Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1268854, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106410

RESUMO

Lipids perform a series of cellular functions, establishing cell and organelles' boundaries, organizing signaling platforms, and creating compartments where specific reactions occur. Moreover, lipids store energy and act as secondary messengers whose distribution is tightly regulated. Disruption of lipid metabolism is associated with many diseases, including those caused by viruses. In this scenario, lipids can favor virus replication and are not solely used as pathogens' energy source. In contrast, cells can counteract viruses using lipids as weapons. In this review, we discuss the available data on how coronaviruses profit from cellular lipid compartments and why targeting lipid metabolism may be a powerful strategy to fight these cellular parasites. We also provide a formidable collection of data on the pharmacological approaches targeting lipid metabolism to impair and treat coronavirus infection.


Assuntos
Infecções por Coronavirus , Coronavirus , Humanos , Metabolismo dos Lipídeos , Infecções por Coronavirus/tratamento farmacológico , Replicação Viral , Lipídeos
2.
Proc Natl Acad Sci U S A ; 120(16): e2300942120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036984

RESUMO

How are ions distributed in the three-dimensional (3D) volume confined in a nanoscale compartment? Regulation of ionic flow in the intracellular milieu has been explained by different theoretical models and experimentally demonstrated for several compartments with microscale dimensions. Most of these models predict a homogeneous distribution of ions seconds or milliseconds after an initial diffusion step formed at the ion translocation site, leaving open questions when it comes to ion/element distribution in spaces/compartments with nanoscale dimensions. Due to the influence of compartment size on the regulation of ionic flow, theoretical variations of classical models have been proposed, suggesting heterogeneous distributions of ions/elements within nanoscale compartments. Nonetheless, such assumptions have not been fully proven for the 3D volume of an organelle. In this work, we used a combination of cutting-edge electron microscopy techniques to map the 3D distribution of diffusible elements within the whole volume of acidocalcisomes in trypanosomes. Cryofixed cells were analyzed by scanning transmission electron microscopy tomography combined with elemental mapping using a high-performance setup of X-ray detectors. Results showed the existence of elemental nanodomains within the acidocalcisomes, where cationic elements display a self-excluding pattern. These were validated by Pearson correlation analysis and in silico molecular dynamic simulations. Formation of element domains within the 3D space of an organelle is demonstrated. Distribution patterns that support the electrodiffusion theory proposed for nanophysiology models have been found. The experimental pipeline shown here can be applied to a variety of models where ion mobilization plays a crucial role in physiological processes.


Assuntos
Trypanosoma cruzi , Trypanosoma cruzi/metabolismo , Cálcio/metabolismo , Organelas/metabolismo , Microscopia Eletrônica
3.
Membranes (Basel) ; 12(8)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36005727

RESUMO

Compartmentalization, together with transbilayer and lateral asymmetries, provide the structural foundation for functional specializations at the cell surface, including the active role of the lipid microenvironment in the modulation of membrane-bound proteins. The chemical synapse, the site where neurotransmitter-coded signals are decoded by neurotransmitter receptors, adds another layer of complexity to the plasma membrane architectural intricacy, mainly due to the need to accommodate a sizeable number of molecules in a minute subcellular compartment with dimensions barely reaching the micrometer. In this review, we discuss how nature has developed suitable adjustments to accommodate different types of membrane-bound receptors and scaffolding proteins via membrane microdomains, and how this "effort-sharing" mechanism has evolved to optimize crosstalk, separation, or coupling, where/when appropriate. We focus on a fast ligand-gated neurotransmitter receptor, the nicotinic acetylcholine receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as a paradigmatic example.

4.
Biomolecules ; 11(11)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34827695

RESUMO

Compartmentalization of the membrane is essential for cells to perform highly specific tasks and spatially constrained biochemical functions in topographically defined areas. These membrane lateral heterogeneities range from nanoscopic dimensions, often involving only a few molecular constituents, to micron-sized mesoscopic domains resulting from the coalescence of nanodomains. Short-lived domains lasting for a few milliseconds coexist with more stable platforms lasting from minutes to days. This panoply of lateral domains subserves the great variety of demands of cell physiology, particularly high for those implicated in signaling. The dendritic spine, a subcellular structure of neurons at the receiving (postsynaptic) end of central nervous system excitatory synapses, exploits this compartmentalization principle. In its most frequent adult morphology, the mushroom-shaped spine harbors neurotransmitter receptors, enzymes, and scaffolding proteins tightly packed in a volume of a few femtoliters. In addition to constituting a mesoscopic lateral heterogeneity of the dendritic arborization, the dendritic spine postsynaptic membrane is further compartmentalized into spatially delimited nanodomains that execute separate functions in the synapse. This review discusses the functional relevance of compartmentalization and nanodomain organization in synaptic transmission and plasticity and exemplifies the importance of this parcelization in various neurotransmitter signaling systems operating at dendritic spines, using two fast ligand-gated ionotropic receptors, the nicotinic acetylcholine receptor and the glutamatergic receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as paradigmatic examples.


