Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Polymers (Basel) ; 16(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39274067

RESUMO

This investigation explores the fabrication of polymer matrix nanocomposites via additive manufacturing (AM), using a UV photopolymerization resin and copper nanoparticles (Cu-NPs) with vat photopolymerization 3D printing technology. The aim in this study is to investigate the mentioned materials in different formulations in terms of inexpensive processing, the property related variability, and targeting multifunctional applications. After the AM process, samples were post-cured with UV light in order to obtain better mechanical properties. The particles and resin were mixed using an ultrasonicator, and the particle contents used were 0.0, 0.5, and 1.0 wt %. The process used in this investigation was simple and inexpensive, as the technologies used are quite accessible, from the 3D printer to the UV curing device. These formulations were characterized with scanning electron microscopy (SEM) to observe the materials' microstructure and tensile tests to quantify stress-strain derived properties. Results showed that, besides the simplicity of the process, the mixing was effective, which was observed in the scanning electron microscope. Additionally, the tensile strength was increased with the UV irradiation exposure, while the strain properties did not change significantly.

2.
Front Chem ; 12: 1450089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39268006

RESUMO

Introduction: Overusing and misusing pesticides, including paraquat (PQ), have led to numerous environmental contamination complications. PQ is an emerging bio-accumulative contaminant that is present in environmental aqueous matrices. Adsorption techniques are part of a set of technologies applied in ecological remediation, known for their high effectiveness in removing aqueous PQ. A study of the PQ adsorption capacity of three cyclodextrin-silica nanocomposites (α-CDSi, ß-CDSi, and γ-CDSi) from contaminated waters is presented in this paper. Methods: The cyclodextrin-silica nanocomposites were synthesized via an esterification reaction between the inorganic matrix and cyclodextrins (CDs) (α, ß, and γ) and were characterized physicochemically by spectroscopic, thermal, and surface methods. Their PQ removal performance from contaminated aqueous media was studied under different experimental conditions. Results and Discussion: The results showed a fast adsorptive response in removal treatment studies over time. Adsorption capacities of 87.22, 57.17, and 77.27 mg.g-1 were found for α-CDSi, ß-CDSi, and γ-CDSi, respectively, at only 30 min of treatment. Thermodynamic studies indicated spontaneous and exothermic adsorption processes. The removal assays responded mainly to physisorption mechanisms with contributions from chemisorption mechanisms. Spectroscopic assays showed a strong interaction of PQ with the adsorbents used. Innovative CDSi nanocomposites have proven to be highly efficient in applying aqueous PQ remediation, thus proving to be sustainable adsorbents of contaminants of emerging importance worldwide.

3.
Polymers (Basel) ; 16(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39339044

RESUMO

Nanocomposites prepared with a terpolymer of poly(L-lactide) (PLLA)-poly(ε-caprolactone) (PCL)-poly(ethylene glycol) (PEG) and partially oxidized carbon nanotubes (CNTspo) were synthesized and characterized to evaluate their ability to act as an effective nanocarrier of the anticancer drug methotrexate. The homopolymers of PLLA and PCL were synthesized through ring-opening polymerization (ROP) and characterized through gel permeation chromatography (GPC). The PLLA-PCL-PEG terpolymers were synthesized through a four-step chemical route using oxalyl chloride as a linker agent and analyzed with 1H-NMR, 13C-NMR, and FTIR spectroscopies. Additionally, the nanocomposites were characterized through FTIR, and X-ray photoelectron spectroscopy (XPS), as well as the differential scanning calorimetry (DSC) technique. XPS analysis revealed that PLLA-PCL-PEG terpolymer chains are grafted onto CNTspo. Moreover, evaluations through FTIR and DSC strongly suggest that the PCL-rich domains are preferentially oriented toward CNTspo. The release tests exhibited a "burst effect" profile, which was more evident in the terpolymers than in the nanocomposites. Five models were used to assess methotrexate's in vitro release. For the nanocomposites, the best fit to the experimental data was obtained using the first-order model, whereas the results obtained from the Korsmeyer-Peppas model indicated that Fickian diffusion drives methotrexate's release.

