Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.323
Filtrar
1.
J Agric Food Chem ; 72(26): 14967-14974, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957086

RESUMO

Nanobodies (Nbs) serve as powerful tools in immunoassays. However, their small size and monovalent properties pose challenges for practical application. Multimerization emerges as a significant strategy to address these limitations, enhancing the utilization of nanobodies in immunoassays. Herein, we report the construction of a Salmonella-specific fenobody (Fb) through the fusion of a nanobody to ferritin, resulting in a self-assembled 24-valent nanocage-like structure. The fenobody exhibits a 35-fold increase in avidity compared to the conventional nanobody while retaining good thermostability and specificity. Leveraging this advancement, three ELISA modes were designed using Fb as the capture antibody, along with unmodified Nb422 (FbNb-ELISA), biotinylated Nb422 (FbBio-ELISA), and phage-displayed Nb422 (FbP-ELISA) as the detection antibody, respectively. Notably, the FbNb-ELISA demonstrates a detection limit (LOD) of 3.56 × 104 CFU/mL, which is 16-fold lower than that of FbBio-ELISA and similar to FbP-ELISA. Moreover, a fenobody and nanobody sandwich chemiluminescent enzyme immunoassay (FbNb-CLISA) was developed by replacing the TMB chromogenic substrate with luminal, resulting in a 12-fold reduction in the LOD. Overall, the ferritin-displayed technology represents a promising methodology for enhancing the detection performance of nanobody-based sandwich ELISAs, thereby expanding the applicability of Nbs in food detection and other fields requiring multivalent modification.


Assuntos
Ensaio de Imunoadsorção Enzimática , Ferritinas , Salmonella , Anticorpos de Domínio Único , Ferritinas/imunologia , Ferritinas/química , Ferritinas/genética , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Salmonella/imunologia , Salmonella/genética , Ensaio de Imunoadsorção Enzimática/métodos , Limite de Detecção , Afinidade de Anticorpos , Anticorpos Antibacterianos/imunologia , Imunoensaio/métodos
2.
Front Immunol ; 15: 1425938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953020

RESUMO

Introduction: P2X receptors are a family of homo- and heterotrimeric cation channels gated by extracellular ATP. The P2X4 and P2X7 subunits show overlapping expression patterns and have been involved in similar physiological processes, such as pain and inflammation as well as various immune cell functions. While formation of P2X2/P2X3 heterotrimers produces a distinct pharmacological phenotype and has been well established, functional identification of a P2X4/P2X7 heteromer has been difficult and evidence for and against a physical association has been found. Most of this evidence stems, however, from in vitro model systems. Methods: Here, we used a P2X7-EGFP BAC transgenic mouse model as well as P2X4 and P2X7 knock-out mice to re-investigate a P2X4-P2X7 interaction in mouse lung by biochemical and immunohistochemical experiments as well as quantitative expression analysis. Results: No detectable amounts of P2X4 could be co-purified from mouse lung via P2X7-EGFP. In agreement with these findings, immuno-histochemical analysis using a P2X7-specific nanobody revealed only limited overlap in the cellular and subcellular localizations of P2X4 and P2X7 in both the native lung tissue and primary cells. Comparison of P2X4 and P2X7 transcript and protein levels in the respective gene-deficient and wild type mice showed no mutual interrelation between their expression levels in whole lungs. However, a significantly reduced P2rx7 expression was found in alveolar macrophages of P2rx4 -/- mice. Discussion: In summary, our detailed analysis of the cellular and subcellular P2X4 and P2X7 localization and expression does not support a physiologically relevant direct association of P2X4 and P2X7 subunits or receptors in vivo.


Assuntos
Pulmão , Camundongos Knockout , Camundongos Transgênicos , Receptores Purinérgicos P2X4 , Receptores Purinérgicos P2X7 , Animais , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Camundongos , Pulmão/metabolismo , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Ligação Proteica
3.
J Nanobiotechnology ; 22(1): 388, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956618

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) is a prevalent swine pathogen, which has caused adverse impact on the global swine industry for almost 30 years. However, due to the immune suppression caused by the virus and the genetic diversity in PRRSV, no virus-targeting broad neutralizing strategy has been successfully developed yet. Antiviral peptide and nanobody have attracted extensive attention with the ease in production and the efficacy in practice. In this study, four new fusion proteins named nanobody peptide conjugates (NPCs) were developed by combining PRRSV specific non-neutralizing nanobodies with CD163-derived peptides targeting the receptor binding domain (RBD) of PRRSV proteins. RESULTS: Four NPCs were successfully constructed using two nanobodies against PRRSV N and nsp9 individually, recombining with two antiviral peptides 4H7 or 8H2 from porcine CD163 respectively. All four NPCs demonstrated specific capability of binding to PRRSV and broad inhibitory effect against various lineages of PRRSV in a dose-dependent manner. NPCs interfere with the binding of the RBD of PRRSV proteins to CD163 in the PRRSV pre-attachment stage by CD163 epitope peptides in the assistance of Nb components. NPCs also suppress viral replication during the stage of post-attachment, and the inhibitory effects depend on the antiviral functions of Nb parts in NPCs, including the interference in long viral RNA synthesis, NF-κB and IFN-ß activation. Moreover, an interaction was predicted between aa K31 and T32 sites of neutralizing domain 4H7 of NPC-N/nsp9-4H7 and the motif 171NLRLTG176 of PRRSV GP2a. The motif 28SSS30 of neutralizing domain 8H2 of NPC-N/nsp9-8H2 could also form hydrogens to bind with the motif 152NAFLP156 of PRRSV GP3. The study provides valuable insights into the structural characteristics and potential functional implications of the RBD of PRRSV proteins. Finally, as indicated in a mouse model, NPC intranasally inoculated in vivo for 12-24 h sustains the significant neutralizing activity against PRRSV. These findings inspire the potential of NPC as a preventive measure to reduce the transmission risk in the host population against respiratory infectious agents like PRRSV. CONCLUSION: The aim of the current study was to develop a peptide based bioactive compound to neutralize various PRRSV strains. The new antiviral NPC (nanobody peptide conjugate) consists of a specific nanobody targeting the viral protein and a neutralizing CD163 epitope peptide for virus blocking and provides significant antiviral activity. The study will greatly promote the antiviral drug R&D against PRRSV and enlighten a new strategy against other viral diseases.


Assuntos
Anticorpos Neutralizantes , Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Peptídeos , Vírus da Síndrome Respiratória e Reprodutiva Suína , Receptores de Superfície Celular , Anticorpos de Domínio Único , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Animais , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/química , Suínos , Antígenos de Diferenciação Mielomonocítica/imunologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Receptores de Superfície Celular/imunologia , Antígenos CD/imunologia , Antígenos CD/metabolismo , Anticorpos Neutralizantes/imunologia , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Camundongos , Replicação Viral/efeitos dos fármacos , Linhagem Celular
4.
Nucl Med Biol ; 136-137: 108937, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38964257

RESUMO

Immunorecognition provides an excellent basis for targeted imaging techniques covering a wide range from basic research to diagnostics and from single cells to whole organisms. Fluorescence- or radioisotope-labeled antibodies, antibody fragments or nanobodies enable a direct signal readout upon binding and allow for versatile imaging from microscopy to whole-body imaging. However, as the signal intensity directly correlates with the number of labeled antibodies bound to their epitopes (1:1 binding), sensitivity for low-expressing epitopes can be limiting for visualization. For the first time, we developed poly-epitope tags with multiple copies (1 to 7) of a short peptide epitope, specifically the MoonTag, that are recognized by a labeled nanobody and aimed at signal amplification in microscopy and cell-specific PET imaging. In transiently transfected HeLa cells or stably transduced A4573 cells we characterized complex formation and in vitro signal amplification. Indeed, using fluorescently and radioactively labeled nanobodies we found an approximately linear signal amplification with increasing numbers of epitope copies in vitro. To test the poly-epitope approach in vivo, A4573 tumor cells were injected subcutaneously into the shoulder of NSG mice, with A4573 tumor cells expressing a poly-epitope of 7 MoonTags on one side and WT cells on the other side. Using a [68Ga]-labeled NODAGA-conjugated MoonTag nanobody, we performed PET/CT imaging at day 8-9 after tumor implantation. Specific binding of a [68Ga]-labeled NODAGA-conjugated MoonTag nanobody was observed in 7xMoonTag tumors (1.7 ± 0.5%ID/mL) by PET imaging, showing significantly higher radiotracer accumulation compared to the WT tumors (1.1 ± 0.3%ID/mL; p < 0.01). Ex vivo gamma counter measurements confirmed significantly higher uptake in 7xMoonTag tumors compared to WT tumors (p < 0.001). In addition, MoonTag nanobody binding was detected by autoradiography which was spatially matched with histological analysis of the tumor tissues. In conclusion, we expect nanobody-based poly-epitope tag strategies to be widely applicable for multimodal imaging techniques given the advantageous properties of nanobodies and their amenability to genetic and chemical engineering.

5.
Dev Cell ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38971155

RESUMO

CRISPR-Cas greatly facilitated the integration of exogenous sequences into specific loci. However, knockin generation in multicellular animals remains challenging, partially due to the complexity of insertion screening. Here, we describe SEED/Harvest, a method to generate knockins in Drosophila, based on CRISPR-Cas and the single-strand annealing (SSA) repair pathway. In SEED (from "scarless editing by element deletion"), a switchable cassette is first integrated into the target locus. In a subsequent CRISPR-triggered repair event, resolved by SSA, the cassette is seamlessly removed. Germline excision of SEED cassettes allows for fast and robust knockin generation of both fluorescent proteins and short protein tags in tandem. Tissue-specific expression of Cas9 results in somatic cassette excision, conferring spatiotemporal control of protein labeling and the conditional rescue of mutants. Finally, to achieve conditional protein labeling and manipulation of short tag knockins, we developed a genetic toolbox by functionalizing the ALFA nanobody.

6.
Angew Chem Int Ed Engl ; : e202404889, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977426

RESUMO

Immune checkpoint blockade targeting the CD47/SIRPα axis represents an alluring avenue for cancer immunotherapy. However, the compromised efficacy and safety concerns in vivo of conventional anti-CD47 antibodies impede their wide clinical applications. Here we introduced a single type of high-mannose glycans into the nanobodies against CD47 (HM-nCD47) and subsequently displayed HM-nCD47 on cellular vesicles (CVs) for enhanced cancer immunotherapy. In this platform, the CVs significantly improved the circulation time of HM-nCD47-CVs, the nCD47 enabled the blockade of the CD47/SIRPα axis, and the HM enhanced recognition of mannose-binding lectin, all synergistically activating the macrophage-mediated antitumor immunity. In both subcutaneous and metastatic murine tumor models, the HM-nCD47-CVs possessed significantly extended half-lives and increased accumulation at the tumor site, resulting in a remarkable macrophage-dependent inhibition of tumor growth, a transcriptomic remodeling of the immune response, and an increase in survival time. By integrating the chemical biology toolbox with cell membrane nanotechnology, the HM-nCD47-CVs represent a new immunotherapeutic platform for cancer and other diseases.

7.
Methods Mol Biol ; 2824: 147-164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039412

RESUMO

Single-domain antibodies, referred to as VHH (variable heavy chains of heavy chain-only antibodies) or in their commercial name as nanobodies, are potent tools for the detection of target proteins in biological samples. They have the advantage of being highly stable, specific, and sensitive, with affinities reaching the nanomolar range. We utilized this tool to develop a rapid detection method that discriminates cells infected with Rift Valley fever virus (RVFV), based on the intracellular detection of the viral nonstructural NSm protein localized on the outer membrane of mitochondria. Here we describe how NSm-specific VHHs have been produced, cloned, and characterized, highlighting their value in RVFV research and diagnosis. This work may also raise interest in other potential applications such as antiviral therapy.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Anticorpos de Domínio Único , Proteínas não Estruturais Virais , Vírus da Febre do Vale do Rift/imunologia , Anticorpos de Domínio Único/imunologia , Humanos , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/diagnóstico , Febre do Vale de Rift/virologia , Proteínas não Estruturais Virais/imunologia , Animais , Anticorpos Antivirais/imunologia
8.
J Agric Food Chem ; 72(29): 16368-16377, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38979948

RESUMO

In planta expression of recombinant antibodies has been proposed as a strategy for herbicide resistance but is not well advanced yet. Here, an atrazine nanobody gene fused with a green fluorescent protein tag was transformed to Arabidopsis thaliana, which was confirmed with PCR, ELISA, and immunoblotting. High levels of nanobody accumulation were observed in the nucleus, cytoderm, and cytosol. The nanobody expressed in the plant had similar affinity, sensitivity, and selectivity as that expressed in Escherichia coli. The T3 homozygous line showed resistance in a dose-dependent manner up to 380 g ai/ha of atrazine, which is approximately one-third of the recommended field application rate. This is the first report of utilizing a nanobody in plants against herbicides. The results suggest that utilizing a high-affinity herbicide nanobody gene rather than increasing the expression of nanobodies in plants may be a technically viable approach to acquire commercial herbicide-resistant crops and could be a useful tool to study plant physiology.


Assuntos
Arabidopsis , Atrazina , Resistência a Herbicidas , Herbicidas , Plantas Geneticamente Modificadas , Anticorpos de Domínio Único , Atrazina/farmacologia , Herbicidas/farmacologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Resistência a Herbicidas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/imunologia
9.
Acta Biomater ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025389

RESUMO

Recombinant adeno-associated viruses (rAAVs) have been extensively studied for decades as carriers for delivering therapeutic genes. However, designing rAAV vectors with selective tropism for specific cell types and tissues has remained challenging. Here, we introduce a strategy for redirecting rAAV by attaching nanobodies with desired tropism at specific sites, effectively replacing the original tropism. To demonstrate this concept, we initially modified the genetic code of rAAV2 to introduce an azido-containing unnatural amino acid at a precise site within the capsid protein. Following a screening process, we identified a critical site (N587+1) where the introduction of unnatural amino acid eliminated the natural tropism of rAAV2. Subsequently, we successfully redirected rAAV2 by conjugating various nanobodies at the N587+1 site, using click and SpyTag-Spycatcher chemistries to form nanobody-AAV conjugates (NACs). By investigating the relationship between NACs quantity and effect and optimizing the linker between rAAV2 and the nanobody using a cathepsin B-susceptible valine-citrulline (VC) dipeptide, we significantly improved gene delivery efficiency both in vitro and in vivo. This enhancement can be attributed to the facilitated endosomal escape of rAAV2. Our method offers an exciting avenue for the rational modification of rAAV2 as a retargeting vehicle, providing a convenient platform for precisely engineering various rAAV2 vectors for both basic research and therapeutic applications. STATEMENT OF SIGNIFICANCE: AAVs hold great promise in the treatment of genetic diseases, but their clinical use has been limited by off-target transduction and efficiency. Here, we report a strategy to construct NACs by conjugating a nanobody or scFv to an rAAV capsid site, specifically via biorthogonal click chemistry and a spy-spycatcher reaction. We explored the structure-effect and quantity-effect relationships of NACs and then optimized the transduction efficiency by introducing a valine-citrulline peptide linker. This approach provides a biocompatible method for rational modification of rAAV as a retargeting platform without structural disruption of the virus or alteration of the binding capacity of the nanobody, with potential utility across a broad spectrum of applications in targeted imaging and gene delivery.

10.
Front Immunol ; 15: 1440499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021567

RESUMO

The tyrosine kinase Lck is mandatory for initiating signaling responses downstream the antigenic T cell receptor (TCR). Numerous studies have shown that a prerequisite for efficient and well-balanced Lck regulation and function is its finely orchestrated spatial distribution pattern, especially at the plane of the plasma membrane. There is a wealth of knowledge on Lck localization sites, preference for specialized lipid microenvironments and colocalization partners. However, several questions concerning the spatial organization of its differentially phosphorylated conformers and the dynamics of their juxtaposition in relation to ligated and non-ligated TCRs remain elusive. In this brief report we introduce a non-invasive nanobody-based approach for mapping Lck subcellular allocation with high precision. Our initial data using this methodology, provide insight into the topology of Lck in resting T cells and its confined localization in a strictly delimited environment within the plane of the plasma membrane.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Anticorpos de Domínio Único , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Humanos , Anticorpos de Domínio Único/imunologia , Membrana Celular/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Jurkat , Fosforilação , Transdução de Sinais
11.
Acta Pharm Sin B ; 14(7): 2854-2868, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027249

RESUMO

Single-domain antibodies (sdAbs), initially identified in camelids or sharks and commonly referred to as nanobodies or VNARs, have emerged as a promising alternative to conventional therapeutic antibodies. These sdAbs have many superior physicochemical and pharmacological properties, including small size, good solubility and thermostability, easier accessible epitopes, and strong tissue penetration. However, the inherent challenges associated with the animal origin of sdAbs limit their clinical use. In recent years, various innovative humanization technologies, including complementarity-determining region (CDR) grafting or complete engineering of fully human sdAbs, have been developed to mitigate potential immunogenicity issues and enhance their compatibility. This review provides a comprehensive exploration of sdAbs, emphasizing their distinctive features and the progress in humanization methodologies. In addition, we provide an overview of the recent progress in developing drugs and therapeutic strategies based on sdAbs and their potential in solid tumor treatment, such as sdAb-drug conjugates, multispecific sdAbs, sdAb-based delivery systems, and sdAb-based cell therapy.

12.
Int J Biol Macromol ; : 133957, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029852

RESUMO

Staphylococcal Enterotoxin Type B (SEB), produced by Staphylococcus aureus bacteria, is notorious for inducing severe food poisoning and toxic shock syndrome. While nanobody-based treatments hold promises for combating SEB-induced diseases, the lack of structural information between SEB and nanobodies has hindered the development of nanobody-based therapeutics. Here, we present crystal structures of SEBNb3, SEBNb6, SEBNb8, SEBNb11, and SEB-Nb20 at resolutions ranging from 1.59 Što 2.33 Å. Crystallographic analysis revealed that Nb3, Nb8, Nb11, and Nb20 bind to SEB at the T-cell receptor (TCR) interface, while Nb6 binds at the major histocompatibility complex (MHC) interface, suggesting their potential to inhibit SEB function by disrupting interactions with TCR or MHC molecules. Molecular biological analyses confirmed the thermodynamic and kinetic parameters of Nb3, Nb5, Nb6, Nb8, Nb11, Nb15, Nb18, and Nb20 to SEB. The competitive inhibition was further confirmed by cell-based experiments demonstrating nanobody neutralization. These findings elucidate the structural basis for developing specific nanobodies to neutralize SEB threats, providing crucial insights into the underlying mechanisms and offering significant assistance for further optimization towards future therapeutic strategies.

13.
J Hazard Mater ; 477: 135264, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032175

RESUMO

Nontoxic substitutes to mycotoxins can facilitate the development of eco-friendly immunoassays. To explore a novel nontoxic substitute to ochratoxin A (OTA), this study screened shark anti-idiotypic variable new antigen receptors (VNARs) against the alpaca anti-OTA nanobody Nb28 through phage display. After four rounds of biopanning of a naïve VNAR phage display library derived from six adult Chiloscyllium plagiosum sharks, one positive clone, namely, P-3, was validated through a phage enzyme-linked immunosorbent assay (phage ELISA). The recombinant anti-idiotypic VNAR AId-V3 was obtained by prokaryotic expression, and the interactions between Nb28 and AId-V3 were investigated via computer-assisted simulation. The affinity of AId-V3 for Nb28 and its heptamer Nb28-C4bpα was measured using Biacore assay. Combining Nb28-C4bpα with AId-V3, a novel direct competitive ELISA (dcELISA) was developed for OTA analysis, with a limit of detection of 0.44 ng/mL and a linear range of 1.77-32.25 ng/mL. The good selectivity, reliability, and precision of dcELISA were confirmed via cross-reaction analysis and recovery experiments. Seven commercial pepper powder samples were tested using dcELISA and validated using high-performance liquid chromatography. Overall, the shark anti-idiotypic VNAR was demonstrated as a promising nontoxic substitute to OTA, and the proposed method was confirmed as a reliable tool for detecting OTA in food.

14.
Adv Sci (Weinh) ; : e2404886, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973161

RESUMO

Immune checkpoint blockade (ICB) immunotherapy remains hampered by insufficient immunogenicity and a high-lactate immunosuppressive tumor microenvironment (TME). Herein, a nanobody-engineered NIR-II nanoadjuvant with targeting metabolic reprogramming capability is constructed for potentiating NIR-II photothermal-ferroptosis immunotherapy. Specifically, the nanoadjuvant (2DG@FS-Nb) is prepared by metallic iron ion-mediated coordination self-assembly of D-A-D type NIR-II molecules and loading of glycolysis inhibitor, 2-deoxy-D-glucose (2DG), followed by modification with aPD-L1 nanobody (Nb), which can effectively target the immunosuppressive TME and trigger in situ immune checkpoint blockade. The nanoadjuvants responsively release therapeutic components in the acidic TME, enabling the precise tumor location by NIR-II fluorescence/photoacoustic imaging while initiating NIR-II photothermal-ferroptosis therapy. The remarkable NIR-II photothermal efficiency and elevated glutathione (GSH) depletion further sensitize ferroptosis to induce severe lipid peroxidation, provoking robust immunogenic cell death (ICD) to trigger anti-tumor immune response. Importantly, the released 2DG markedly inhibits lactate generation through glycolysis obstruction. Decreased lactate efflux remodels the immunosuppressive TME by suppressing M2 macrophage proliferation and downregulating regulatory T cell levels. This work provides a new paradigm for the integration of NIR-II phototheranostics and lactate metabolism regulation into a single nanoplatform for amplified anti-tumor immunotherapy combined with ICB therapy.

15.
Bio Protoc ; 14(12): e5019, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38948262

RESUMO

The Auxin-inducible degron (AID) system is a genetic tool that induces rapid target protein depletion in an auxin-dependent manner. Recently, two advanced AID systems-the super-sensitive AID and AID 2-were developed using an improved pair of synthetic auxins and mutated TIR1 proteins. In these AID systems, a nanomolar concentration of synthetic auxins is sufficient as a degradation inducer for target proteins. However, despite these advancements, AID systems still require the fusion of an AID tag to the target protein for degradation, potentially affecting its function and stability. To address this limitation, we developed an affinity linker-based super-sensitive AID (AlissAID) system using a single peptide antibody known as a nanobody. In this system, the degradation of GFP- or mCherry-tagged target proteins is induced in a synthetic auxin (5-Ad-IAA)-dependent manner. Here, we introduce a simple method for generating AlissAID strains targeting GFP or mCherry fusion proteins in budding yeasts. Key features • AlissAID system enables efficient degradation of the GFP or mCherry fusion proteins in a 5-Ad-IAA-depending manner. • Transforming the pAlissAID plasmids into strains with GFP- or mCherry- tagged proteins.

16.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38960409

RESUMO

Deep learning has achieved impressive results in various fields such as computer vision and natural language processing, making it a powerful tool in biology. Its applications now encompass cellular image classification, genomic studies and drug discovery. While drug development traditionally focused deep learning applications on small molecules, recent innovations have incorporated it in the discovery and development of biological molecules, particularly antibodies. Researchers have devised novel techniques to streamline antibody development, combining in vitro and in silico methods. In particular, computational power expedites lead candidate generation, scaling and potential antibody development against complex antigens. This survey highlights significant advancements in protein design and optimization, specifically focusing on antibodies. This includes various aspects such as design, folding, antibody-antigen interactions docking and affinity maturation.


Assuntos
Anticorpos , Aprendizado Profundo , Anticorpos/química , Anticorpos/imunologia , Humanos , Afinidade de Anticorpos , Biologia Computacional/métodos , Desenho de Fármacos
17.
Artigo em Inglês | MEDLINE | ID: mdl-39046662

RESUMO

BACKGROUND: Angiogenesis and cancer metastasis depend on the DLL4/Notch signaling pathway. A new approach to treating angiogenesis could inhibit or block this pathway. In the present study, we investigated DLL4 expression as a biomarker capable of predicting survival outcomes in gastric cancer patients using a novel anti-DLL4 Nanobody. PATIENTS AND METHODS: By using a recently developed anti-DLL4 Nanobody, the expression of DLL4 was evaluated in tissue samples from 135 gastric cancer patients. It was evaluated whether DLL4 expression is related to clinicopathological factors, overall survival (OS), and recurrence-free survival (RFS). RESULTS: Sixty-five (48%) gastric cancer patients had a positive expression of DLL4 within the tumor tissue. Based on both the univariate and multivariate regression analyses, the expression of DLL4 was strongly associated with RFS (HR, 1.94; p = 0.008) and OS (HR, 2.06; p = 0.004). Moreover, the survival analysis demonstrated that DLL4 expression was a significant independent factor of unfavorable OS (HR, 2.7; p = 0.01) and RFS (HR, 2.3; p = 0.02) in gastric cancer patients. CONCLUSION: DLL4 expression in gastric cancer patients may predict poor prognosis and survival. Furthermore, the current data demonstrate the potential of Nanobody for detecting DLL4, and it may lead to develop novel therapies and diagnostics for tumors.

18.
Chem Eng J ; 4912024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38882000

RESUMO

Immunoassays have been widely used to determine small-molecule compounds in food and the environment, meeting the challenge of obtaining false positive or negative results because of the variance in the batches of antibodies and antigens. To resolve this problem, atrazine (ATR) was used as a target, and anti-idiotypic nanobodies for ATR (AI-Nbs) and a recombinant full-length antibody against ATR (ATR-rAb) were prepared for the development of a sustainable enzyme-linked immunosorbent assay (ELISA). AI-Nb-7, AI-Nb-58, and AI-Nb-66 were selected from an immune phage display library. ATR-rAb was produced in mammalian HEK293 (F) cells. Among the four detection methods explored, the assay using AI-Nb-66 as a coating antigen and ATR-rAb as a detection reagent yielded a half maximal inhibitory concentration (IC50) of 1.66 ng mL-1 for ATR and a linear range of 0.35-8.73 ng mL-1. The cross-reactivity of the assay to ametryn was 64.24%, whereas that to terbutylazine was 38.20%. Surface plasmon resonance (SPR) analysis illustrated that these cross-reactive triazine compounds can bind to ATR-rAb to varying degrees at high concentrations; however, the binding/dissociation kinetic curves and the response values at the same concentration are different, which results in differences in cross-reactivity. Homology modeling and molecular docking revealed that the triazine ring is vital in recognizing triazine compounds. The proposed immunoassay exhibited acceptable recoveries of 84.40-105.36% for detecting fruit, vegetables, and black tea. In conclusion, this study highlights a new strategy for developing sustainable immunoassays for detecting trace pesticide contaminants.

19.
Adv Sci (Weinh) ; : e2401905, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888519

RESUMO

Bacteria can be utilized for cancer therapy owing to their preferential colonization at tumor sites. However, unmodified non-pathogenic bacteria carry potential risks due to their non-specific targeting effects, and their anti-tumor activity is limited when used as monotherapy. In this study, a biohybrid-engineered bacterial system comprising non-pathogenic MG1655 bacteria modified with CDH17 nanobodies on their surface and conjugated with photosensitizer croconium (CR) molecules is developed. The resultant biohybrid bacteria can efficiently home to CDH17-positive tumors, including gastric, pancreatic, and colorectal cancers, and significantly suppress tumor growth upon irradiation. More importantly, biohybrid bacteria-mediated photothermal therapy (PTT) induced abundant macrophage infiltration in a syngeneic murine colorectal model. Further, that the STING pathway is activated in tumor macrophages by the released bacterial nucleic acid after PTT is revealed, leading to the production of type I interferons. The addition of CD47 nanobody but not PD-1 antibody to the PTT regimen can eradicate the tumors and extend survival. This results indicate that bacteria endowed with tumor-specific selectivity and coupled with photothermal payloads can serve as an innovative strategy for low-immunogenicity cancers. This strategy can potentially reprogram the tumor microenvironment by inducing macrophage infiltration and enhancing the efficacy of immunotherapy targeting macrophages.

20.
Exploration (Beijing) ; 4(3): 20230086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38939869

RESUMO

The ongoing mutations of the SARS-CoV-2 pose serious challenges to the efficacy of the available antiviral drugs, and new drugs with fantastic efficacy are always deserved investigation. Here, a nanobody called IBT-CoV144 is reported, which exhibits broad neutralizing activity against SARS-CoV-2 by inducing the conformation of spike trimer dimers. IBT-CoV144 was isolated from an immunized alpaca using the RBD of wild-type SARS-CoV-2, and it showed strong cross-reactive binding and neutralizing potency against diverse SARS-CoV-2 variants, including Omicron subvariants. Moreover, the prophylactically and therapeutically intranasal administration of IBT-CoV144 confers fantastic protective efficacy against the challenge of Omicron BA.1 variant in BALB/c mice model. The structure analysis of the complex between spike (S) protein, conducted using Cryo-EM, revealed a special conformation known as the trimer dimers. This conformation is formed by two trimers, with six RBDs in the "up" state and bound by six VHHs. IBT-CoV144 binds to the lateral region of the RBD on the S protein, facilitating the aggregation of S proteins. This aggregation results in steric hindrance, which disrupts the recognition of the virus by ACE2 on host cells. The discovery of IBT-CoV144 will provide valuable insights for the development of advanced therapeutics and the design of next-generation vaccines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...