Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.871
Filtrar
1.
BMC Genomics ; 25(1): 653, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956471

RESUMO

BACKGROUND: Oil bodies or lipid droplets (LDs) in the cytosol are the subcellular storage compartments of seeds and the sites of lipid metabolism providing energy to the germinating seeds. Major LD-associated proteins are lipoxygenases, phospholipaseD, oleosins, TAG-lipases, steroleosins, caleosins and SEIPINs; involved in facilitating germination and enhancing peroxidation resulting in off-flavours. However, how natural selection is balancing contradictory processes in lipid-rich seeds remains evasive. The present study was aimed at the prediction of selection signatures among orthologous clades in major oilseeds and the correlation of selection effect with gene expression. RESULTS: The LD-associated genes from the major oil-bearing crops were analyzed to predict natural selection signatures in phylogenetically close-knit ortholog clusters to understand adaptive evolution. Positive selection was the major force driving the evolution and diversification of orthologs in a lineage-specific manner. Significant positive selection effects were found in 94 genes particularly in oleosin and TAG-lipases, purifying with excess of non-synonymous substitution in 44 genes while 35 genes were neutral to selection effects. No significant selection impact was noticed in Brassicaceae as against LOX genes of oil palm. A heavy load of deleterious mutations affecting selection signatures was detected in T-lineage oleosins and LOX genes of Arachis hypogaea. The T-lineage oleosin genes were involved in mainly anther, tapetum and anther wall morphogenesis. In Ricinus communis and Sesamum indicum > 85% of PLD genes were under selection whereas selection pressures were low in Brassica juncea and Helianthus annuus. Steroleosin, caleosin and SEIPINs with large roles in lipid droplet organization expressed mostly in seeds and were under considerable positive selection pressures. Expression divergence was evident among paralogs and homeologs with one gene attaining functional superiority compared to the other. The LOX gene Glyma.13g347500 associated with off-flavor was not expressed during germination, rather its paralog Glyma.13g347600 showed expression in Glycine max. PLD-α genes were expressed on all the tissues except the seed,δ genes in seed and meristem while ß and γ genes expressed in the leaf. CONCLUSIONS: The genes involved in seed germination and lipid metabolism were under strong positive selection, although species differences were discernable. The present study identifies suitable candidate genes enhancing seed oil content and germination wherein directional selection can become more fruitful.


Assuntos
Produtos Agrícolas , Evolução Molecular , Gotículas Lipídicas , Seleção Genética , Gotículas Lipídicas/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Óleos de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas
2.
Front Psychol ; 15: 1371436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979063

RESUMO

From an evolutionary point of view, organisms with mutations resulting in maladaptation are an unavoidable result of genetic variability, and they do not usually survive natural selection. Thus, they do not produce benefits for the species. I contend that this is different in humans at two levels. First, the existence of people with disability has been essential for human growth as a species. Human ancestors' evolving cognitive and social abilities were boosted by caring for vulnerable members of the species, including premature offspring and people with disability. Therefore, caregiving was an essential trait of the evolution of humans, intertwined with the development of bipedalism, the hand, face, vocal apparatus, and brain. Second, caring for disability is also a source of growth at a personal level. Even though most scientific literature focuses on the stress and burden caused by caring for people with disability, there is solid evidence to accept caregiving as a source of happiness and flourishing for human beings. Hence, disability still has an essential role in improving human life nowadays. Contrary to this evidence, influential utilitarian bioethicists promote the elimination of disability from modern societies. Following the arguments presented here, this will lead to the withering of society. In conclusion, disability should be acknowledged as an essential source of growth for the human species.

3.
Evolution ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981009

RESUMO

Island biotas provide unparalleled opportunities to examine evolutionary processes. Founder effects and bottlenecks, for example, typically decrease genetic diversity in island populations, while selection for reduced dispersal can increase population structure. Given that support for these generalities mostly comes from single-species analyses, assemblage-level comparisons are needed to clarify how (i) colonization affects the gene pools of interacting insular organisms, and (ii) patterns of genetic differentiation vary within assemblages of organisms. Here, we use genome-wide sequence data from ultraconserved elements (UCEs) to compare genetic diversity and population structure of mainland and island populations of nine ant species in coastal southern California. As expected, island populations (from Santa Cruz Island) had lower expected heterozygosity and Watterson's theta compared to mainland populations (from the Lompoc Valley). Island populations, however, exhibited smaller genetic distances among samples, indicating less population subdivision. Within the focal assemblage, pairwise Fst values revealed pronounced interspecific variation in mainland-island differentiation, which increases with gyne body size. Our results reveal population differences across an assemblage of interacting species, and illuminate general patterns of insularization in ants. Compared to single-species studies, our analysis of nine conspecific population pairs from the same island-mainland system offers a powerful approach to studying fundamental evolutionary processes.

4.
Mol Ecol ; : e17464, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994885

RESUMO

Adaptive evolution can facilitate species' range expansions across environmentally heterogeneous landscapes. However, serial founder effects can limit the efficacy of selection, and the evolution of increased dispersal during range expansions may result in gene flow swamping local adaptation. Here, we study how genetic drift, gene flow and selection interact during the cane toad's (Rhinella marina) invasion across the heterogeneous landscape of Australia. Following its introduction in 1935, the cane toad colonised eastern Australia and established several stable range edges. The ongoing, more rapid range expansion in north-central Australia has occurred concomitant with an evolved increase in dispersal capacity. Using reduced representation genomic data of Australian cane toads from the expansion front and from two areas of their established range, we test the hypothesis that high gene flow constrains local adaptation at the expansion front relative to established areas. Genetic analyses indicate the three study areas are genetically distinct but show similar levels of allelic richness, heterozygosity and inbreeding. Markedly higher gene flow or recency of colonisation at the expansion front have likely hindered local adaptation at the time of sampling, as indicated by reduced slopes of genetic-environment associations (GEAs) estimated using a novel application of geographically weighted regression that accounts for allele surfing; GEA slopes are significantly steeper in established parts of the range. Our work bolsters evidence supporting adaptation of invasive species post-introduction and adds novel evidence for differing strengths of evolutionary forces among geographic areas with different invasion histories.

5.
Evolution ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989911

RESUMO

Social interactions are ubiquitous in nature and can shape fitness of individuals through social selection. This type of selection arises when phenotypes of neighbors influence the fitness of a focal individual. Quantifying social selection is crucial to better characterise the overall selective landscape. For example, if intraspecific competition is strong, traits that are beneficial for an individual could be detrimental for competitors. In this study, we quantified social selection acting on three key ecological traits (body mass, wing length and laying date) in wild Tree swallow (Tachycineta bicolor) females. We used reproductive success measured at three stages throughout the breeding season as fitness proxies to assess selection acting at those decisive moments. We also quantified the effects of environment on selection using measures of conspecifics' density, type of agricultural landscape and presence of interspecific competitors. Overall, we found no strong evidence of social selection on these traits in our study system, although there were marginally non-significant selection gradients suggesting positive effect of larger neighbors. Environmental variables affected reproductive success but did not strongly affect social selection gradients. Our study calls for more social selection estimates to be reported across environments to better understand its importance in wild populations.

6.
Behav Genet ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990442

RESUMO

We investigate natural selection on polygenic scores in the contemporary US, using the Health and Retirement Study. Across three generations, scores which correlate negatively (positively) with education are selected for (against). However, results only partially support the economic theory of fertility as an explanation for natural selection. The theory predicts that selection coefficients should be stronger among low-income, less educated, unmarried and younger parents, but these predictions are only half borne out: coefficients are larger only among low-income parents and unmarried parents. We also estimate effect sizes corrected for noise in the polygenic scores. Selection for some health traits is similar in magnitude to that for cognitive traits.

7.
Evolution ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046460

RESUMO

The relative magnitude of additive genetic versus residual variation for fitness traits is important in models for predicting the rate of evolution and population persistence in response to changes in the environment. In many annual plants, lifetime reproductive fitness is correlated with end-of-season plant biomass, which can vary significantly from plant to plant in the same population. We measured end-of-season plant biomasses and obtained SNP genotypes of plants in a dense, natural population of the annual plant species Impatiens capensis with hierarchical size structure. These data were used to estimate the amount of heritable variation for position in the size hierarchy and for plant biomass. Additive genetic variance for position in the size hierarchy and plant biomass were both significantly different from zero. These results are discussed in relationship to theory for the heritability of fitness in natural populations and ecological factors that potentially influence heritable variation for fitness in this species.

8.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948721

RESUMO

While hybridization was viewed as a hindrance to adaptation and speciation by early evolutionary biologists, recent studies have demonstrated the importance of hybridization in facilitating evolutionary processes. However, it is still not well-known what role spatial and temporal variation in natural selection play in the maintenance of naturally occurring hybrid zones. To identify whether hybridization is adaptive between two closely related monkeyflower species, Mimulus guttatus and Mimulus laciniatus, we performed repeated reciprocal transplants between natural hybrid and pure species' populations. We planted parental genotypes along with multiple experimental hybrid generations in a dry (2021) and extremely wet (2023) year in the Sierra Nevada, CA. By taking fine scale environmental measurements, we found that the environment of the hybrid zone is more similar to M. laciniatus's seasonally dry rocky outcrop habitat than M. guttatus's moist meadows. In our transplants hybridization does not appear to be maintained by a consistent fitness advantage of hybrids over parental species in hybrid zones, but rather a lack of strong selection against hybrids. We also found higher fitness of the drought adapted species, M. laciniatus, than M. guttatus in both species' habitats, as well as phenotypic selection for M. laciniatus-like traits in the hybrid habitat in the dry year of our experiment. These findings suggest that in this system hybridization might function to introduce drought-adapted traits and genes from M. laciniatus into M. guttatus, specifically in years with limited soil moisture. However, we also find evidence of genetic incompatibilities in second generation hybrids in the wetter year, which may balance a selective advantage of M. laciniatus introgression. Therefore, we find that hybridization in this system is both potentially adaptive and costly, and that the interaction of positive and negative selection likely determines patterns of gene flow between these Mimulus species.

9.
Gene ; 927: 148744, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964492

RESUMO

Current understanding of genetic polymorphisms and natural selection in Plasmodium falciparum circumsporozoite (PfCSP), the leading malaria vaccine, is crucial for the development of next-generation vaccines, and such data is lacking in Africa. Blood samples were collected among Plasmodium-infected individuals living in four Cameroonian areas (Douala, Maroua, Mayo-Oulo, Pette). DNA samples were amplified using nested PCR protocols, sequenced, and BLASTed. Single nucleotide polymorphisms (SNPs) were analysed in each PfCSP region, and their impact on PfCSP function/structure was predicted in silico. The N-terminal region showed a limited polymorphism with four haplotypes, and three novel SNPs (N68Y, R87W, K93E) were found. Thirty-five haplotypes were identified in the central region, with several variants (e.g., NVNP and KANP). The C-terminal region was also highly diverse, with 25 haplotypes and eight novel SNPs (N290D, N308I, S312G, K317A, V344I, D356E, E357L, D359Y). Most polymorphic codon sites were mainly observed in the Th2R subregion in isolates from Douala and Pette. The codon site 321 was under episodic positive selection. One novel (E357L) and three known (K322I, G349D, D359Y) SNPs show an impact on function/structure. This study showed extensive genetic diversity with geographical patterns and evidence of the selection of Cameroonian PfCSP central and C-terminal regions.

10.
Am J Bot ; 111(7): e16371, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001583

RESUMO

PREMISE: Light is essential for plants, and local populations exhibit adaptive photosynthetic traits depending on their habitats. Although plastic responses in morphological and/or physiological characteristics to different light intensities are well known, adaptive divergence with genetic variation remains to be explored. This study focused on Saxifraga fortunei (Saxifragaceae) growing in sun-exposed and shaded habitats. METHODS: We measured the leaf anatomical structure and photosynthetic rate of plants grown in their natural habitats and in a common greenhouse (high- and low-intensity light experimental sites). To assess differences in ecophysiological tolerance to high-intensity light between the sun and shade types, we evaluated the level of photoinhibition of photosystem II and the leaf mortality rate under high-intensity light conditions. In addition, population genetic analysis was conducted to investigate phylogenetic origins. RESULTS: Clear phenotypic differences were found between the sun and shade types despite their recent phylogenetic origin. The leaf anatomical structure and photosynthetic rate showed plastic changes in response to growing conditions. Moreover, the sun type had a well-developed palisade parenchyma and a higher photosynthetic rate, which were genetically fixed, and a lower level of photoinhibition under high-intensity light. CONCLUSIONS: Our findings demonstrate that light intensity is a selective pressure that can rapidly promote phenotypic divergence between the sun and shade types. While phenotypic changes in multiple photosynthetic traits were plastic, genetic divergence in specific traits related to adaptation to high-intensity light would be fundamental for ecotypic divergence to different light regimes.


Assuntos
Adaptação Fisiológica , Fotossíntese , Folhas de Planta , Saxifragaceae , Luz Solar , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/genética , Saxifragaceae/genética , Saxifragaceae/fisiologia , Saxifragaceae/anatomia & histologia , Luz , Filogenia , Fenótipo , Variação Genética , Ecossistema , Complexo de Proteína do Fotossistema II/genética
11.
Mol Ecol ; 33(15): e17460, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963031

RESUMO

Tick vectors and tick-borne disease are increasingly impacting human populations globally. An important challenge is to understand tick movement patterns, as this information can be used to improve management and predictive modelling of tick population dynamics. Evolutionary analysis of genetic divergence, gene flow and local adaptation provides insight on movement patterns at large spatiotemporal scales. We develop low coverage, whole genome resequencing data for 92 blacklegged ticks, Ixodes scapularis, representing range-wide variation across the United States. Through analysis of population genomic data, we find that tick populations are structured geographically, with gradual isolation by distance separating three population clusters in the northern United States, southeastern United States and a unique cluster represented by a sample from Tennessee. Populations in the northern United States underwent population contractions during the last glacial period and diverged from southern populations at least 50 thousand years ago. Genome scans of selection provide strong evidence of local adaptation at genes responding to host defences, blood-feeding and environmental variation. In addition, we explore the potential of low coverage genome sequencing of whole-tick samples for documenting the diversity of microbial pathogens and recover important tick-borne pathogens such as Borrelia burgdorferi. The combination of isolation by distance and local adaptation in blacklegged ticks demonstrates that gene flow, including recent expansion, is limited to geographical scales of a few hundred kilometres.


Assuntos
Fluxo Gênico , Genética Populacional , Ixodes , Animais , Ixodes/genética , Estados Unidos , Sequenciamento Completo do Genoma , Adaptação Fisiológica/genética , Variação Genética
12.
Biol Philos ; 39(4): 15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021712

RESUMO

The new foundation for the propensity interpretation of fitness (PIF), developed by Pence and Ramsey (Br J Philos Sci 64:851-881, 2013), describes fitness as a probability distribution that encompasses all possible daughter populations to which the organism may give rise, including daughter populations in which traits might change and the possible environments that members of the daughter populations might encounter. This long-term definition of fitness is general enough to avoid counterexamples faced by previous mathematical conceptions of PIF. However, there seem to be downsides to its generality: the ecological role of fitness involves describing the degree of adaptedness between an organism and the specific environment it inhabits. When all possible changes in traits and all possible environments that a daughter population may encounter are included in the concept, it becomes difficult to see how fitness can fulfill this role. In this paper, we argue that this is a feature of Pence and Ramsey's view rather than a bug: long-term fitness accommodates evolvability considerations, which concern the role that variation plays in evolutionary processes. Building on the foundations, we show that Pence and Ramsey's fitness-F-can be partitioned into fourths: adaptedness, robustness of adaptedness, and two facets of evolvability. Conceptualizing these last three components forces us to consider the role played by grains of description of both organisms and the environment when thinking about long-term fitness. They track the possibility that there could be a change in type in a daughter population as a way of responding to environmental challenges, or that the type persists in the face of novel environments. We argue that these components are just as salient as adaptedness for long-term fitness. Together, this decomposition of F provides a more accurate picture of the factors involved in long-term evolutionary success.

13.
G3 (Bethesda) ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028850

RESUMO

The Period genes (Per) play essential roles in modulating the molecular circadian clock timing in a broad range of species, which regulates the physiological and cellular rhythms through the transcription-translation feedback loop. While the Period gene paralogs are widely observed among vertebrates, the evolutionary history and the functional diversification of Per genes across vertebrates are not well known. In this study, we comprehensively investigated the evolution of Per genes at the copy number and sequence levels, including de novo binding motif discovery by comparative genomics. We also determined the lineage-specific transcriptome landscape across tissues and developmental stages and phenotypic effects in public RNA-seq data sets of model species. We observed multiple lineage-specific gain and loss events of Per genes, though no simple association was observed between ecological factors and Per gene numbers in each species. Among salmonid fish species, the per3 gene has been lost in the majority, whereas those retaining the per3 gene exhibit not a signature of relaxed selective constraint but rather a signature of intensified selection. We also determined the signature of adaptive diversification of the CRY-binding region in Per1 and Per3, which modulates the circadian rhythm. We also discovered putative regulatory sequences, which are lineage-specific, suggesting that these cis-regulatory elements may have evolved rapidly and divergently across different lineages. Collectively, our findings revealed the evolution of Per genes and their fine-tuned contribution to the plastic and precise regulation of circadian rhythms in various vertebrate taxa.

14.
Microb Pathog ; 194: 106796, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025379

RESUMO

Bats contain a diverse spectrum of viral species in their bodies. The RNA virus family Paramyxoviridae tends to infect several vertebrate species, which are accountable for a variety of devastating infections in both humans and animals. Viruses of this kind include measles, mumps, and Hendra. Some synonymous codons are favoured over others in mRNAs during gene-to-protein synthesis process. Such phenomenon is termed as codon usage bias (CUB). Our research emphasized many aspects that shape the CUB of genes in the Paramyxoviridae family found in bats. Here, the nitrogenous base A occurred the most. AT was found to be abundant in the coding sequences of the Paramyxoviridae family. RSCU data revealed that A or T ending codons occurred more frequently than predicted. Furthermore, 3 overrepresented codons (CAT, AGA, and GCA) and 7 underrepresented codons (CCG, TCG, CGC, CGG, CGT, GCG and ACG) were detected in the viral genomes. Correspondence analysis, neutrality plot, and parity plots highlight the combined impact of mutational pressure and natural selection on CUB. The neutrality plot of GC12 against GC3 yielded a regression coefficient value of 0.366, indicating that natural selection had a significant (63.4 %) impact. Moreover, RNA editing analysis was done, which revealed the highest frequency of C to T mutations. The results of our research revealed the pattern of codon usage and RNA editing sites in Paramyxoviridae genomes.

15.
Genomics Inform ; 22(1): 11, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010183

RESUMO

Variable surface antigens (VSAs) encoded by var and vir genes in Plasmodium falciparum and Plasmodium vivax, respectively, are known to be involved in malaria pathogenesis and host immune escape through antigenic variations. Knowledge of the genetic diversity of these antigens is essential for malaria control and effective vaccine development. In this study, we analysed the genetic diversity and evolutionary patterns of two fragments (DBL2X and DBL3X) of VAR2CSA gene and four vir genes (vir 4, vir 12, vir 21 and vir 27) from different endemic regions, including Southeast Asia and sub-Saharan Africa. High levels of segregating sites (S) and haplotype diversity (Hd) were observed in both var and vir genes. Among vir genes, vir 12 (S = 131, Hd = 0.996) and vir 21 (S = 171, Hd = 892) were found to be more diverse as compared to vir 4 (S = 11, Hd = 0.748) and vir 27 (S = 23, Hd = 0.814). DBL2X (S = 99, Hd = 0.996) and DBL3X (S = 307, Hd = 0.999) fragments showed higher genetic diversity. Our analysis indicates that var and vir genes are highly diverse and follow the similar evolutionary pattern globally. Some codons showed signatures of positive or negative selection pressure, but vir and var genes are likely to be under balancing selection. This study highlights the high variability of var and vir genes and underlines the need of functional experimental studies to determine the most relevant allelic forms for effective progress towards vaccine formulation and testing.

16.
Neurol Sci ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877206

RESUMO

INTRODUCTION: Whereas (GCC)-repeats are overrepresented in genic regions, and mutation hotspots, they are largely unexplored with regard to their link with natural selection. Across numerous primate species and tissues, SMAD9 (SMAD Family Member 9) reaches highest level of expression in the human brain. This gene contains a (GCC)-repeat in the interval between + 1 and + 60 of the transcription start site, which is in the high-ranking (GCC)-repeats with respect to length. METHODS: Here we sequenced this (GCC)-repeat in 396 Iranian individuals, consisting of late-onset neurocognitive disorder (NCD) (N = 181) and controls (N = 215). RESULTS: We detected two predominantly abundant alleles of 7 and 9 repeats, forming 96.2% of the allele pool. The (GCC)7/(GCC)9 ratio was in the reverse order in the NCD group versus controls (p = 0.005), resulting from excess of (GCC)7 in the NCD group (p = 0.003) and (GCC)9 in the controls (p = 0.01). Five genotypes, predominantly consisting of (GCC)7 and lacking (GCC)9 were detected in the NCD group only (p = 0.008). The patients harboring those genotypes received the diagnoses of Alzheimer's disease (AD) and vascular dementia (VD). Five genotypes consisting of (GCC)9 and lacking (GCC)7 were detected in the control group only (p = 0.002). The group-specific genotypes formed approximately 4% of the genotype pool in the human samples studied. CONCLUSION: We propose natural selection and a novel locus for late-onset AD and VD at the SMAD9 (GCC)-repeat in humans.

17.
Genome Biol ; 25(1): 168, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926878

RESUMO

BACKGROUND: Carcinogenesis is driven by interactions between genetic mutations and the local tumor microenvironment. Recent research has identified hundreds of cancer driver genes; however, these studies often include a mixture of different molecular subtypes and ecological niches and ignore the impact of the immune system. RESULTS: In this study, we compare the landscape of driver genes in tumors that escaped the immune system (escape +) versus those that did not (escape -). We analyze 9896 primary tumors from The Cancer Genome Atlas using the ratio of non-synonymous to synonymous mutations (dN/dS) and find 85 driver genes, including 27 and 16 novel genes, in escape - and escape + tumors, respectively. The dN/dS of driver genes in immune escaped tumors is significantly lower and closer to neutrality than in non-escaped tumors, suggesting selection buffering in driver genes fueled by immune escape. Additionally, we find that immune evasion leads to more mutated sites, a diverse array of mutational signatures and is linked to tumor prognosis. CONCLUSIONS: Our findings highlight the need for improved patient stratification to identify new therapeutic targets for cancer treatment.


Assuntos
Mutação , Neoplasias , Evasão Tumoral , Humanos , Neoplasias/genética , Neoplasias/imunologia , Evasão Tumoral/genética , Evasão da Resposta Imune/genética , Evolução Molecular , Microambiente Tumoral/genética
18.
New Phytol ; 243(3): 922-935, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38859570

RESUMO

Understanding how widespread species adapt to variation in abiotic conditions across their ranges is fundamental to ecology. Insight may come from studying how among-population variation (APV) in the common garden corresponds with the environmental conditions of source populations. However, there are no such studies comparing native vs non-native populations across multiple life stages. We examined APV in the performance and functional traits of 59 Conyza canadensis populations, in response to drought, across large aridity gradients in the native (North America) and non-native (Eurasia) ranges in three experiments. Our treatment (dry vs wet) was applied at the recruitment, juvenile, and adult life stages. We found contrasting patterns of APV in drought responses between the two ranges. In the native range, plant performance was less reduced by drought in populations from xeric than mesic habitats, but such relationship was not apparent for non-native populations. These range-specific patterns were consistent across the life stages. The weak adaptive responses of non-native populations indicate that they can become highly abundant even without complete local adaptation to abiotic environments and suggest that long-established invaders may still be evolving to the abiotic environment. These findings may explain lag times in invasions and raise concern about future expansions.


Assuntos
Secas , Espécies Introduzidas , Variação Biológica da População , Adaptação Fisiológica , Ecossistema , Estágios do Ciclo de Vida , Água
19.
Infect Genet Evol ; 122: 105612, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824981

RESUMO

African swine fever (ASF) is a serious animal disease, and has spread to Africa, Europe and Asia, causing massive economic losses. African swine fever virus (ASFV) is transmitted from a reservoir host (warthog) to domestic pigs via a sylvatic cycle (transmission between warthogs and soft ticks) and a domestic cycle (transmission between domestic pigs) and survives by expressing a variety of genes related to virus-host interactions. We evaluated differences in codon usage patterns among ASFV genotypes and clades and explored the common and specific evolutionary and genetic characteristics of ASFV sequences. We analysed the evolutionary relationships, nucleotide compositions, codon usage patterns, selection pressures (mutational pressure and natural selection) and viral adaptation to host codon usage based on the coding sequences (CDS) of key functional genes of ASFV. AT bias was detected in the six genes analysed, irrespective of clade. The AT bias of genes (A224L, A179L, EP153R) encoding proteins involved in interaction with host cells after infection was high; among them, the AT bias of EP153R was the greatest at 78.3%. A large number of overrepresented codons were identified in EP153R, whereas there were no overrepresented codons with a relative synonymous codon usage (RSCU) value of ≥3 in B646L. In most genes, the pattern of selection pressure was similar for each clade, but in EP153R, diverse patterns of selection pressure were captured within the same clade and genotype. As a result of evaluating host adaptation based on the codon adaptation index (CAI), for B646L, E183L, CP204L and A179L, the codon usage patterns in all sequences were more similar to tick than domestic pig or wild boar. However, EP153R showed the lowest average CAI value of 0.52 when selecting tick as a reference set. The genes analysed in this study showed different magnitudes of selection pressure at the clade and genotype levels, which is likely to be related to the function of the encoded proteins and may determine key evolutionary traits of viruses, such as the level of genetic variation and host range. The diversity of codon adaptations at the genetic level in ASFV may account for differences in translational selection in ASFV hosts and provides insight into viral host adaptation and co-evolution.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Uso do Códon , Evolução Molecular , Seleção Genética , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/classificação , Animais , Suínos , Febre Suína Africana/virologia , Febre Suína Africana/genética , Filogenia , Genótipo
20.
New Phytol ; 243(4): 1571-1585, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922897

RESUMO

Increased temperature can induce plastic changes in many plant traits. However, little is known about how these changes affect plant interactions with insect pollinators and herbivores, and what the consequences for plant fitness and selection are. We grew fast-cycling Brassica rapa plants at two temperatures (ambient and increased temperature) and phenotyped them (floral traits, scent, colour and glucosinolates). We then exposed plants to both pollinators (Bombus terrestris) and pollinating herbivores (Pieris rapae). We measured flower visitation, oviposition of P. rapae, herbivore development and seed output. Plants in the hot environment produced more but smaller flowers, with lower UV reflectance and emitted a different volatile blend with overall lower volatile emission. Moreover, these plants received fewer first-choice visits by bumblebees and butterflies, and fewer flower visits by butterflies. Seed production was lower in hot environment plants, both because of a reduction in flower fertility due to temperature and because of the reduced visitation of pollinators. The selection on plant traits changed in strength and direction between temperatures. Our study highlights an important mechanism by which global warming can change plant-pollinator interactions and negatively impact plant fitness, as well as potentially alter plant evolution through changes in phenotypic selection.


Assuntos
Brassica rapa , Borboletas , Flores , Aptidão Genética , Temperatura Alta , Polinização , Polinização/fisiologia , Animais , Flores/fisiologia , Abelhas/fisiologia , Brassica rapa/fisiologia , Borboletas/fisiologia , Herbivoria/fisiologia , Sementes/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Fenótipo , Oviposição/fisiologia , Temperatura , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...