4.
J Pharm Sci ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216537

RESUMO

Novel thiomer/nanoclay nanocomposites based on a thiomer and montmorillonite (MMT) were prepared in order to obtain a mucoadhesive material with controlled release properties for its potential use as drug carrier. The thiomer was synthesized by immobilization of L-cysteine in alginate mediated by carbodiimide reaction and further characterized by FT-IR and Ellman's reaction. Nanocomposites with growing concentrations of thiomer and MMT were prepared and analyzed by XRD, TGA and TEM. Rheological behavior of nanocomposite in contact with mucin and intestinal mucus were studied as in vitro and in situ mucoadhesion approach, showing until ∼10-fold increasing in the complex viscosity and ∼27-fold in elastic modulus when the amount of thiomer is increased. Higuchi and Korsmeyer-Peppas kinetic models were evaluated in order to study the release of deltamethrin from nanocomposite films. Release profiles showed a retard in the migration of the drug influenced by the amount of MMT (P < 0.05). Diffusion coefficient (D) showed a significant decrease (P < 0.0001) when concentration of MMT is increased reaching D = 4.18 × 10-7 m2 h-1, which resulted ∼7-fold lower in comparison with formulation without MMT. This hybrid nanocomposite can be projected as a potential mucoadhesive drug carrier with controlled release properties.

5.
Polymers (Basel) ; 16(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38932070

RESUMO

Ethylene propylene diene monomer (EPDM) is a synthetic rubber widely used in industry and commerce due to its high thermal and chemical resistance. Nanotechnology has enabled the incorporation of nanomaterials into polymeric matrixes that maintain their flexibility and conformation, allowing them to achieve properties previously unattainable, such as improved tensile and chemical resistance. In this work, we summarize the influence of different nanostructures on the mechanical, thermal, and electrical properties of EPDM-based materials to keep up with current research and support future research into synthetic rubber nanocomposites.

6.
Photochem Photobiol Sci ; 23(5): 901-918, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38584224

RESUMO

Pd/ZnO nanocomposites were successfully synthesized by means of one and two pot synthesis and applied in the photodegradation of Rh6G. The nanocomposites were characterized by XRD, SEM, TEM, FTIR and micro-Raman spectroscopies. It was found the presence of PdZn2, PdO and agglomerated particles in the support surface for the Palladium-based nanocomposites fabricated by one-pot route; the two-step method allowed the formation of spherical Pd nanoparticles, with homogeneous distribution in the nanocomposite matrix, with an average size of 2.16 nm. The results show higher photocatalytic efficiency for the samples fabricated under the two-step approach compared to the one-pot synthesis. Based on experimental results, density functional theory (DFT) calculations were carried out to understand the enhancement photocatalytic of Pd/ZnO nanocomposites. To achieve it, the ZnO (001) and (101) surfaces were built and decorated by different Pd coverages. The theoretical results indicated two different photocatalytic mechanisms. In ZnO (001) case, the electrons flowed from surface to Pd, generating the superoxide radical anion (⋅O2-). Furthermore, the density of states of the ZnO (001) surface was modified by impurity Pd-d states at proximity to the conduction states, which may work as electron acceptors states. On the other hand, we found that the electrons flow from Pd to ZnO (101) surface, inducing the formation of ⋅OH and ⋅O2- for the degradation of Rh6G. The density of states of the ZnO (101) revealed a reduction in its bandgap, due to Pd-d states localized above valence states. Hence, our theoretical results suggest that the Pd-d states may facilitate the mobility of electrons and holes in (001) and (101) surfaces, respectively, reducing the rate of charge recombination.

7.
Nanomaterials (Basel) ; 14(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607157

RESUMO

The limited access to fresh water and the increased presence of emergent pollutants (EPs) in wastewater has increased the interest in developing strategies for wastewater remediation, including photocatalysis. Graphitic carbon nitride (g-C3N4) is a 2D non-metal material with outstanding properties, such as a 2.7 eV bandgap and physicochemical stability, making it a promising photocatalyst. This work reports the process of obtaining high-surface-area (SA) g-C3N4 using the thermal-exfoliation process and the posterior effect of Ag-nanoparticle loading over the exfoliated g-C3N4 surface. The photocatalytic activity of samples was evaluated through methylene blue (MB) degradation under visible-light radiation and correlated to its physical properties obtained by XRD, TEM, BET, and UV-Vis analyses. Moreover, 74% MB degradation was achieved by exfoliated g-C3N4 compared to its bulk counterpart (55%) in 180 min. Moreover, better photocatalytic performances (94% MB remotion) were registered at low Ag loading, with 5 wt.% as the optimal value. Such an improvement is attributed to the synergetic effect produced by a higher SA and the role of Ag nanoparticles in preventing charge-recombination processes. Based on the results, this work provides a simple and efficient methodology to obtain Ag/g-C3N4 photocatalysts with enhanced photocatalytic performance that is adequate for water remediation under sunlight conditions.

8.
Polymers (Basel) ; 16(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675044

RESUMO

The addition of nanostructures to polymeric materials allows for a direct interaction between polymeric chains and nanometric structures, resulting in a synergistic process through the physical (electrostatic forces) and chemical properties (bond formation) of constituents for the modification of their properties and potential cutting-edge materials. This study explores a novel in situ synthesis method for PDMS-%SiO2 nanoparticle composites with varying crosslinking degrees (PDMS:TEOS of 15:1, 10:1, and 5:1); particle concentrations (5%, 10%, and 15%); and sol-gel catalysts (acidic and alkaline). This investigation delves into the distinct physical and chemical properties of silicon nanoparticles synthesized under acidic (SiO2-a) and alkaline (SiO2-b) conditions. A characterization through Raman, FT-IR, and XPS analyses confirms particle size and agglomeration differences between both the SiO2-a and SiO2-b particles. Similar chemical environments, with TEOS and ethanol by-products, were detected for both systems. The results on polymer composites elucidate the successful incorporation of SiO2 nanoparticles into the PDMS matrix without altering the PDMS's chemical structure. However, the presence of nanoparticles did affect the relative intensities of specific vibrational modes over composites from -35% to 24% (Raman) and from -14% to 59% (FT-IR). The XPS results validate the presence of Si, O, and C in all composites, with significant variations in atomic proportions (C/Si and O/Si) and Si and C component analyses through deconvolution techniques. This study demonstrates the successful in situ synthesis of PDMS-SiO2 composites with tunable properties by controlling the sol-gel and crosslinking synthesis parameters. The findings provide valuable insights into the in situ synthesis methods of polymeric composite materials and their potential integration with polymer nanocomposite processing techniques.

9.
Materials (Basel) ; 17(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473560

RESUMO

From 1990 to 2024, this study presents a groundbreaking bibliometric and sentiment analysis of nanocomposite literature, distinguishing itself from existing reviews through its unique computational methodology. Developed by our research group, this novel approach systematically investigates the evolution of nanocomposites, focusing on microstructural characterization, electrical properties, and mechanical behaviors. By deploying advanced Boolean search strategies within the Scopus database, we achieve a meticulous extraction and in-depth exploration of thematic content, a methodological advancement in the field. Our analysis uniquely identifies critical trends and insights concerning nanocomposite microstructure, electrical attributes, and mechanical performance. The paper goes beyond traditional textual analytics and bibliometric evaluation, offering new interpretations of data and highlighting significant collaborative efforts and influential studies within the nanocomposite domain. Our findings uncover the evolution of research language, thematic shifts, and global contributions, providing a distinct and comprehensive view of the dynamic evolution of nanocomposite research. A critical component of this study is the "State-of-the-Art and Gaps Extracted from Results and Discussions" section, which delves into the latest advancements in nanocomposite research. This section details various nanocomposite types and their properties and introduces novel interpretations of their applications, especially in nanocomposite films. By tracing historical progress and identifying emerging trends, this analysis emphasizes the significance of collaboration and influential studies in molding the field. Moreover, the "Literature Review Guided by Artificial Intelligence" section showcases an innovative AI-guided approach to nanocomposite research, a first in this domain. Focusing on articles from 2023, selected based on citation frequency, this method offers a new perspective on the interplay between nanocomposites and their electrical properties. It highlights the composition, structure, and functionality of various systems, integrating recent findings for a comprehensive overview of current knowledge. The sentiment analysis, with an average score of 0.638771, reflects a positive trend in academic discourse and an increasing recognition of the potential of nanocomposites. Our bibliometric analysis, another methodological novelty, maps the intellectual domain, emphasizing pivotal research themes and the influence of crosslinking time on nanocomposite attributes. While acknowledging its limitations, this study exemplifies the indispensable role of our innovative computational tools in synthesizing and understanding the extensive body of nanocomposite literature. This work not only elucidates prevailing trends but also contributes a unique perspective and novel insights, enhancing our understanding of the nanocomposite research field.

10.
J Funct Biomater ; 15(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535244

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are metal oxide nanomaterials, which are important for several applications: antibacterial, anthelmintic, antiprotozoal and antitumoral, among others. These applications are mainly related to the ability to spontaneously produce and induce the production of reactive oxygen species that are important components for the destruction of pathogens and tumor cells. While trying to potentiate ZnO NPs, studies have associated these NPs with silver oxide (AgO) or silver (Ag) NPs. It has already been reported that this combination (Ag-ZnO/AgO NPs) is able to enhance the microbicidal potential. Although possessing much potential for several purposes, it is important to evaluate whether this association also poses the risk of toxicity to cells and experimental models. Therefore, this work aimed to evaluate the toxicity of various Ag-ZnO/AgO NP nanocomposites, in vitro and in vivo. Accordingly, ZnO nanocrystals and nanocomposites with various concentrations of AgO (ZnO:5Ag, ZnO:9Ag or ZnO:11Ag) were used in different cytotoxicity models: Galleria mellonella (G. mellonella), cell lines (VERO and RAW 264.7) and C57BL/6 mice. In the G. mellonella model, four concentrations were used in a single dose, with subsequent evaluation of mortality. In the case of cells, serial concentrations starting at 125 µg/mL were used, with subsequent cytotoxicity assessment. Based on the safe doses obtained in G. mellonella and cell models, the best doses were used in mice, with subsequent evaluations of weight, biochemistry as also renal and liver histopathology. It was observed that the toxicity, although low, of the nanocomposites was dependent upon the concentration of AgO used in association with ZnO NPs, both in vitro and in vivo.

11.
Nanomaterials (Basel) ; 14(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334570

RESUMO

Chlorpyrifos (CP) is a globally used pesticide with acute toxicity. This work studied the photocatalytic degradation of CP using TiO2, ZnO nanoparticles, and nanocomposites of TiO2 and ZnO supported on SPIONs (SPION@SiO2@TiO2 and SPION@SiO2@ZnO). The nanocomposites were synthesized by multi-step incipient wetness impregnation. The effects of the initial pH, catalyst type, and dose were evaluated. The nanocomposites of SPION@SiO2@TiO2 and SPION@SiO2@ZnO showed higher CP photodegradation levels than free nanoparticles, reaching 95.6% and 82.3%, respectively, at pH 7. The findings indicate that iron oxide, as a support material for TiO2 and ZnO, extended absorption edges and delayed the electron-hole recombination of the nanocomposites, improving their photocatalytic efficiency. At the same time, these nanocomposites, especially SPION@SiO2@TiO2, showed efficient degradation of 3,5,6-trichloropyridinol (TCP), one of the final metabolites of CP. The stability and reuse of this nanocomposite were also evaluated, with 74.6% efficiency found after six cycles. Therefore, this nanomaterial represents an eco-friendly, reusable, and effective alternative for the degradation of chlorpyrifos in wastewater treatment.

13.
Nanomaterials (Basel) ; 14(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38334529

RESUMO

This study explores cutting-edge and sustainable green methodologies and technologies for the synthesis of functional nanomaterials, with a specific focus on the removal of water contaminants and the application of kinetic adsorption models. Our research adopts a conscientious approach to environmental stewardship by synergistically employing eco-friendly silver nanoparticles, synthesized using Justicia spicigera extract as a biogenic reducing agent, in conjunction with Mexican zeolite to enhance contaminant remediation, particularly targeting Cu2+ ions. Structural analysis, utilizing X-ray diffraction (XRD) and high-resolution scanning and transmission electron microscopy (TEM and SEM), yields crucial insights into nanocomposite structure and morphology. Rigorous linear and non-linear kinetic models, encompassing pseudo-first order, pseudo-second order, Freundlich, and Langmuir, are employed to elucidate the kinetics and equilibrium behaviors of adsorption. The results underscore the remarkable efficiency of the Zeolite-Ag composite in Cu2+ ion removal, surpassing traditional materials and achieving an impressive adsorption rate of 98% for Cu. Furthermore, the Zeolite-Ag composite exhibits maximum adsorption times of 480 min. In the computational analysis, an initial mechanism for Cu2+ adsorption on zeolites is identified. The process involves rapid adsorption onto the surface of the Zeolite-Ag NP composite, followed by a gradual diffusion of ions into the cavities within the zeolite structure. Upon reaching equilibrium, a substantial reduction in copper ion concentration in the solution signifies successful removal. This research represents a noteworthy stride in sustainable contaminant removal, aligning with eco-friendly practices and supporting the potential integration of this technology into environmental applications. Consequently, it presents a promising solution for eco-conscious contaminant remediation, emphasizing the utilization of green methodologies and sustainable technologies in the development of functional nanomaterials.