Assuntos
Espinhas Dendríticas , Neurônios , Sinapses , Transmissão Sináptica
5.
Biochem Biophys Res Commun ; 505(4): 1038-1042, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30309652

RESUMO

Different spin labels were incorporated to the membranes of cultured insect UFL-AG-286 cells in order to characterize their physical properties by Electron Paramagnetic Resonance spectroscopy (EPR). The spectrum of the spin label 12-SASL incorporated to cell membranes was similar as those obtained in membrane model systems composed of eggPC/cholesterol. However, the spectrum of the spin label CSL, chemically related to cholesterol, was drastically different in the two systems. Interestingly, when cell cholesterol content was reduced using methyl beta cyclodextrin, an EPR spectrum similar to those of model membranes was obtained. The analysis of these experiments suggests the existence of cholesterol rich regions in UFL-AG-286 cell membranes.


Assuntos
Membrana Celular/química , Colesterol/química , Marcadores de Spin , Animais , Células Cultivadas , Espectroscopia de Ressonância de Spin Eletrônica , Lepidópteros , Lipídeos/química , Lipossomos/química
6.
Micromachines (Basel) ; 8(10)2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30400500

RESUMO

We present a study of the application of a single-step and solvent-free laser-based strategy to control the formation of polymer-derived fluorescent carbon nanodomains embedded in poly-dimethylsiloxane (PDMS) microchannels. A low-power, laser-induced microplasma was used to produce a localised combustion of a PDMS surface and confine nanocarbon byproducts within the exposed microregions. Patterns with on-demand geometries were achieved under dry environmental conditions thanks to a low-cost 3-axis CD-DVD platform motorised in a selective laser ablation fashion. The high temperature required for combustion of PDMS was achieved locally by strongly focusing the laser spot on the desired areas, and the need for high-power laser was bypassed by coating the surface with an absorbing carbon additive layer, hence making the etching of a transparent material possible. The simple and repeatable fabrication process and the spectroscopic characterisation of resulting fluorescent microregions are reported. In situ Raman and fluorescence spectroscopy were used to identify the nature of the nanoclusters left inside the modified areas and their fluorescence spectra as a function of excitation wavelength. Interestingly, the carbon nanodomains left inside the etched micropatterns showed a strong dependency on the additive materials and laser energy that were used to achieve the incandescence and etch microchannels on the surface of the polymer. This dependence on the lasing conditions indicates that our cost-effective laser ablation technique may be used to tune the nature of the polymer-derived nanocarbons, useful for photonics applications in transparent silicones in a rapid-prototyping fashion.

7.
Int J Nanomedicine ; 10: 3377-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26005348

RESUMO

Doxorubicin (Dox) is an anthracycline anticancer drug with high water solubility, whose use is limited primarily due to significant side effects. In this study it is shown that Dox interacts with monosialoglycosphingolipid (GM1) ganglioside micelles primarily through hydrophobic interactions independent of pH and ionic strength. In addition, Dox can be incorporated even into GM1 micelles already containing highly hydrophobic paclitaxel (Ptx). However, it was not possible to incorporate Ptx into Dox-containing GM1 micelles, suggesting that Dox could be occupying a more external position in the micelles. This result is in agreement with a higher hydrolysis of Dox than of Ptx when micelles were incubated at alkaline pH. The loading of Dox into GM1 micelles was observed over a broad range of temperature (4°C-55°C). Furthermore, Dox-loaded micelles were stable in aqueous solutions exhibiting no aggregation or precipitation for up to 2 months when kept at 4°C-25°C and even after freeze-thawing cycles. Upon exposure to blood components, Dox-containing micelles were observed to interact with human serum albumin. However, the amount of human serum albumin that ended up being associated to the micelles was inversely related to the amount of Dox, suggesting that both could share their binding sites. In vitro studies on Hep2 cells showed that the cellular uptake and cytotoxic activity of Dox and Ptx from the micellar complexes were similar to those of the free form of these drugs, even when the micelle was covered with albumin. These results support the idea of the existence of different nano-domains in a single micelle and the fact that this micellar model could be used as a platform for loading and delivering hydrophobic and hydrophilic active pharmaceutical ingredients.


Assuntos
Doxorrubicina/química , Gangliosídeo G(M1)/química , Paclitaxel/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Estabilidade de Medicamentos , Células Hep G2/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Micelas , Concentração Osmolar , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Albumina Sérica/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA