Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Life Sci ; 352: 122869, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950644

RESUMO

AIMS: To detect the therapeutic efficacy of CelTrac1000-labeled hair follicle epidermal neural crest stem cells (EPI-NCSCs) on repairing facial nerve defects by second near-infrared (NIR-II) fluorescence imaging. MATERIALS AND METHODS: Firstly, CelTrac1000-labeled EPI-NCSCs were microinjected into the acellular nerve allografts (ANAs) to bridge a 10-mm-long gap in the buccal branch of facial nerve in adult rats. Then, Celtrac1000-labeled EPI-NCSCs were detected by NIR-II fluorescence imaging system to visualize the behavior of the transplanted cells in vivo. Additionally, the effect of the transplanted EPI-NCSCs on repairing facial nerve defect was examined. KEY FINDINGS: Through 14 weeks of dynamic observation, the transplanted EPI-NCSCs survived in the ANAs in vivo after surgery. Meanwhile, the region of the NIR-II fluorescence signals was gradually limited to be consistent with the direction of the regenerative nerve segment. Furthermore, the results of functional and morphological analysis showed that the transplanted EPI-NCSCs could promote the recovery of facial paralysis and neural regeneration after injury. SIGNIFICANCE: Our research provides a novel way to track the transplanted cells in preclinical studies of cell therapy for facial paralysis, and demonstrates the therapeutic potential of EPI-NCSCs combined with ANAs in bridging rat facial nerve defects.

2.
Front Oncol ; 14: 1406595, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903725

RESUMO

Objective: The margin status of oral squamous cell carcinoma patients is considered to be predictive of recurrence and long-term survival. Therefore, precise intraoperative margin assessment is crucial. This study investigated the feasibility of using near-infrared fluorescence imaging technology to guide margin design in oral squamous cell carcinoma patients. Methods: In this retrospective study, indocyanine green solution was intravenously injected preoperatively into patients. Intraoperatively, the surgical area was illuminated using a near-infrared fluorescence imaging system, which caused the lesion to fluoresce in the surgical area. Surgery was performed with the assistance of fluorescence imaging. The fluorescence intensity of the lesion area and surrounding normal tissue was recorded during surgery. Intraoperative margins were sent for rapid pathology, and postoperative margin pathology results were documented. Results: Sixteen patients were included in this study (7 males, 9 females), with an average age of 65.65 ± 12.37 years. Preoperative biopsy and postoperative pathology confirmed oral squamous cell carcinoma in all patients. No cancer cells were found in the margin pathology results. The average fluorescence intensity of the lesion area was 214 ± 4.70, and that of the surrounding normal tissue was 104.63 ± 3.14. There was no significant difference in the fluorescence intensity values of the lesion areas among all patients (F=0.38, P>0.05). There was a significant difference in fluorescence intensity between the lesion area and surrounding normal tissue (t=33.76, P<0.05). Conclusion: Near-infrared fluorescence imaging technology can aid in real-time imaging differentiation of lesion areas based on differences in fluorescence intensity during surgery. The use of this technology can assist surgeons in assessing the safety margin and reliably guide surgery.

3.
Front Oncol ; 14: 1384268, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841156

RESUMO

Objective: This study aimed to investigate the feasibility and effectiveness of using indocyanine green (ICG) injected intracutaneously through the lower limbs and perineum for visualized tracking, localization, and qualitative assessment of pelvic lymph nodes (LNs) in bladder cancer to achieve their accurate resection. Methods: First, ICG was injected into the LN metastasis model mice lower limbs, and real-time and dynamic in vivo and ex vivo imaging was conducted by using a near-infrared fluorescence imaging system. Additionally, 26 patients with bladder cancer were enrolled and divided into intracutaneous group and transurethral group. A near-infrared fluorescence imaging device with internal and external imaging probes was used to perform real-time tracking, localization, and resection of the pelvic LNs. Results: The mice normal LNs and the metastatic LNs exhibited fluorescence. The metastatic LNs showed a significantly higher signal-to-background ratio than the normal LNs (3.9 ± 0.2 vs. 2.0 ± 0.1, p < 0.05). In the intracutaneous group, the accuracy rate of fluorescent-labeled LNs was 97.6%, with an average of 11.3 ± 2.4 LNs resected per patient. Six positive LNs were detected in three patients (18.8%). In the transurethral group, the accuracy rate of fluorescent-labeled LNs was 84.4%, with an average of 8.6 ± 2.3 LNs resected per patient. Two positive LNs were detected in one patient (12.5%). Conclusion: Following the intracutaneous injection of ICG into the lower limbs and perineum, the dye accumulates in pelvic LNs through lymphatic reflux. By using near-infrared fluorescence laparoscopic fusion imaging, physicians can perform real-time tracking, localization, and precise resection of pelvic LNs.

4.
Bioorg Chem ; 149: 107531, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850779

RESUMO

Nitroreductase (NTR) overexpression often occurs in tumors, highlighting the significance of effective NTR detection. Despite the utilization of various optical methods for this purpose, the absence of an efficient tumor-targeting optical probe for NTR detection remains a challenge. In this research, a novel tumor-targeting probe (Cy-Bio-NO2) is developed to perform dual-modal NTR detection using near-infrared fluorescence and photoacoustic techniques. This probe exhibits exceptional sensitivity and selectivity to NTR. Upon the reaction with NTR, Cy-Bio-NO2 demonstrates a distinct fluorescence "off-on" response at 800 nm, with an impressive detection limit of 12 ng/mL. Furthermore, the probe shows on-off photoacoustic signal with NTR. Cy-Bio-NO2 has been successfully employed for dual-modal NTR detection in living cells, specifically targeting biotin receptor-positive cancer cells for imaging purposes. Notably, this probe effectively detects tumor hypoxia through dual-modal imaging in tumor-bearing mice. The strategy of biotin incorporation markedly enhances the probe's tumor-targeting capability, facilitating its engagement in dual-modal imaging at tumor sites. This imaging capacity holds substantial promise as an accurate tool for cancer diagnosis.


Assuntos
Corantes Fluorescentes , Nitrorredutases , Imagem Óptica , Animais , Humanos , Camundongos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias/diagnóstico por imagem , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Nitrorredutases/metabolismo , Nitrorredutases/análise , Técnicas Fotoacústicas , Dióxido de Nitrogênio/síntese química , Dióxido de Nitrogênio/química
5.
Biomed Mater ; 19(4)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38870927

RESUMO

Recently, cytokine-induced killer (CIK) cells have a broad application prospect in the comprehensive diagnosis and treatment of tumors owing to their unique characteristics of killing and targeting malignant tumors. Herein, we report a facile strategy for synthesis of monodisperse gold nanostars (GNSs) based on PEGylation and co-loaded with the photosensitizer chlorin e6 (Ce6) to form GNSs-PEG@Ce6 NPs. Then employing CIK cells loading the as-prepared GNSs-PEG@Ce6 NPs to fabricate a CIK cells-based drug delivery system (GNSs-PEG@Ce6-CIK) for lung cancer. Among them, GNSs was functioned as transport media, Ce6 acted as the near-infrared (NIR) fluorescence imaging agent and photodynamic therapy (PDT), and CIK cells served as targeting vectors for immunotherapy, which can increase the efficiency of tumor enrichment and treatment effect. The results of cellular experiments demonstrated that GNSs-PEG@Ce6 NPs had good dispersibility, water solubility and low toxicity under physiological conditions, and the cultured CIK cells had strong anti-tumor properties. Subsequently, GNSs-PEG@Ce6-CIK could effectively inhibit the growth of A549 cells under the exposure of 633 nm laser, which showed stronger killing effect than that of GNSs-PEG@Ce6 NPs or CIK cells. In addition, they showed good tumor targeting and tumor synergistic killing activityin vivo. Therefore, GNSs-PEG@Ce6-CIK was constructed for targeted NIR fluorescence imaging, enhanced PDT and immunotherapy of lung cancer.


Assuntos
Clorofilídeos , Células Matadoras Induzidas por Citocinas , Ouro , Neoplasias Pulmonares , Nanopartículas Metálicas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Ouro/química , Fotoquimioterapia/métodos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Humanos , Animais , Porfirinas/química , Porfirinas/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas Metálicas/química , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Células A549 , Imagem Óptica/métodos , Camundongos Nus
6.
Surg Endosc ; 38(7): 3556-3563, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38727831

RESUMO

BACKGROUND: Near-infrared fluorescence (NIRF) angiography with intraoperative administration of indocyanine green (ICG) has rapidly disseminated in clinical practice. Another clinically approved, and widely available dye, methylene blue (MB), has up to now not been used for this purpose. Recently, we demonstrated promising results for the real-time evaluation of intestinal perfusion using this dye. The primary aim of this study was to perform a quantitative analysis of bowel perfusion assessment for both ICG and MB. METHODS: Four mature female Landrace pigs underwent laparotomy under general anesthesia. An ischemic bowel loop with five regions of interest (ROIs) with varying levels of perfusion was created in each animal. An intravenous (IV) injection of 0.25 mg/kg-0.50 mg/kg MB was administered after 10 min, followed by NIRF imaging in MB mode and measurement of local lactate levels in all corresponding ROIs. This procedure was repeated in ICG mode (IV dose of 0.2 mg/kg) after 60 min. The quest spectrum fluorescence camera (Quest Medical Imaging, Middenmeer, The Netherlands) was used for NIRF imaging of both MB and ICG. RESULTS: Intraoperative NIRF imaging of bowel perfusion assessment with MB and ICG was successful in all studied animals. Ingress (i/s) levels were calculated and correlated with local lactate levels. Both MB and ICG ingress values showed a significant negative correlation (r = - 0.7709; p = < 0.001; r = - 0.5367, p = 0.015, respectively) with local lactate levels. This correlation was stronger for MB compared to ICG, although ICG analysis showed higher absolute ingress values. CONCLUSION: Our fluorescence quantification analysis validates the potential to use MB for bowel perfusion assessment besides the well-known and widely used ICG. Further human studies are necessary to translate our findings to clinical applications.


Assuntos
Corantes , Verde de Indocianina , Azul de Metileno , Animais , Feminino , Corantes/administração & dosagem , Suínos , Intestinos/irrigação sanguínea , Intestinos/diagnóstico por imagem , Angiofluoresceinografia/métodos , Imagem Óptica/métodos
7.
Adv Sci (Weinh) ; : e2309992, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38774946

RESUMO

Radiotherapy demonstrates a synergistic effect with immunotherapy by inducing a transformation of "immune cold" tumors into "immune hot" tumors in triple negative breast cancer (TNBC). Nevertheless, the effectiveness of immunotherapy is constrained by low expression of tumor-exposed antigens, inadequate inflammation, and insufficient tumor infiltrating lymphocyte (TILs). To address this predicament, novel lutecium-based rare earth nanoparticles (RENPs) are synthesized with the aim of amplifying radiation effect and tumor immune response. The nanoprobe is characterized by neodymium-based down-conversion fluorescence, demonstrating robust photostability, biocompatibility, and targetability. The conjugation of RENPs with a CXCR4 targeted drug enables precise delineation of breast tumors using a near-infrared imaging system and improves radiation efficacy via lutetium-based radio-sensitizer in vivo. Furthermore, the study shows a notable enhancement of immune response through the induction of immunogenic cell death and recruitment of TILs, resulting in the inhibition of tumor progression both in vitro and in vivo models following the administration of nanoparticles. Hence, the novel multifunctional nanoprobes incorporating various lanthanide elements offer the potential for imaging-guided tumor delineation, radio-sensitization, and immune activation post-radiation, thus presenting an efficient radio-immunotherapeutic approach for TNBC.

8.
Int Urogynecol J ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780627

RESUMO

INTRODUCTION AND HYPOTHESIS: We aimed to demonstrate the feasibility of ureteral navigation using intra-ureteric indocyanine green (ICG) and near-infrared fluorescence (NIRF) imaging during transvaginal high uterosacral ligament suspension for prolapse repair to reduce the risk of iatrogenic ureteral injury. METHODS: A cystoscope was inserted into the bladder, the tip of a 6-F open-end ureteral catheter was inserted into the ureteral orifices, and ICG was instilled into the ureters. The ureteral path was then clearly identified using NIRF imaging. Sutures were safely placed in the uterosacral ligaments at the level of the ischial spine, taking advantage of direct ureteral visualization. RESULTS: At the end of the procedure, diagnostic cystoscopy was performed to confirm ureteral patency. No intraoperative or postoperative complications were observed. CONCLUSIONS: Intra-ureteric ICG-NIRF imaging represents a simple, inexpensive, and reproducible trick for intraoperative ureteral detection, and could reassure surgeons during difficult operations, for instance, in the case of severe prolapse and/or when ureteral course abnormalities are expected.

9.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791347

RESUMO

IR-783, a commercially available near-infrared (NIR) heptamethine cyanine dye, has been used for selective tumor imaging in breast, prostate, cervical, and brain cancers in vitro and in vivo. Although the molecular mechanism behind the structure-inherent tumor targeting of IR-783 has not been well-demonstrated, IR-783 has unique properties such as a good water solubility and low cytotoxicity compared with other commercial heptamethine cyanine dyes. The goal of this study is to evaluate the phototherapeutic efficacy of IR-783 as a tumor-targeted photothermal agent in human colorectal cancer xenografts. The results demonstrate that IR-783 shows both the subcellular localization in HT-29 cancer cells and preferential accumulation in HT-29 xenografted tumors 24 h after its intravenous administration. Furthermore, the IR-783 dye reveals the superior capability to convert NIR light into heat energy under 808 nm NIR laser irradiation in vitro and in vivo, thereby inducing cancer cell death. Taken together, these findings suggest that water-soluble anionic IR-783 can be used as a bifunctional phototherapeutic agent for the targeted imaging and photothermal therapy (PTT) of colorectal cancer. Therefore, this work provides a simple and effective approach to develop biocompatible, hydrophilic, and tumor-targetable PTT agents for targeted cancer phototherapy.


Assuntos
Terapia Fototérmica , Humanos , Terapia Fototérmica/métodos , Animais , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Células HT29 , Carbocianinas/química , Camundongos Nus , Raios Infravermelhos , Neoplasias Colorretais/terapia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/tratamento farmacológico , Corantes Fluorescentes/química , Fluorescência , Camundongos Endogâmicos BALB C
10.
Adv Sci (Weinh) ; 11(25): e2401046, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666450

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by excessive proliferation of rheumatoid arthritis synovial fibroblasts (RASFs) and accumulation of inflammatory cytokines. Exploring the suppression of RASFs and modulation of the RA microenvironment is considered a comprehensive strategy for RA. In this work, specifically activated nanoagents (MAHI NGs) based on the hypoxic and weakly acidic RA microenvironment are developed to achieve a second near-infrared fluorescence (NIR-II FL)/photoacoustic (PA) dual-model imaging-guided multi-treatment. Due to optimal size, the MAHI NGs passively accumulate in the diseased joint region and undergo rapid responsive degradation, precisely releasing functionalized components: endogenous melanin-nanoparticles (MNPs), hydrogen gas (H2), and indocyanine green (ICG). The released MNPs play a crucial role in ablating RASFs within the RA microenvironment through photothermal therapy (PTT) guided by accurate PA imaging. However, the regional hyperthermia generated by PTT may exacerbate reactive oxygen species (ROS) production and inflammatory response following cell lysis. Remarkably, under the acidic microenvironment, the controlled release of H2 exhibits precise synergistic antioxidant and anti-inflammatory effects with MNPs. Moreover, the ICG, the second near-infrared dye currently approved for clinical use, possesses excellent NIR-II FL imaging properties that facilitate the diagnosis of deep tissue diseases and provide the right time-point for PTT.


Assuntos
Artrite Reumatoide , Hidrogênio , Melaninas , Nanomedicina Teranóstica , Artrite Reumatoide/terapia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/tratamento farmacológico , Melaninas/metabolismo , Hidrogênio/farmacologia , Nanomedicina Teranóstica/métodos , Animais , Nanopartículas/química , Humanos , Técnicas Fotoacústicas/métodos , Camundongos , Verde de Indocianina , Modelos Animais de Doenças , Terapia Fototérmica/métodos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos
11.
Cureus ; 16(3): e55706, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38586714