14.
Environ Sci Pollut Res Int ; 31(41): 53706-53717, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38267649

RESUMO

The present study focuses on the elaboration of magnetic nanocomposites by the in situ incorporation of magnetite (Fe3O4) nanoparticles (NPs) with spherical and nanoflower-like morphologies in graphitic carbon nitride (g-C3N4) sheets using two different synthetic routes. Nanomaterials are characterized by TEM, SEM, XRD, FTIR, BET, zetametry, vibrating sample magnetometry, and UV-vis absorption spectroscopy. The decoration of the carbon nitride matrix with the magnetic NPs enhanced optical and textural properties. The influence of the morphology of the magnetic NPs on the adsorptive and photocatalytic properties of the nanocomposites under different pH conditions (4.5, 6.9, and 10.6) was assessed from batch tests to remove methylene blue (MB) from aqueous solutions. In extreme pH conditions, the nanocomposites exhibited lower or equivalent MB removal capacity compared to the pure g-C3N4. However, at neutral medium, the nanocomposite with incorporated Fe3O4 nanoflowers showed a significantly higher removal efficiency (80.7%) due to the combination of a high adsorption capacity and a good photocatalytic activity in this pH region. The proposed nanocomposite is a promising alternative to remove cationic dyes from water by magnetic assistance, since no pH adjustment of the polluted effluent is required, reducing costs and environmental impact in the dyeing industry.


Assuntos
Azul de Metileno , Nanocompostos , Nitrilas , Poluentes Químicos da Água , Azul de Metileno/química , Nanocompostos/química , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química , Nitrilas/química , Adsorção , Purificação da Água/métodos , Corantes/química , Grafite/química , Compostos de Nitrogênio
15.
Braz. j. oral sci ; 23: e244481, 2024. ilus
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1537088

RESUMO

Aims: This study aimed to examine the biological response of synthetic nanocomposite material on canine mandibular bone. Methods: Nine healthy adult male local breed dogs aged 12 to 18 months and weighing 10.2 to 15.2 kg were used in the study. Based on healing intervals of 1 and 2 months, the dogs were divided into 2 groups. Each group had 3 subgroups with 3 dogs each. The division was based on the grafting material used to fill the created defect: an empty defect (Control-ve), Beta-Tricalcium Phosphate, and nanocomposite (Beta-Tricalcium Phosphate and nanosilver 1%) . Surgery started after the dogs were anaesthetized. The surgical procedure began with a 5 cm parallel incision along the mandible's lower posterior border. After exposing the periosteum, a three 5mm-diameter, 5-mmdeep critical-size holes were made, 5mm between each one. Each group's grafting material had independent 3 holes. The defects were covered with resorbable collagen membranes followed by suturing of the mucoperiosteal flap. Results: Total densitometric analysis showed no significant differences between groups at 1-month intervals, with the nanocomposite group having a higher mean rank (165.66± 31.21) in comparison to other groups while at 2 months intervals that there was a highly significant difference between three groups as the P-value was (0.000) with the nanocomposite group having a higher mean rank (460.66± 26.40). Conclusions: In the current study, the use of nanocomposites improved osteoconductivity by accelerating new bone formation. Moreover, the encorporation of nanosilver enhanced growth factor activity. These attributes make nanocomposites a promising material for enhancing the bone healing process


Assuntos
Animais , Cães , Regeneração , Fosfatos de Cálcio , Transplante Ósseo , Substitutos Ósseos , Nanocompostos , Tomografia Computadorizada de Feixe Cônico , Antibacterianos
16.
Rev. Esc. Enferm. USP ; Rev. Esc. Enferm. USP;58: e20230338, 2024. tab, graf
Artigo em Inglês | LILACS, BDENF - Enfermagem | ID: biblio-1559051

