Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38251121

RESUMO

Biopolymers emerge as promising candidates for enhanced oil recovery (EOR) applications due to their molecular structures, which exhibit better stability than polyacrylamides under harsh conditions. Nonetheless, biopolymers are susceptible to oxidation and biological degradation. Biopolymers reinforced with nanoparticles could be a potential solution to the issue. The nanofluids' stability and performance depend on the nanoparticles' properties and the preparation method. The primary objective of this study was to evaluate the effect of the preparation method and the nanoparticle type (SiO2, Al2O3, and TiO2) on the viscosity and stability of the scleroglucan (SG). The thickening effect of the SG solution was improved by adding all NPs due to the formation of three-dimensional structures between the NPs and the SG chains. The stability test showed that the SG + Al2O3 and SG + TiO2 nanofluids are highly unstable, but the SG + SiO2 nanofluids are highly stable (regardless of the preparation method). According to the ANOVA results, the preparation method and standing time influence the nanofluid viscosity with a statistical significance of 95%. On the contrary, the heating temperature and NP type are insignificant. Finally, the nanofluid with the best performance was 1000 ppm of SG + 100 ppm of SiO2_120 NPs prepared by method II.

2.
Data Brief ; 47: 108854, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36798599

RESUMO

The present work exhibits the dynamic viscosity profile data of three distinct nanofluids, at a constant shear stress, and within a range of temperatures that include below-ambient conditions (from -10 to 20 °C). The nanofluids were as follows. Nanofluid I: 30% ethylene glycol and 70% distilled water (v/v), with graphene (0.32% in mass); Nanofluid II: 30% engine coolant NBR 13705; ASTM D-3306; ASTM D-4985) and 70% distilled water (v/v), with graphene (0.2% in mass); and Nanofluid III: 30% engine coolant and 70% distilled water (v/v), with Multi-Walled Carbon Nanotubes (MWCNT) (0.2% in mass). The present work was motivated by the scarcity of experimental data on the temperature dependence of viscosity for graphene, MWCNT, and their hybrid nanofluids, at below-ambient temperatures.

3.
Materials (Basel) ; 15(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36234220

RESUMO

Nanofluids can be employed as one of the two fluids needed to improve heat exchanger performance due to their improved thermal and rheological properties. In this review, the impact of nanoparticles on nanofluid properties is discussed by analyzing factors such as the concentration, size, and shape of nanoparticles. Nanofluid thermophysical properties and flow rate directly influence the heat transfer coefficient and pressure drop. High thermal conductivity nanoparticles improve the heat transfer coefficient; in particular, metallic oxide (such as MgO, TiO2, and ZnO) nanoparticles show greater enhancement of this property by up to 30% compared to the base fluid. Nanoparticle size and shape are other factors to consider as well, e.g., a significant difference in thermal conductivity enhancement from 6.41% to 9.73% could be achieved by decreasing the Al2O3 nanoparticle size from 90 to 10 nm, affecting nanofluid viscosity and density. In addition, equations to determine the heat transfer rate and the pressure drop in a double-pipe heat exchanger are presented. It was established that the main factor that directly influences the heat transfer coefficient is the nanofluid thermal conductivity, and nanofluid viscosity affects the pressure drop.

4.
Nanomaterials (Basel) ; 12(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145002

RESUMO

This study aimed to develop novel bio-nanofluids using Solanum torvum extracts in synergy with nanoparticles of different chemical nature as a proposal sustainable for enhanced oil recovery (EOR) applications. For this, saponin-rich extracts (SRE) were obtained from Solanum torvum fruit using ultrasound-assisted and Soxhlet extraction. The results revealed that Soxhlet is more efficient for obtaining SRE from Solanum torvum and that degreasing does not generate additional yields. SRE was characterized by Fourier transformed infrared spectrophotometry, thermogravimetric analysis, hydrophilic-lipophilic balance, and critical micelle concentration analyses. Bio-nanofluids based on SiO2 (strong acid), ZrO2 (acid), Al2O3 (neutral), and MgO (basic) nanoparticles and SRE were designed to evaluate the effect of the chemical nature of the nanoparticles on the SRE performance. The results show that 100 mg L-1 MgO nanoparticles improved the interfacial tension up to 57% and the capillary number increased by two orders of magnitude using this bio-nanofluid. SRE solutions enhanced with MgO recovered about 21% more than the system in the absence of nanoparticles. The addition of MgO nanoparticles did not cause a loss of injectivity. This is the first study on the surface-active properties of Solanum torvum enhanced with nanomaterials as an environmentally friendly EOR process.

5.
Nanomaterials (Basel) ; 12(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080079

RESUMO

Nanofluids have become of interest in recent years thanks to their improved thermal properties, which make them especially interesting for microchannel heat sink applications. In this study, we prepared two aqueous nanofluids based on reduced graphene oxide (rGO) decorated with manganese dioxide (MnO2) at a concentration of 0.1 wt.%. The difference between the two nanofluids was in the preparation of the reduced graphene oxide decorated with MnO2. In the first case, the manganese salt was mixed with ascorbic acid before GO reduction with NaOH, and in the second case, the GO reduction with NaOH occurred under ascorbic acid. Ascorbic acid not only plays the role of a non-toxic and ecofriendly reducing agent but also acts as an important parameter to control the reaction kinetics. The structural, microstructural and spectral characterizations of the MnO2/rGO nanocomposite were conducted via X-ray diffractometry (XRD), Raman spectroscopy, FT-IR, TEM, SEM and EDS analyses. Moreover, the synthesized MnO2/rGO nanocomposites were utilized as nanofluids and their stability, thermal conductivity and rheological behaviors were studied. The thermal conductivity of the MnO2/rGO and MnO2AsA/rGO nanofluids was 17% and 14.8% higher than that of water for the average temperature range, respectively, but their viscosity remained statistically equal to that of water. Moreover, both nanofluids presented Newtonian behavior in the analyzed shear rate range. Therefore, both MnO2/rGO and MnO2AsA/rGO nanofluids are promising alternatives for use in applications with micro- and millichannel heat sinks.

6.
Nanomaterials (Basel) ; 12(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35407211

RESUMO

Carbon-based nanomaterials have a high thermal conductivity, which can be exploited to prepare nanofluids. Graphene is a hydrophobic substance, and consequently, graphene-based nanofluid stability is improved by adding surfactants. An attractive alternative is the decoration of reduced graphene oxide (rGO) with metallic materials to improve the thermal conductivity without affecting the stability of nanofluids. This study focuses on the synthesis and characterization of rGO/Ag (0.1 wt.%) aqueous nanofluids. Moreover, the effects of the Ag concentration (0.01−1 M) on the thermal conductivity and viscosity during the synthesis of rGO/Ag composite are analyzed. The nanofluid thermal conductivity showed increases in relation to the base fluid, the most promising being 28.43 and 26.25% for 0.1 and 1 M of Ag, respectively. Furthermore, the nanofluids were Newtonian in the analyzed range of shear rates and presented a moderate increase (<11%) in viscosity. Aqueous nanofluids based on rGO/Ag nanocomposites are a potential alternative for applications as heat transfer fluids.

7.
Entropy (Basel) ; 23(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503797

RESUMO

In this work, the production of biologically synthesized silica nanoparticles was proposed to prepare a nanosuspension as a thermal fluid in parabolic solar panels at the laboratory level. Silica nanoparticles were produced from construction sand in two stages. Biosynthesis broth was produced by Aspergillus niger aerated fermentation in a 1 L bioreactor for 9 days. Each supernatant was contacted with 18% construction sand in a 500 L reactor with mechanical agitation, at a temperature of 25 °C, and a contact time of 30 min. Subsequently, the separation process was carried out. For day 9, a pH value of 1.71 was obtained as well as acid concentrations of 15.78 g/L for citrus and 4.16 g/L for malic. The metal extraction efficiency of Si nanoparticles was 19%. The vibration peaks in the FTIR were characteristic of the presence of silica nanoparticles in wavenumbers 1020 cm-1 and 1150 cm-1. Finally, a prototype solar radiation test bench for parabolic systems was built and provided with a radiation source that falls on a translucent pipe that transports the nanoparticles, which has a pump and a series of thermocouples. The heat capacity of the biotechnologically produced silica nanoparticle suspension was 0.72 ± 0.05 kJ/kgK, using material and energy balances in the flow circuit.

8.
Nanomaterials (Basel) ; 10(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796762

RESUMO

The primary objective of this study is to develop a novel experimental nanofluid based on surfactant-nanoparticle-brine tuning, subsequently evaluate its performance in the laboratory under reservoir conditions, then upscale the design for a field trial of the nanotechnology-enhanced surfactant injection process. Two different mixtures of commercial anionic surfactants (SA and SB) were characterized by their critical micelle concentration (CMC), density, and Fourier transform infrared (FTIR) spectra. Two types of commercial nanoparticles (CNA and CNB) were utilized, and they were characterized by SBET, FTIR spectra, hydrodynamic mean sizes (dp50), isoelectric points (pHIEP), and functional groups. The evaluation of both surfactant-nanoparticle systems demonstrated that the best performance was obtained with a total dissolved solid (TDS) of 0.75% with the SA surfactant and the CNA nanoparticles. A nanofluid formulation with 100 mg·L-1 of CNA provided suitable interfacial tension (IFT) values between 0.18 and 0.15 mN·m-1 for a surfactant dosage range of 750-1000 mg·L-1. Results obtained from adsorption tests indicated that the surfactant adsorption on the rock would be reduced by at least 40% under static and dynamic conditions due to nanoparticle addition. Moreover, during core flooding tests, it was observed that the recovery factor was increased by 22% for the nanofluid usage in contrast with a 17% increase with only the use of the surfactant. These results are related to the estimated capillary number of 3 × 10-5, 3 × 10-4, and 5 × 10-4 for the brine, the surfactant, and the nanofluid, respectively, as well as to the reduction in the surfactant adsorption on the rock which enhances the efficiency of the process. The field trial application was performed with the same nanofluid formulation in the two different injection patterns of a Colombian oil field and represented the first application worldwide of nanoparticles/nanofluids in enhanced oil recovery (EOR) processes. The cumulative incremental oil production was nearly 30,035 Bbls for both injection patterns by May 19, 2020. The decline rate was estimated through an exponential model to be -0.104 month-1 before the intervention, to -0.016 month-1 after the nanofluid injection. The pilot was designed based on a production increment of 3.5%, which was successfully surpassed with this field test with an increment of 27.3%. This application is the first, worldwide, to demonstrate surfactant flooding assisted by nanotechnology in a chemical enhanced oil recovery (CEOR) process in a low interfacial tension region.

9.
Materials (Basel) ; 12(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261692

RESUMO

The implementation of carbon capture and storage process (CCS) has been unsuccessful to date, mainly due to the technical issues and high costs associated with two main stages: (1) CO2 separation from flue gas and (2) CO2 injection in deep geological deposits, more than 300 m, where CO2 is in supercritical conditions. This study proposes, for the first time, an enhanced CCS process (e-CCS), in which the stage of CO2 separation is removed and the flue gas is injected directly in shallow reservoirs located at less than 300 m, where the adsorptive phenomena control CO2 storage. Nitrogen-rich carbon nanospheres were used as modifying agents of the reservoir porous texture to improve both the CO2 adsorption capacity and selectivity. For this purpose, sandstone was impregnated with a nanofluid and CO2 adsorption was evaluated at different pressures (atmospheric pressure and from 3 × 10-3 MPa to 3.0 MPa) and temperatures (0, 25, and 50 °C). As a main result, a mass fraction of only 20% of nanomaterials increased both the surface area and the molecular interactions, so that the increase of adsorption capacity at shallow reservoir conditions (50 °C and 3.0 MPa) was more than 677 times (from 0.00125 to 0.9 mmol g-1).

10.
Materials (Basel) ; 12(11)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163572

RESUMO

The optical behavior exhibited by bimetallic nanoparticles was analyzed by the influence of ultrasonic and nonlinear optical waves in propagation through the samples contained in an ethanol suspension. The Au-Pt nanoparticles were prepared by a sol-gel method. Optical characterization recorded by UV-vis spectrophotometer shows two absorption peaks correlated to the synergistic effects of the bimetallic alloy. The structure and nanocrystalline nature of the samples were confirmed by Scanning Transmission Electron Microscopy with X-ray energy dispersive spectroscopy evaluations. The absorption of light associated with Surface Plasmon Resonance phenomena in the samples was modified by the dynamic influence of ultrasonic effects during the propagation of optical signals promoting nonlinear absorption and nonlinear refraction. The third-order nonlinear optical response of the nanoparticles dispersed in the ethanol-based fluid was explored by nanosecond pulses at 532 nm. The propagation of high-frequency sound waves through a nanofluid generates a destabilization in the distribution of the nanoparticles, avoiding possible agglomerations. Besides, the influence of mechanical perturbation, the container plays a major role in the resonance and attenuation effects. Ultrasound interactions together to nonlinear optical phenomena in nanofluids is a promising alternative field for a wide of applications for modulating quantum signals, sensors and acousto-optic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA