Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Int J Biol Macromol ; : 133519, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960235

RESUMO

This study investigated the development of a genipin-crosslinked chitosan (CS)-based polyvinylpyrrolidone (PVP) hydrogel containing curcumin nanosuspensions (Cur-NSs) for promoting wound healing in an excisional wound model. Cur-NSs were first prepared, and a simplex centroid mixture design was employed to optimize the hydrogel for high water absorption, degree of crosslinking, and sufficient toughness. The in vivo wound healing effect was investigated on Wistar rats. The optimized hydrogel consisted of CS:PVP at a 70:30 ratio, crosslinked with a 2 % w/w genipin solution. It exhibited high swelling capability (486 %) while maintaining solidity, robustness, and durability. Incorporation of 5 % w/w Cur-NSs resulted in a more compact structure, although with reduction in swelling properties. The release kinetics of Cur from the hydrogel followed the Korsmeyer-Peppas Fickian diffusion model. In vitro biocompatibility studies demonstrated that the hydrogel was non-toxic to skin fibroblast cells. The in vivo experiment revealed a desirable wound healing rate with over 80 % recovery at day 7. Cur-NSs likely aided wound healing by reducing inflammatory response and stimulating fibroblast proliferation. Additionally, the CS-based hydrogel provided a moist wound environment with hydration and gas transfer, further accelerating wound closure. These findings suggest that the Cur-NS-embedded hydrogel shows promise as a desirable wound dressing material.

2.
Pest Manag Sci ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884421

RESUMO

BACKGROUND: The presence of barnyardgrass poses a threat to global food security by reducing rice yields. Currently, herbicides are primarily applied for weed management. However, the effectiveness of herbicide deposition and uptake on barnyardgrass is limited as a consequence of the high wax content on leaves, low water solubility and extreme lipophilicity of herbicides. Therefore, it is imperative to develop novel formulations for efficient delivery of herbicides to improve herbicidal activity and reduce dosage. RESULTS: We successfully prepared nanosuspension(s) (NS) of quinclorac through the wet media milling technique. This NS demonstrates excellent physical stability and maintains nanoscale during dose transfer. The deposition concentration and uptake concentration of NS on barnyardgrass were 3.84-4.47- and 2.11-2.58-fold greater than those traditional formulations, respectively. Moreover, the NS exhibited enhanced herbicidal activity against barnyardgrass at half the dosage required by conventional formulations without compromising rice safety. CONCLUSIONS: These findings suggest that NS can effectively facilitate the delivery of hydrophobic and poorly water-soluble herbicide active ingredients, thereby enhancing their deposition, uptake and bioactivity. This study expands the potential application of NS in pesticide delivery, which can provide valuable support for optimizing pesticide utilization, improving economic efficiency and mitigating environmental risks. © 2024 Society of Chemical Industry.

3.
Saudi Pharm J ; 32(7): 102104, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38841107

RESUMO

The aim in this study was to develop and evaluate a nanofluconazole (FLZ) formulation with increased solubility and permeation rate using nanosuspensions. The FLZ nanosuspensions were stabilized using a variety of stabilizing agents and surfactants in various concentrations. The FLZ nanosuspension was characterized in vitro using particle size, zeta potential, X-ray powder diffraction (XRPD), and solubility. In addition, the ex vivo ocular permeation of FLZ through a goat cornea was analyzed. The results showed that the particle size of all nanosuspension formulations was in the nanometer range from 174.5 ± 1.9 to 720.2 ± 4.77 nm; that of the untreated drug was 18.34 µm. The zeta potential values were acceptable, which indicated suitable stability for formulations. The solubility of the nanosuspensions was up to 5.7-fold higher compared with that of the untreated drug. The results of the ex vivo ocular diffusion of the FLZ nanosuspensions showed the percentage of FLZ penetrating via the goat cornea increased after using Kollicoat to stabilize the nanosuspension formulation. Consequently, when using a nanosuspension formulation of Kollicoat, the antifungal activity of the drug strengthens.

4.
Int J Pharm ; 658: 124226, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38744414

RESUMO

This review article provides a comprehensive overview of the advancements in using nanosuspensions for controlled drug delivery in ophthalmology. It highlights the significance of ophthalmic drug delivery due to the prevalence of eye diseases and delves into various aspects of this field. The article explores molecular mechanisms, drugs used, and physiological factors affecting drug absorption. It also addresses challenges in treating both anterior and posterior eye segments and investigates the role of mucus in obstructing micro- and nanosuspensions. Nanosuspensions are presented as a promising approach to enhance drug solubility and absorption, covering formulation, stability, properties, and functionalization. The review discusses the pros and cons of using nanosuspensions for ocular drug delivery and covers their structure, preparation, characterization, and applications. Several graphical representations illustrate their role in treating various eye conditions. Specific drug categories like anti-inflammatory drugs, antihistamines, glucocorticoids, and more are discussed in detail, with relevant studies. The article also addresses current challenges and future directions, emphasizing the need for improved nanosuspension stability and exploring potential technologies. Nanosuspensions have shown substantial potential in advancing ophthalmic drug delivery by enhancing solubility and absorption. This article is a valuable resource for researchers, clinicians, and pharmaceutical professionals in this field, offering insights into recent developments, challenges, and future prospects in nanosuspension use for ocular drug delivery.


Assuntos
Administração Oftálmica , Sistemas de Liberação de Medicamentos , Oftalmopatias , Nanopartículas , Suspensões , Humanos , Oftalmopatias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Animais , Solubilidade , Oftalmologia/métodos
5.
J Pharm Sci ; 113(7): 2001-2003, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642708

RESUMO

High-pressure homogenization is a widely used and acknowledged method to reduce the particle sizes of active pharmaceutical compounds into nanosized range. Thus, the method is associated with limitations, as the compound's initial particle size, since micronized particles are often prerequired to achieve successful size reduction into nanosized range. In this work, the usage of ultrasound as a potential milling or pre-milling technique to decrease particle sizes of different drug compounds varying in deformation properties into micronized range, was investigated.


Assuntos
Composição de Medicamentos , Tamanho da Partícula , Suspensões , Composição de Medicamentos/métodos , Nanopartículas/química , Água/química , Ultrassom/métodos , Preparações Farmacêuticas/química , Sonicação/métodos , Química Farmacêutica/métodos , Pressão
6.
Mol Pharm ; 21(6): 2781-2794, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38676649

RESUMO

The nanocrystal (NC) technology has become one of the most commonly used strategies for the formulation of poorly soluble actives. Given their large specific surface, NCs are mainly used to enhance the oral absorption of poorly soluble actives. Differently from conventional nanoparticles, which require the use of carrier materials and have limited drug loadings, NCs' drug loading approaches 100% since they are formed of the pure drug and surrounded by a thin layer of a stabilizer. In this work, we report the covalent decoration of curcumin NCs with folic acid (FA) using EDC/NHS chemistry and explore the novel systems as highly loaded "Trojan horses" to target cancer cells. The decorated NCs demonstrated a remarkable improvement in curcumin uptake, exhibiting enhanced growth inhibition in cancer cells (HeLa and MCF7) while sparing healthy cells (J774A.1). Cellular uptake studies revealed significantly heightened entry of FA-decorated NCs into cancer cells compared to unmodified NCs while also showing reduced uptake by macrophages, indicating a potential for prolonged circulation in vivo. These findings underline the potential of NC highly loaded nanovectors for drug delivery and, in particular, for cancer therapies, effectively targeting folate receptor-overexpressing cells while evading interception by macrophages, thus preserving their viability and offering a promising avenue for precise and effective treatments.


Assuntos
Curcumina , Ácido Fólico , Nanopartículas , Ácido Fólico/química , Humanos , Nanopartículas/química , Curcumina/farmacologia , Curcumina/química , Curcumina/farmacocinética , Curcumina/administração & dosagem , Animais , Células MCF-7 , Células HeLa , Sistemas de Liberação de Medicamentos/métodos , Camundongos , Portadores de Fármacos/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral
7.
Food Res Int ; 174(Pt 1): 113583, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986449

RESUMO

Nanosuspensions (NSps) are colloidal dispersions of particles that have the potential to solve the delivery problems of active ingredients associated with their low solubility in water or instability due to environmental factors. It is essential to consider their chemical composition and preparation methods because they directly influence drug loading, size, morphology, solubility, and stability; these characteristics of nanosuspensions influence the delivery and bioavailability of active ingredients. NSps provides high loading of drugs, protection against degrading agents, rapid dissolution, high particle stability, and high bioavailability of active ingredients across biological membranes. In addition, they provide lower toxicity compared to other nanocarriers, such as liposomes or polymeric nanoparticles, and can modify the pharmacokinetic profiles, thus improving their safety and efficacy. The present review aims to address all aspects related to the composition of NSps, the different methods for their production, and the main factors affecting their stability. Moreover, recent studies are described as carriers of active ingredients and their biological activities.


Assuntos
Nanopartículas , Nanopartículas/química , Disponibilidade Biológica , Solubilidade , Lipossomos
8.
Int J Pharm ; 642: 123108, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37301241

RESUMO

Oral administration and intramuscular (IM) injection are commonly recommended options for human immunodeficiency virus (HIV) treatment. However, poor patient compliance due to daily oral dosing, pain at injection sites and the demand for trained healthcare staff for injections limit the success of these administration routes, especially in low-resource settings. To overcome these limitations, for the first time, we propose novel bilayer dissolving microneedles (MNs) for the intradermal delivery of long-acting nanosuspensions of the antiretroviral (ARV) drug bictegravir (BIC) for potential HIV treatment and prevention. The BIC nanosuspensions were prepared using a wet media milling technique on a laboratory scale with a particle size of 358.99 ± 18.53 nm. The drug loading of nanosuspension-loaded MNs and BIC powder-loaded MNs were 1.87 mg/0.5 cm2 and 2.16 mg/0.5 cm2, respectively. Both dissolving MNs exhibited favorable mechanical and insertion ability in the human skin simulant Parafilm® M and excised neonatal porcine skin. Importantly, the pharmacokinetic profiles of Sprague Dawley rats demonstrated that dissolving MNs were able to intradermally deliver 31% of drug loading from nanosuspension-loaded MNs in the form of drug depots. After a single application, both coarse BIC and BIC nanosuspensions achieved sustained release, maintaining plasma concentrations above human therapeutic levels (162 ng/mL) in rats for 4 weeks. These minimally invasive and potentially self-administered MNs could improve patient compliance, providing a promising platform for the delivery of nanoformulated ARVs and resulting in prolonged drug release, particularly for patients in low-resource settings.


Assuntos
Sistemas de Liberação de Medicamentos , Infecções por HIV , Suínos , Humanos , Ratos , Animais , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Ratos Sprague-Dawley , Pele , Infecções por HIV/tratamento farmacológico , Agulhas
9.
Pharmaceutics ; 15(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37242763

RESUMO

Nanosuspensions (NSs), which are nanosized colloidal particle systems, have recently become one of the most interesting substances in nanopharmaceuticals. NSs have high commercial potential because they provide the enhanced solubility and dissolution of low-water-soluble drugs by means of their small particle sizes and large surface areas. In addition, they can alter the pharmacokinetics of the drug and, thus, improve its efficacy and safety. These advantages can be used to enhance the bioavailability of poorly soluble drugs in oral, dermal, parenteral, pulmonary, ocular, or nasal routes for systemic or local effects. Although NSs often consist mainly of pure drugs in aqueous media, they can also contain stabilizers, organic solvents, surfactants, co-surfactants, cryoprotectants, osmogents, and other components. The selection of stabilizer types, such as surfactants or/and polymers, and their ratio are the most critical factors in NS formulations. NSs can be prepared both with top-down methods (wet milling, dry milling, high-pressure homogenization, and co-grinding) and with bottom-up methods (anti-solvent precipitation, liquid emulsion, and sono-precipitation) by research laboratories and pharmaceutical professionals. Nowadays, techniques combining these two technologies are also frequently encountered. NSs can be presented to patients in liquid dosage forms, or post-production processes (freeze drying, spray drying, or spray freezing) can also be applied to transform the liquid state into the solid state for the preparation of different dosage forms such as powders, pellets, tablets, capsules, films, or gels. Thus, in the development of NS formulations, the components/amounts, preparation methods, process parameters/levels, administration routes, and dosage forms must be defined. Moreover, those factors that are the most effective for the intended use should be determined and optimized. This review discusses the effect of the formulation and process parameters on the properties of NSs and highlights the recent advances, novel strategies, and practical considerations relevant to the application of NSs to various administration routes.

10.
Drug Deliv Transl Res ; 13(11): 2885-2902, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37149557

RESUMO

Kaempferol (KAE) is a naturally occurring flavonoid compound with antitumor activity. However, the low aqueous solubility, poor chemical stability, and suboptimal bioavailability greatly restrict its clinical application in cancer therapy. To address the aforementioned limitations and augment the antitumor efficacy of KAE, we developed a kaempferol nanosuspensions (KAE-NSps) utilizing D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as a stabilizing agent, screened the optimal preparation process, and conducted a comprehensive investigation of their fundamental properties as well as the antitumor effects in the study. The findings indicated that the particle size was 186.6 ± 2.6 nm of the TPGS-KAE-NSps optimized, the shape of which was fusiform under the transmission electron microscope. The 2% (w/v) glucose was used as the cryoprotectant for TPGS-KAE-NSps, whose drug loading content was 70.31 ± 2.11%, and the solubility was prominently improved compared to KAE. The stability and biocompatibility of TPGS-KAE-NSps were favorable and had a certain sustained release effect. Moreover, TPGS-KAE-NSps clearly seen to be taken in the cytoplasm exhibited a stronger cytotoxicity and suppression of cell migration, along with increased intracellular ROS production and higher apoptosis rates compared to KAE in vitro cell experiments. In addition, TPGS-KAE-NSps had a longer duration of action in mice, significantly improved bioavailability, and showed a stronger inhibition of tumor growth (the tumor inhibition rate of high dose intravenous injection group was 68.9 ± 1.46%) than KAE with no obvious toxicity in 4T1 tumor-bearing mice. Overall, TPGS-KAE-NSps prepared notably improved the defect and the antitumor effects of KAE, making it a promising nanodrug delivery system for KAE with potential applications as a clinical antitumor drug.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Animais , Camundongos , Nanopartículas/química , Quempferóis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Solubilidade , Polietilenoglicóis/química , Tamanho da Partícula , Linhagem Celular Tumoral
11.
Small ; 19(39): e2205741, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37246272

RESUMO

The effective thermal management of electronic system holds the key to maximize their performance. The recent miniaturization trends require a cooling system with high heat flux capacity, localized cooling, and active control. Nanomagnetic fluids (NMFs) based cooling systems have the ability to meet the current demand of the cooling system for the miniaturized electronic system. However, the thermal characteristics of NMFs have a long way to go before the internal mechanisms are well understood. This review mainly focuses on the three aspects to establish a correlation between the thermal and rheological properties of the NMFs. First, the background, stability, and factors affecting the properties of the NMFs are discussed. Second, the ferrohydrodynamic equations are introduced for the NMFs to explain the rheological behavior and relaxation mechanism. Finally, different theoretical and experimental models are summarized that explain the thermal characteristics of the NMFs. Thermal characteristics of the NMFs are significantly affected by the morphology and composition of the magnetic nanoparticles (MNPs) in NMFs as well as the type of carrier liquids and surface functionalization that also influences the rheological properties. Thus, understanding the correlation between the thermal characteristics of the NMFs and rheological properties helps develop cooling systems with improved performance.

12.
Front Chem ; 11: 1194389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214484

RESUMO

Cinnamomum zeylanicum is a traditional medicinal plant known for its anti-inflammatory, antidiabetic, antimicrobial, anticancer, and antioxidant properties. Its therapeutic efficacy using nanosuspensions is still unclear for treating infectious diseases. This study was designed to evaluate the bioactivities, biochemical characterization, and bioavailability of freshly prepared nanosuspensions of C. zeylanicum. Structural and biochemical characterization of C. zeylanicum and its biological activities, such as antioxidants, antimicrobials, antiglycation, α-amylase inhibition, and cytotoxicity was performed using Fourier-transform infrared (FTIR) spectroscopy and High-Performance Liquid Chromatography (HPLC). C. zeylanicum extract and nanosuspensions showed TPCs values of 341.88 and 39.51 mg GAE/100 g while showing TFCs as 429.19 and 239.26 mg CE/100g, respectively. DPPH inhibition potential of C. zeylanicum extract and nanosuspension was 27.3% and 10.6%, respectively. Biofilm inhibition activity revealed that bark extract and nanosuspension showed excessive growth restraint against Escherichia coli, reaching 67.11% and 66.09%, respectively. The α-amylase inhibition assay of extract and nanosuspension was 39.3% and 6.3%, while the antiglycation activity of nanosuspension and extract was 42.14% and 53.76%, respectively. Extracts and nanosuspensions showed maximum hemolysis at 54.78% and 19.89%, respectively. Results indicated that nanosuspensions possessed antidiabetic, antimicrobial, anticancer, and antioxidant properties. Further study, however, is needed to assess the clinical studies for the therapeutic use of nanosuspensions.

13.
Nanomedicine (Lond) ; 18(2): 89-107, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37042303

RESUMO

Aim: To develop quercetin nanocrystals by a simple approach and to evaluate their in vivo antifibrotic efficacy. Materials & methods: Nanosuspensions were fabricated by a thin-film hydration technique and ultrasonication. The influence of process variables on the average diameter of quercetin nanoparticles was investigated. Moreover, in vivo efficacy was investigated in an established murine CCl4-induced fibrosis model. Results: Nanocrystals showed a particle size of <400 nm. The optimized formulations showed an increase in dissolution rate and solubility. Quercetin nanocrystals markedly prevented fibrotic changes in the liver, as evidenced by mitigated histopathological changes and diminished aminotransferase levels and collagen accumulation. Conclusion: The findings reflect the promising potential of quercetin nanocrystals for liver fibrosis prevention.


Assuntos
Nanopartículas , Quercetina , Camundongos , Animais , Quercetina/uso terapêutico , Quercetina/química , Solubilidade , Composição de Medicamentos/métodos , Nanopartículas/química , Tamanho da Partícula
14.
J Control Release ; 358: 293-318, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37061193

RESUMO

Parkinson's disease (PD) is the second leading neurodegenerative disease globally, impacting the quality of life of millions of people. It is estimated that the treatment cost of PD in the USA can rise to 79 billion dollars by 2037. Limited drugs are approved by USFDA, which only provides symptomatic relief. Further, the drug efficacy is challenged due to low drug-brain concentration due to first-pass metabolism and blood-brain barrier (BBB). Intranasal drug administration can offer several advantages over systemic administration, providing efficient brain delivery. Nose-to-brain (N2B) drug delivery can enhance brain bioavailability, reduce enzymatic degradation, and reduce systemic adverse effects. However, due to poor absorption from the nasal mucosa, intranasal administration can be challenging for hydrophilic drugs. The drug mucociliary clearance, retention time, and nasal enzymatic degradation can also affect N2B drug delivery. Nanocarriers can enhance residence time, improve nasal permeation, increase brain uptake, and reduce enzymatic degradation. This review discusses the roles and applications of various N2B nanocarriers to treat PD effectively. Clinical trials of antiparkinson molecules is also covered. Lastly, safety aspects and prospects of potential nanotherapeutics for the effective treatment of PD are discussed.


Assuntos
Nanopartículas , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Administração Intranasal , Doença de Parkinson/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Qualidade de Vida , Encéfalo/metabolismo , Mucosa Nasal/metabolismo , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas/metabolismo
15.
Int J Pharm ; 636: 122793, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870401

RESUMO

Celecoxib (CXB) has a good analgesic effect on postoperative acute pain, but clinically its compliance is compromised because of frequent administration. Therefore, the development of injectable celecoxib nanosuspensions (CXB-NS) for long-acting analgesic effects is highly desirable. However, how the particle size affects the in vivo behaviors of CXB-NS remains unclear. Herein, CXB-NS with different sizes were prepared by the wet-milling method. Following intramuscular (i.m.) injection in rats (50 mg/kg), all CXB-NS achieved sustained systemic exposure and long-acting analgesic effects. More importantly, CXB-NS showed size-dependent pharmacokinetic profiles and analgesic effects, and the smallest CXB-NS (about 0.5 µm) had the highest Cmax, T1/2, and AUC0-240h and the strongest analgesic effects on incision pain. Therefore, small sizes are preferred for long action by i.m. injection, and the CXB-NS developed in this study were alternative formulations for the treatment of postoperative acute pain.


Assuntos
Dor Aguda , Nanopartículas , Ratos , Animais , Celecoxib , Tamanho da Partícula , Analgésicos , Dor Pós-Operatória/tratamento farmacológico
16.
Eur J Pharm Sci ; 185: 106425, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36934992

RESUMO

The drug nanosuspensions is a universal formulation approach for improved drug delivery of hydrophobic drugs and one the most promising approaches for increasing the biopharmaceutical performance of poorly water-soluble drug substances, especially for nature products. This review aimed to summarize the nanosuspensions preparation approaches and the main technological difficulties encountered in nanosuspensions development, such as guidelines for stabilizers screening, in vivo fate of the intravenously administrated nanosuspensions, and how to realize the intravenously target delivery was reviewed. Furthermore, challenges of nanosuspensions for the nature products delivery also was discussed and commented. Therefore, it hoped to provide reference and assistance for the nanosuspensions production, stabilizers usage, and predictability of in vivo fate and controllability of targeting delivery of the nature products nanosuspensions.


Assuntos
Nanopartículas , Suspensões , Nanopartículas/química , Tecnologia Farmacêutica , Sistemas de Liberação de Medicamentos , Tecnologia , Solubilidade , Tamanho da Partícula , Composição de Medicamentos
17.
Colloids Surf B Biointerfaces ; 225: 113231, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907135

RESUMO

Skin conditions are amongst the most prevalent health issues in the world and come with a heavy economic, social, and psychological burden. Incurable and chronic skin conditions like eczema, psoriasis, fungal infections are linked to major morbidity in the manner of physical pain and a reduction in quality life of patients. Several drugs have difficulties for penetrating the skin due to the barrier mechanism of the skin layers and the incompatible physicochemical characteristics of the drugs. This has led to the introduction of innovative drug delivery methods. Currently, formulations depend on nanocrystals have indeed been researched for topical administration of drugs and have resulted in enhanced skin penetration. This review focuses on skin penetration barriers, modern methods to enhance topical distribution, and the use of nanocrystals to overcome these barriers. By means of mechanisms such as adherence to skin, creation of diffusional corona, targeting of hair follicles, and the generation of a greater concentration gradient throughout the skin, nanocrystals could enhance transport across the skin. Scientists working on product formulations incorporating chemicals that are "challenging-to-deliver" topically may find the most current findings to be of relevance.


Assuntos
Nanopartículas , Absorção Cutânea , Humanos , Administração Cutânea , Pele/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Nanopartículas/química
18.
Eur J Pharm Biopharm ; 185: 82-93, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36791884

RESUMO

l-ascorbic acid (Vitamin C, VC) is the most abundant antioxidant in human skin. But its poor penetration into the skin and unstability limit the application. The aim of the study was to promote the topical skin permeation and retention of VC, increase the stability as well as effectiveness by a novel solid in oil nanodispersion. In the nanodispersions system, nano-sized particles of hydrophilic molecules are dispersed in an oil vehicle with the assistance of hydrophobic surfactants. The optimized formula composed of O170 and S1570 (12.5:1, w/w) showed high EE% of 98% and good stability. FTIR analysis confirmed that there may be hydrogen bond between VC and surfactants. The results of DSC, and XRD revealed that the drug was successfully encapsulated in the surfactants, which maintained the stability of drug. By analyzing and fitting the release data in vitro, the drug release mechanism of SONDs was predicted as a multi-dynamic model. Skin permeation of VC was improved 3.43-fold for SONDs compared with VC aqueous solution, highlighting that the lipophilicity and nano size of the carrier more easily penetrated into the skin. Finally, the photoaging study revealed that topical application of VC-SONDs provided the highest skin protection compared UV and VC aqueous solution treated group which was evident by the normal thick epidermal morphology, no obvious melanocytes and the densely arranged dermal elastic fibers. These results demonstrated that the solid-in-oil nanodispersions may be a potential transdermal delivery system for hydrophilic bioactive ingredients.


Assuntos
Administração Cutânea , Ácido Ascórbico , Pele , Humanos , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/química , Excipientes , Preparações Farmacêuticas , Tensoativos
20.
J Microencapsul ; 39(7-8): 638-653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36398734

RESUMO

This study aimed to formulate the green, sustainable, and ecofriendly nanobiopesticides of Azadirachta indica with enhanced pest control efficacy. Nanoprecipitation method was used for the development of nanobiopesticides. Optimisation was done by response surface methodology. Nanoformulations were characterised by zetasizer, scanning electron microscopy, energy dispersive x-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. Pesticidal potential of nanosuspensions was evaluated by insecticide impregnated filter paper method. Optimised nanobiopesticide showed an average particle size of 275.8 ± 0.95 nm, polydispersity index (PDI) 0.351 ± 0.002, and zeta potential of -33 ± 0.90 mV. Nanobiopesticides exhibited significantly higher mortality rates of 86.81 ± 3.04 and 84.97 ± 2.83% against Tribolium castaneum and Ryzopertha dominica, respectively, as compared to their crude extract. Minor change in particle size from 275.8 ± 0.95 to 298.8 ± 1.00 nm and PDI from 0.351 ± 0.002 to 0.445 ± 0.02 were observed after 3 months of storage at 4 °C. Pesticidal efficacy of A. indica was significantly enhanced by the formulation of its nanobiopesticides.


Assuntos
Azadirachta , Besouros , Inseticidas , Praguicidas , Tribolium , Animais , Triticum , Dominica , Inseticidas/farmacologia , Praguicidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...