RESUMO

ABSTRACT Objective: To map the nanocomposites used in the treatment of skin lesions. Method: A scoping review, according to the Joanna Briggs Institute methodology, carried out on eight databases, a list of references and Google Scholar to answer the question: "Which nanocomposites are used as a cover for the treatment of skin lesions?". Two independent reviewers selected the final sample using inclusion/exclusion criteria using the EndNote® and Rayyan programs. Data was extracted using an adapted form and reported using the PRISMA checklist extension, and the protocol was registered in the Open Science Framework (OSF). Results: 21 articles were selected, with nanofibers, nanogels and nanomembranes as the nanocomposites described in wound healing, alone or in association with other therapies: negative pressure and elastic. Silver nanomaterials stand out in accelerating healing due to their antimicrobial and anti-inflammatory action, but caution should be exercised due to the risk of cytotoxicity and microbial resistance. Conclusion: Nanocomposites used in wound treatment are effective in accelerating healing and reducing costs, and the addition of bioactives to nanomaterials has added extra properties that contribute to healing.


RESUMEN Objetivo: Mapear los nanocompuestos utilizados en el tratamiento de lesiones cutáneas. Método: Revisión de alcance, según la metodología del Instituto Joanna Briggs, realizada sobre ocho bases de datos, una lista de referencias y Google Scholar para responder a la pregunta: "¿Qué nanocompuestos se utilizan como cobertura para el tratamiento de lesiones cutáneas?". Dos revisores independientes seleccionaron la muestra final mediante criterios de inclusión/exclusión utilizando los programas EndNote® y Rayyan. Los datos se extrajeron mediante un formulario adaptado y se notificaron utilizando la extensión de la lista de comprobación PRISMA, y el protocolo se registró en el Open Science Framework (OSF). Resultados: Se seleccionaron 21 artículos, con nanofibras, nanogeles y nanomembranas como los nanocompuestos descritos en la cicatrización de heridas, solos o en asociación con otras terapias: presión negativa y elástica. Los nanomateriales con plata destacan en la aceleración de la cicatrización por su acción antimicrobiana y antiinflamatoria, pero se recomienda precaución en su uso por el riesgo de citotoxicidad y resistencia microbiana. Conclusión: Los nanocompuestos utilizados en el tratamiento de heridas son eficaces para acelerar la cicatrización y reducir costes, y la adición de bioactivos a los nanomateriales ha añadido propiedades adicionales que contribuyen a la cicatrización.


RESUMO Objetivo: Mapear os nanocompostos utilizados no tratamento de lesões cutâneas. Método: Revisão de escopo, conforme metodologia Joanna Briggs Institute, realizada em oito bases de dados, lista de referências e Google Scholar para responder à pergunta: "Quais os nanocompostos utilizados como cobertura para o tratamento de lesões cutâneas?". Dois revisores independentes, selecionaram a amostra final mediante critérios de inclusão/exclusão usando os programas EndNote® e Rayyan. Os dados foram extraídos com formulário adaptado e reportados pela extensão do checklist PRISMA, o protocolo foi registrado na Open Science Framework (OSF). Resultados: 21 artigos selecionados, trouxeram nanofibras, nanogéis e nanomembranas como os nanocompostos descritos na cicatrização de feridas, isolados ou em associação a outras terapias: pressão negativa e elástica. Os nanomateriais com prata destacam-se em acelerar a cicatrização pela ação antimicrobiana e anti-inflamatória, recomenda-se cautela no uso pelo risco de citotoxicidade e resistência microbiana. Conclusão: Os nanocompostos utilizados no tratamento de feridas são eficientes em acelerar a cicatrização e reduzir custos, a adição de bioativos aos nanomateriais agregaram propriedades extras que contribuem com a cicatrização.


Assuntos
Humanos , Enfermagem Pediátrica , Ferimentos e Lesões , Nanocompostos , Úlcera Cutânea
17.
Polymers (Basel) ; 15(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139914

RESUMO

Nanocomposites based on poly(lactic acid) (PLA) and magnetite nanoparticles (MNP-Fe3O4) show promise for applications in biomedical treatments. One key challenge is to improve the stabilization and dispersion of MNP-Fe3O4. To address this, we synthesized MNP-Fe3O4/PLA nanocomposites using ultrasound mediation and a single iron(II) precursor, eliminating the need for surfactants or organic solvents, and conducted the process under ambient conditions. The resulting materials, containing 18 and 33 wt.% Fe3O4, exhibited unique thermal behavior characterized by two mass losses: one at a lower degradation temperature (Td) and another at a higher Td compared to pure PLA. This suggests that the interaction between PLA and MNP-Fe3O4 occurs through hydrogen bonds, enhancing the thermal stability of a portion of the polymer. Fourier Transform Infrared (FT-IR) analysis supported this finding, revealing shifts in bands related to the terminal -OH groups of the polymer and the Fe-O bonds, thereby confirming the interaction between the groups. Raman spectroscopy demonstrated that the PLA serves as a protective layer against the oxidation of MNP-Fe3O4 in the 18% MNP-Fe3O4/PLA nanocomposite when exposed to a high-power laser (90 mW). Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) analyses confirmed that the synthetic procedure yields materials with dispersed nanoparticles within the PLA matrix without the need for additional reactants.

18.
Polymers (Basel) ; 15(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896318

RESUMO

Up to now, rubber materials have been used in a wide range of applications, from automotive parts to special-design engineering pieces, as well as in the pharmaceutical, food, electronics, and military industries, among others. Since the discovery of the vulcanization of natural rubber (NR) in 1838, the continuous demand for this material has intensified the quest for a synthetic substitute with similar properties. In this regard, synthetic polyisoprene rubber (IR) emerged as an attractive alternative. However, despite the efforts made, some properties of natural rubber have been difficult to match (i.e., superior mechanical properties) due not only to its high content of cis-1,4-polyisoprene but also because its structure is considered a naturally occurring nanocomposite. In this sense, cutting-edge research has proposed the synthesis of nanocomposites with synthetic rubber, obtaining the same properties as natural rubber. This review focuses on the synthesis, structure, and properties of natural and synthetic rubber, with a special interest in the synthesis of IR nanocomposites, giving the reader a comprehensive reference on how to achieve a mimic of NR.

19.
Pharmaceutics ; 15(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37765166

RESUMO

The increasing demand for non-invasive biocompatible materials in biomedical applications, driven by accidents and diseases like cancer, has led to the development of sustainable biomaterials. Here, we report the synthesis of four block formulations using polycaprolactone (PCL), polylactic acid (PLA), and zinc oxide nanoparticles (ZnO-NPs) for subdermal tissue regeneration. Characterization by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the composition of the composites. Additionally, the interaction of ZnO-NPs mainly occurred with the C=O groups of PCL occurring at 1724 cm-1, which disappears for F4, as evidenced in the FT-IR analysis. Likewise, this interaction evidenced the decrease in the crystallinity of the composites as they act as crosslinking points between the polymer backbones, inducing gaps between them and weakening the strength of the intermolecular bonds. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses confirmed that the ZnO-NPs bind to the carbonyl groups of the polymer, acting as weak points in the polymer backbone from where the different fragmentations occur. Scanning electron microscopy (SEM) showed that the increase in ZnO-NPs facilitated a more compact surface due to the excellent dispersion and homogeneous accumulation between the polymeric chains, facilitating this morphology. The in vivo studies using the nanocomposites demonstrated the degradation/resorption of the blocks in a ZnO-NP-dependant mode. After degradation, collagen fibers (Type I), blood vessels, and inflammatory cells continue the resorption of the implanted material. The results reported here demonstrate the relevance and potential impact of the ZnO-NP-based scaffolds in soft tissue regeneration.

20.
Polymers (Basel) ; 15(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37765511

RESUMO

Developing nanomaterials with the capacity to restrict the growth of bacteria and fungus is of current interest. In this study, nanocomposites of poly(2-hydroxyethyl methacrylate) (PHEMA) and carbon nanotubes (CNTs) functionalized with primary amine, hydroxyl, and carboxyl groups were prepared and characterized. An analysis by Fourier-transform infrared (FT-IR) spectroscopy showed that PHEMA chains were grafted to the functionalized CNTs. X-ray photoelectron spectroscopy suggested that the grafting reaction was viable. The morphology of the prepared nanocomposites studied by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) showed significant changes with respect to the observed for pure PHEMA. The thermal behavior of the nanocomposites studied by differential scanning calorimetry (DSC) revealed that the functionalized CNTs strongly affect the mobility of the PHEMA chains. Tests carried out by thermogravimetric analysis (TGA) were used to calculate the degree of grafting of the PHEMA chains. The ability of the prepared nanocomposites to inhibit the growth of the fungus Candida albicans and the bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli was evaluated. A reduced antifungal and antibacterial capacity of the prepared nanocomposites was determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA