition.

5.
Front Physiol ; 15: 1338476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628440

RESUMO

Introduction: Erythropoietin (EPO) acts primarily in regulating red blood cell production mediated by high EPO receptor (EPOR) expression in erythroid progenitor cells. EPO activity in non-erythroid tissue is evident in mice with EPOR restricted to erythroid tissues (ΔEPORE) that become obese, glucose-intolerant, and insulin-resistant. In animal models, nitric oxide synthase (NOS) contributes to EPO activities including erythropoiesis, neuroprotection, and cardioprotection against ischemia-reperfusion injury. However, we found that extended EPO treatment to increase hematocrit compromised heart function, while the loss of neuronal NOS (nNOS) was protective against the deleterious activity of EPO to promote heart failure. Methods: Wild-type (WT) mice, ΔEPORE mice, and nNOS-knockout mice (nNOS-/-) were placed on a high-fat diet to match the ΔEPORE obese phenotype and were treated with EPO for 3 weeks. Hematocrit and metabolic response to EPO treatment were monitored. Cardiac function was assessed by echocardiography and ultrasonography. Results: ΔEPORE mice showed a decrease in the left ventricular outflow tract (LVOT) peak velocity, ejection fraction, and fractional shortening, showing that endogenous non-erythroid EPO response is protective for heart function. EPO treatment increased hematocrit in all mice and decreased fat mass in male WT, demonstrating that EPO regulation of fat mass requires non-erythroid EPOR. EPO treatment also compromised heart function in WT mice, and decreased the pulmonary artery peak velocity (PA peak velocity), LVOT peak velocity, ejection fraction, and fractional shortening, but it had minimal effect in further reducing the heart function in ΔEPORE mice, indicating that the adverse effect of EPO on heart function is not related to EPO-stimulated erythropoiesis. ΔEPORE mice had increased expression of heart failure-associated genes, hypertrophic cardiomyopathy-related genes, and sarcomeric genes that were also elevated with EPO treatment in WT mice. Male and female nNOS-/- mice were protected against diet-induced obesity. EPO treatment in nNOS-/- mice increased the hematocrit that tended to be lower than WT mice and decreased the PA peak velocity but did not affect the LVOT peak velocity, ejection fraction, and fractional shortening, suggesting that nNOS is required for the adverse effect of EPO treatment on heart function in WT mice. EPO treatment did not change expression of heart failure-associated gene expression in nNOS-/- mice. Discussion: Endogenous EPO has a protective effect on heart function. With EPO administration, in contrast to the protective effect to the cardiac injury of acute EPO treatment, extended EPO treatment to increase hematocrit in WT mice adversely affected the heart function with a corresponding increase in expression of heart failure-associated genes. This EPO activity was independent of EPO-stimulated erythropoiesis and required EPOR in non-erythroid tissue and nNOS activity, while nNOS-/- mice were protected from the EPO-associated adverse effect on heart function. These data provide evidence that nNOS contributes to the negative impact on the heart function of high-dose EPO treatment for anemia.

6.
Helminthologia ; 61(1): 40-45, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38659468

RESUMO

The free radical nitric oxide (NO) and Ca2+ are critical regulators of skeletal muscle exercise performance and fatigue. The major source of NO in skeletal muscle cells is the neuronal form of the enzyme Nitric oxide synthase (nNOS). One of the most peculiar characteristics of the Nurse cell of Trichinella spiralis (T. spiralis) is the complete loss of the contractile capabilities of its derivative striated muscle fiber. The aim of the present study was to clarify the expression of nNOS protein and mRNA in striated muscles during the muscle phase of T. spiralis infection in mice. Muscle tissue samples were collected from mice at days 0, 14, 24, and 35 post infection (d.p.i.). The expression of nNOS was investigated by immunohistochemistry, and the expression levels of mRNA of mouse Nitric oxide synthase 1 (Nos1) by real-time PCR. The presence of nNOS protein was still well observable in the disintegrated sarcoplasm at the early stage of infection. The cytoplasm of the developing and mature Nurse cell showed the absence of this protein. At least at the beginning of the Nurse cell development, Trichinella uses the same repairing process of skeletal muscle cell, induced after any trauma and this corroborates very well our results concerning the nNOS expression on day 14 p.i. At a later stage, however, we could suggest that the down-regulation of nNOS in the Nurse cell of T. spiralis either serves a protective function or is an outcome of the genetic identity of the Nurse cell.

7.
Anat Rec (Hoboken) ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618880

RESUMO

Recent studies have suggested a connection between disturbances of the apelin system and various cardiac pathologies, including hypertension, heart failure, and atherosclerosis. Vascular endothelial growth factor is crucial for cardiac homeostasis as a critical molecule in cardiac angiogenesis. Neuronal nitric oxide synthase is an essential enzyme producing nitric oxide, a key regulator of vascular tone. The present study aims to shed light upon the complex interactions between these three vital signaling molecules and examine their changes with the progression of hypertensive heart disease. We used two groups of spontaneously hypertensive rats and age-matched Wistar rats as controls. The expression of the apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase were assessed immunohistochemically. We used capillary density and cross-sectional area of the cardiomyocytes as quantitative parameters of cardiac hypertrophy. Immunoreactivity of the molecules was more potent in both ventricles of spontaneously hypertensive rats compared with age-matched controls. However, capillary density was lower in both ventricles of the two age groups of spontaneously hypertensive rats compared with controls, and the difference was statistically significant. In addition, the cross-sectional area of the cardiomyocytes was higher in both ventricles of the two age groups of spontaneously hypertensive rats compared with controls, and the difference was statistically significant. Our study suggests a potential link between the apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase in cardiac homeostasis and the hypertensive myocardium. Nevertheless, further research is required to better comprehend these interactions and their potential therapeutic implications.

8.
J Neural Transm (Vienna) ; 131(3): 275-280, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38253928

RESUMO

Nitric oxide (NO) has been thought to be a novel factor involved in the mechanisms of mental disorders pathogenesis for quite some time. However, little is known about potential crosstalk between neuronal NO signaling and neuroleptics action. The present work was, therefore, focused on gene expression of neuronal NO synthase (nNOS) in the brains of rats chronically treated with olanzapine, an atypical antipsychotic drug. Studies were carried out on adult, male Sprague-Dawley rats that were divided into 2 groups: control and experimental animals treated with olanzapine (28-day-long intraperitoneal injection, at dose 5 mg/kg daily). All individuals were killed under anesthesia and the whole brains excised. Immunohistochemical procedure was used for histological assessment of the whole brain, and for both descriptive and quantitative analysis of nNOS protein distribution in selected brain structures. Long-term treatment with olanzapine is reflected in different changes in the number of enzyme-expressing cells in the rat brain. Olanzapine decreased the number of nNOS-expressing cells and possibly reduced NO synthesis in the rat striatum. Olanzapine can be taken into account as a potential inhibitor of NO synthesis in the rat striatum.


Assuntos
Antipsicóticos , Corpo Estriado , Animais , Masculino , Ratos , Antipsicóticos/farmacologia , Corpo Estriado/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Olanzapina/farmacologia , Ratos Sprague-Dawley
9.
Mol Nutr Food Res ; 68(3): e2300253, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38054627

RESUMO

SCOPE: Depression is a severe mental condition, common among menopausal women. γ-Oryzanol (ORY) has various biological properties; however, the effect of ORY on menopausal depression and its underlying mechanisms have not been investigated. METHODS AND RESULTS: ORY is orally administered to ovariectomized (OVX) mice for 20 weeks. ORY administration results in lower immobility time in the tail suspension and forced swim test and increases locomotor activity in the open field test. In the primary hippocampal neurons and hippocampi of OVX mice, ORY treatment increases nitric oxide (NO) production and neuronal NO synthase (nNOS) expression. Further, the phosphorylation of extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), and tropomyosin receptor kinase B, along with the expression of brain-derived neurotrophic factior (BDNF), is upregulated. These stimulatory effects of ORY are diminished by treatment with estrogen receptor ß (ERß) antagonist. ORY similarly interacts with ERß in the molecular docking analysis. Moreover, intracerebroventricular injection of 7-nitroindazole, a nNOS inhibitor, abolishes the antidepressant effects of ORY. CONCLUSIONS: The results indicate that ORY attenuates depressive behavior in OVX mice by upregulating ERß-mediated hippocampal nNOS expression and activating the ERK-CREB-BDNF signaling networks. The findings suggest that ORY is a potential therapeutic agent for attenuating menopausal depression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Fenilpropionatos , Camundongos , Feminino , Humanos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor beta de Estrogênio/metabolismo , Simulação de Acoplamento Molecular , Hipocampo/metabolismo , Óxido Nítrico Sintase/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Menopausa , Óxido Nítrico/metabolismo
10.
Cell Rep ; 42(11): 113390, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37930888

RESUMO

In the retina, rod and cone pathways mediate visual signals over a billion-fold range in luminance. AII ("A-two") amacrine cells (ACs) receive signals from both pathways via different bipolar cells, enabling AIIs to operate at night and during the day. Previous work has examined luminance-dependent changes in AII gap junction connectivity, but less is known about how surrounding circuitry shapes AII receptive fields across light levels. Here, we report that moderate contrast stimuli elicit surround inhibition in AIIs under all but the dimmest visual conditions, due to actions of horizontal cells and at least two ACs that inhibit presynaptic bipolar cells. Under photopic (daylight) conditions, surround inhibition transforms AII response kinetics, which are inherited by downstream ganglion cells. Ablating neuronal nitric oxide synthase type-1 (nNOS-1) ACs removes AII surround inhibition under mesopic (dusk/dawn), but not photopic, conditions. Our findings demonstrate how multiple layers of neural circuitry interact to encode signals across a wide physiological range.


Assuntos
Células Amácrinas , Retina , Células Amácrinas/fisiologia , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones , Junções Comunicantes/fisiologia
11.
Eur J Med Chem ; 261: 115871, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37852031

RESUMO

Aberrant activation of N-methyl-d-aspartate receptors (NMDAR) and the resulting neuronal nitric oxide synthase (nNOS) excessive activation play crucial pathogenic roles in neuronal damage caused by stroke. Disrupting postsynaptic density protein 95 (PSD95)-nNOS protein-protein interaction (PPI) has been proposed as a potential therapeutic strategy for ischemic stroke without incurring the unwanted side effects of direct NMDAR antagonism. Based on a specific PSD95-nNOS PPI inhibitor (SCR4026), we conducted a detailed study on structure-activity relationship (SAR) to discover a series of novel benzyloxy benzamide derivatives. Here, our efforts resulted in the best 29 (LY836) with improved neuroprotective activities in primary cortical neurons from glutamate-induced damage and drug-like properties. Whereafter, co-immunoprecipitation experiment demonstrated that 29 significantly blocked PSD95-nNOS association in cultured cortical neurons. Furthermore, 29 displayed good pharmacokinetic properties (T1/2 = 4.26 and 4.08 h after oral and intravenous administration, respectively) and exhibited powerful therapeutic effects in rats subjected to middle cerebral artery occlusion (MCAO) by reducing infarct size and neurological deficit score. These findings suggested that compound 29 may be a promising neuroprotection agent for the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , AVC Isquêmico/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Ratos Sprague-Dawley , Proteína 4 Homóloga a Disks-Large , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Óxido Nítrico Sintase Tipo I/metabolismo , Isquemia Encefálica/tratamento farmacológico
12.
Biomedicines ; 11(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37892970

RESUMO

Type 2 diabetes mellitus (T2D) is a significant global public health problem that has seen a substantial increase in the number of affected individuals in recent decades. In a murine model of T2D (db/db), we found several abnormalities, including aberrant intracellular calcium concentration ([Ca2+]i), decreased glucose transport, increased production of reactive oxygen species (ROS), elevated levels of pro-inflammatory interleukins and creatine phosphokinase (CK), and muscle weakness. Previously, we demonstrated that passive pulsatile shear stress, generated by sinusoidal (headward-forward) motion, using a motion platform that provides periodic acceleration of the whole body in the Z plane (pGz), induces the synthesis of nitric oxide (NO) mediated by constitutive nitric oxide synthase (eNOS and nNOS). We investigated the effect of pGz on db/db a rodent model of T2D. The treatment of db/db mice with pGz resulted in several beneficial effects. It reduced [Ca2+]i overload; enhanced muscle glucose transport; and decreased ROS levels, interleukins, and CK. Furthermore, pGz treatment increased the expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), and neuronal nitric oxide synthase (nNOS); reduced inducible nitric oxide synthase (iNOS); and improved muscle strength. The cytoprotective effects of pGz appear to be mediated by NO, since pretreatment with L-NAME, a nonspecific NOS inhibitor, abolished the effects of pGz on [Ca2+]i and ROS production. Our findings suggest that a non-pharmacological strategy such as pGz has therapeutic potential as an adjunct treatment to T2D.

13.
Nitric Oxide ; 140-141: 41-49, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714296

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral deficits such as abnormalities in communication, social interaction, anxiety, and repetitive behavior. We have recently shown that the Shank3 mutation in mice representing a model of ASD causes excessive nitric oxide (NO) levels and aberrant protein S-nitrosylation. Further, 10-day daily injections of 7-NI, a neuronal nitric oxide synthase inhibitor, into Shank3Δ4-22 and Cntnap2(-/-) mutant mice (models of ASD) at a dose of 80 mg/kg reversed the manifestations of ASD phenotype. In this study, we proposed an extended release of 7-NI using a novel drug system. Importantly, unlike the intraperitoneal injections, our new preparation of poly (sebacic acid-co-ricinoleic acid) (PSARA) gel containing 7-NI was injected subcutaneously into the mutant mice only once. The animals underwent behavioral testing starting from day 3 post-injection. It should be noted that the developed PSARA gel formulation allowed a slow release of 7-NI maintaining the plasma level of the drug at ∼45 µg/ml/day. Further, we observed improved memory and social interaction and reduced anxiety-like behavior in Shank3 mutant mice. This was accompanied by a reduction in 3-nitrotyrosine levels (an indicator of nitrative/nitrosative stress) in plasma. Overall, we suggest that our single-dose formulation of PSARA gel is very efficient in rendering a therapeutic effect of 7-NI for at least 10 days. This approach may provide in the future a rational design of an effective ASD treatment using 7-NI and its clinical translation.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Transtorno Autístico/genética , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Indazóis , Comportamento Animal , Modelos Animais de Doenças , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso
14.
Molecules ; 28(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764469

RESUMO

In the Central Nervous System (CNS), Nitric Oxide (NO) is mainly biosynthesized by neuronal Nitric Oxide Synthase (nNOS). The dysregulated activation of nNOS in neurons is critical in the development of different conditions affecting the CNS. The excessive production of NO by nNOS is responsible for a number of proteins' post-translational modifications (PTMs), which can lead to aberrant biochemical pathways, impairing CNS functions. In this review, we briefly revise the main implications of dysregulated nNOS in the progression of the most prevalent CNS neurodegenerative disorders, i.e., Alzheimer's disease (AD) and Parkinson's disease, as well as in the development of neuronal disorders. Moreover, a specific focus on compounds able to modulate nNOS activity as promising therapeutics to tackle different neuronal diseases is presented.

15.
Biomed Pharmacother ; 167: 115530, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722191

RESUMO

Kidney transplantation is the treatment of choice for patients with kidney failure. Compared to dialysis therapy, it provides better quality of life and confers significant survival advantage at a relatively lower cost. However, the long-term success of this life-saving intervention is severely hampered by an inexorable clinical problem referred to as ischemia-reperfusion injury (IRI), and increases the incidence of post-transplant complications including loss of renal graft function and death of transplant recipients. Burgeoning evidence shows that nitric oxide (NO), a poisonous gas at high concentrations, and with a historic negative public image as an environmental pollutant, has emerged as a potential candidate that holds clinical promise in mitigating IRI and preventing acute and chronic graft rejection when it is added to kidney preservation solutions at low concentrations or when administered to the kidney donor prior to kidney procurement and to the recipient or to the reperfusion circuit at the start and during reperfusion after renal graft preservation. Interestingly, dysregulated or abnormal endogenous production and metabolism of NO is associated with IRI in kidney transplantation. From experimental and clinical perspectives, this review presents endogenous enzymatic production of NO as well as its exogenous sources, and then discusses protective effects of constitutive nitric oxide synthase (NOS)-derived NO against IRI in kidney transplantation via several signaling pathways. The review also highlights a few isolated studies of renal graft protection by NO produced by inducible NOS.


Assuntos
Transplante de Rim , Traumatismo por Reperfusão , Humanos , Transplante de Rim/efeitos adversos , Óxido Nítrico/metabolismo , Qualidade de Vida , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Rim/metabolismo , Traumatismo por Reperfusão/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo
16.
Neurochem Int ; 169: 105586, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442439

RESUMO

Cerebral ischemic/reperfusion (I/R) injury has become a great challenge harming patients' life. This study aims to explore the regulatory role of Preso during cerebral I/R injury and to elucidate the potential mechanism. Here, we established a middle cerebral artery occlusion/reperfusion (MCAO/IR) rat model and an oxygen-glucose deprivation/reoxygenation (OGD/R)-mediated PC12 cell model to evaluate the expression and role of Preso following cerebral I/R injury. Histopathological injury and infarct size were assessed by hematoxylin and eosin (HE) and 2,3,5-Triphenyltertrazolium chloride (TTC) staining. Double immunofluorescence staining was performed to assess neuronal apoptosis in brain tissues. Cell counting kit-8 (CCK-8) and flow cytometry were performed to evaluate cell viability and apoptosis, respectively. The reactive oxygen species (ROS) and nitric oxide (NO) levels were detected using their respective detection kits, and the expression of corresponding proteins was examined adopting Western blot. The results showed that Preso was upregulated in OGD/R-induced PC12 cells and MCAO rats. Preso knockdown significantly reduced OGD/R-caused viability loss, apoptosis and oxidative stress in PC12 cells, and reduced infarct size, attenuated histological injury, and inhibited apoptosis and oxidative stress in the brain tissues from MCAO rats, as well as inhibiting the expression of postsynaptic density protein-95 (PSD95) and nitric oxide synthase (nNOS) and repressing YAP phosphorylation in vitro. In addition, the protective role of Preso knockdown against cerebral I/R injury was partly strengthened by IC87201, the nNOS/PSD95 interaction inhibitor, or weakened by Verteporfin (Vert), an inhibitor of YAP. In conclusion, Perso knockdown might exert a protective role against cerebral I/R injury via regulating PSD95-nNOS and YAP pathways, providing a potential therapeutic target for the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Ratos , Apoptose , Isquemia Encefálica/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Regulação para Baixo , Infarto da Artéria Cerebral Média/metabolismo , Óxido Nítrico Sintase/metabolismo , Reperfusão , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/metabolismo , Proteínas de Sinalização YAP/metabolismo
17.
J Biochem Mol Toxicol ; 37(9): e23414, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37341015

RESUMO

Methotrexate (MTX) is a chemotherapeutic agent widely used to treat a variety of tumors. Nonetheless, MTX-induced hippocampal neurotoxicity is a well-defined dose-limiting adverse effect that limits clinical utility. Proinflammatory cytokine production and oxidative stress are possible mechanisms for MTX-induced neurotoxicity. Buspirone (BSP), a partial agonist of the 5-HT1a receptor (5-HT1aR), has emerged as an anxiolytic drug. BSP has been shown to possess antioxidant and anti-inflammatory effects. The current study investigated BSP's potential anti-inflammatory and antioxidant effects in attenuating MTX-induced hippocampal toxicity. Rats received either BSP (1.5 mg/kg) orally for 10 days and MTX (20 mg/kg) i.p. on Day 5. BSP administration markedly protected hippocampal neurons from drastic degenerated neuronal changes induced by MTX. BSP significantly attenuated oxidative injury by downregulating Kelch-like ECH-associated protein 1 expression while potently elevating hippocampal Nrf2, heme oxygenase-1, and peroxisome proliferator-activated receptor expression. BSP dampened inflammation by reducing NO2 - , tumor necrosis factor-alpha, IL-6, and interleukin 1 beta levels mediated by downregulating NF-κB and neuronal nitric oxides synthase expression. Moreover, BSP potently counteracted hippocampal pyroptosis by downregulating NLRP3, ASC, and cleaved-caspase-1 proteins. Therefore, BSP may represent a promising approach to attenuate neurotoxicity in patients receiving MTX.


Assuntos
Metotrexato , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Metotrexato/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Buspirona/farmacologia , Caspase 1/metabolismo , PPAR gama/metabolismo , Transdução de Sinais , Antioxidantes/farmacologia , Estresse Oxidativo , Anti-Inflamatórios/farmacologia
18.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298293

RESUMO

We studied the relationship between neuronal NO synthase (nNOS) expression and capillarity in the tibialis anterior (TA) muscle of mice subjected to treadmill training. The mRNA (+131%) and protein (+63%) levels of nNOS were higher (p ≤ 0.05) in the TA muscle of C57BL/6 mice undergoing treadmill training for 28 days than in those of littermates remaining sedentary, indicating an up-regulation of nNOS by endurance exercise. Both TA muscles of 16 C57BL/6 mice were subjected to gene electroporation with either the pIRES2-ZsGreen1 plasmid (control plasmid) or the pIRES2-ZsGreen1-nNOS gene-inserted plasmid (nNOS plasmid). Subsequently, one group of mice (n = 8) underwent treadmill training for seven days, while the second group of mice (n = 8) remained sedentary. At study end, 12-18% of TA muscle fibers expressed the fluorescent reporter gene ZsGreen1. Immunofluorescence for nNOS was 23% higher (p ≤ 0.05) in ZsGreen1-positive fibers than ZsGreen1-negative fibers from the nNOS-transfected TA muscle of mice subjected to treadmill training. Capillary contacts around myosin heavy-chain (MHC)-IIb immunoreactive fibers (14.2%; p ≤ 0.05) were only higher in ZsGreen1-positive fibers than ZsGreen1-negative fibers in the nNOS-plasmid-transfected TA muscles of trained mice. Our observations are in line with an angiogenic effect of quantitative increases in nNOS expression, specifically in type-IIb muscle fibers after treadmill training.


Assuntos
Músculo Esquelético , Condicionamento Físico Animal , Animais , Camundongos , Fenômenos Fisiológicos Cardiovasculares , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Regulação para Cima
19.
Antioxidants (Basel) ; 12(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37371910

RESUMO

The vegetal polyphenol curcumin displays beneficial effects against skeletal muscle derangement induced by oxidative stress, disuse or aging. Since oxidative stress and inflammation are involved in the progression of muscle dystrophy, the effects of curcumin administration were investigated in the diaphragm of mdx mice injected intraperitoneally or subcutaneously with curcumin for 4-12-24 weeks. Curcumin treatment independently of the way and duration of administration (i) ameliorated myofiber maturation index without affecting myofiber necrosis, inflammation and degree of fibrosis; (ii) counteracted the decrease in type 2X and 2B fiber percentage; (iii) increased about 30% both twitch and tetanic tensions of diaphragm strips; (iv) reduced myosin nitrotyrosination and tropomyosin oxidation; (v) acted on two opposite nNOS regulators by decreasing active AMP-Kinase and increasing SERCA1 protein levels, the latter effect being detectable also in myotube cultures from mdx satellite cells. Interestingly, increased contractility, decreased myosin nitrotyrosination and SERCA1 upregulation were also detectable in the mdx diaphragm after a 4-week administration of the NOS inhibitor 7-Nitroindazole, and were not improved further by a combined treatment. In conclusion, curcumin has beneficial effects on the dystrophic muscle, mechanistically acting for the containment of a deregulated nNOS activity.

20.
Drug Discov Ther ; 17(3): 209-213, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37245984

RESUMO

Docosahexaenoic acid (DHA; 22:6n-3), an n-3 polyunsaturated fatty acid, has various important roles in brain functions. Nitric oxide (NO) produced by neuronal NO synthase (nNOS) and Ca2+/calmodulindependent protein kinase II (CaMKII) is also involved in brain functions. We investigated the influence of DHA on nNOS and CaMKII protein expression in differentiated NG108-15 cells. NG108-15 cells were seeded in 12-well plates, and after 24 h, the medium was replaced with Dulbecco's modified Eagle's medium containing 1% fetal bovine serum, 0.2 mM dibutyryl cyclic adenosine monophosphate and 100 nM dexamethasone as differentiation-inducing medium. When cells were cultured in differentiation-inducing medium, neurite-like outgrowths were observed on days 5 and 6. However, no significant difference in morphology was observed in cells with or without DHA treatment. With or without DHA addition, nNOS protein expression was increased on days 5 and 6 compared with day 0. This increase tended to be enhanced by DHA. CaMKII protein expression did not change after differentiation without DHA, but was significantly increased on day 6 compared with day 0 with DHA addition. These data indicate that DHA is involved in brain functions by regulating CaMKII and nNOS protein expression.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Ácidos Docosa-Hexaenoicos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Diferenciação Celular , Óxido Nítrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...