RESUMO

Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder caused by mutations in the tumor suppressor gene MEN1 and is characterized by parathyroid, pancreatic islet, and anterior pituitary tumors. Primary hyperparathyroidism is the most characteristic finding in MEN1, and intraoperative identification and accurate removal of the diseased parathyroid glands are vital since incomplete excision results in recurrence. This case report describes a 59-year-old woman who had pancreatic islet cell tumors and pituitary tumors and underwent selective transsphenoidal adenomectomy. Based on her medical history and examination, the diagnosis of primary hyperparathyroidism in MEN1 was made, and she underwent total parathyroidectomy with autotransplantation with SPY-Elite®ï¸ Fluorescence Imaging (Stryker Corp., Kalamazoo, MI). Intraoperative identification of the parathyroid glands using autofluorescence with real-time intrinsic near-infrared (NIR) imaging made it easier to detect all of the parathyroid hyperplasia. After the surgery, she had hypoparathyroidism and continued with her oral calcium and vitamin D supplementation to maintain normal calcium levels during follow-up. Herein, we would like to advocate that the use of parathyroid gland autofluorescence with real-time intrinsic NIR imaging may be useful for identifying parathyroid tumors in patients with primary hyperparathyroidism in MEN1.

12.
Biology (Basel) ; 13(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38666825

RESUMO

The fibrosis process after myocardial infarction (MI) results in a decline in cardiac function due to fibrotic collagen deposition and contrast agents' metabolic disorders, posing a significant challenge to conventional imaging strategies in making heart damage clear in the fibrosis microenvironment. To address this issue, we developed an imaging strategy. Specifically, we pretreated myocardial fibrotic collagen with collagenase I combined with human serum albumin (HSA-C) and subsequently visualized the site of cardiac injury by near-infrared (NIR) fluorescence imaging using an optical contrast agent (CI, CRT-indocyanine green) targeting transferrin receptor 1 peptides (CRT). The key point of this strategy is that pretreatment with HSA-C can reduce background signal interference in the fibrotic tissue while enhancing CI uptake at the heart lesion site, making the boundary between the injured heart tissue and the normal myocardium clearer. Our results showed that compared to that in the untargeted group, the normalized fluorescence intensity of cardiac damage detected by NIR in the targeted group increased 1.28-fold. The normalized fluorescence intensity increased 1.21-fold in the pretreatment group of the targeted groups. These data demonstrate the feasibility of applying pretreated fibrotic collagen and NIR contrast agents targeting TfR1 to identify ferroptosis at sites of cardiac injury, and its clinical value in the management of patients with MI needs further study.

13.
Eur J Med Chem ; 271: 116452, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38685142

RESUMO

Despite advancements in colorectal cancer (CRC) treatment, the prognosis remains unfavorable for patients with distant liver metastasis. Fluorescence molecular imaging with specific probes is increasingly used to guide CRC surgical resection in real-time and treatment planning. Here, we demonstrate the targeted imaging capacity of an MPA-PEG4-N3-Ang II probe labeled with near-infrared (NIR) fluorescent dye targeting the angiotensin II (Ang II) type 1 receptor (AGTR1) that is significantly upregulated in CRC. MPA-PEG4-N3-Ang II was highly selective and specific to in vitro tumor cells and in vivo tumors in a mouse CRC xenograft model. The favorable ex vivo imaging and in vivo biodistribution of MPA-PEG4-N3-Ang II afforded tumor-specific accumulation with low background and >10 contrast tumor-to-colorectal values in multiple subcutaneous CRC models at 8 h following injection. Biodistribution analysis confirmed the probe's high uptake in HT29 and HCT116 orthotopic and liver metastatic models of CRC with signal-to-noise ratio (SNR) values of tumor-to-colorectal and -liver fluorescence of 5.8 ± 0.6, 5.3 ± 0.7, and 2.7 ± 0.5, 2.6 ± 0.5, respectively, enabling high-contrast intraoperative tumor visualization for surgical navigation. Given its rapid tumor targeting, precise tumor boundary delineation, durable tumor retention and docking study, MPA-PEG4-N3-Ang II is a promising high-contrast imaging agent for the clinical detection of CRC.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Sondas Moleculares , Imagem Óptica , Receptor Tipo 1 de Angiotensina , Animais , Neoplasias Colorretais/patologia , Humanos , Camundongos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Sondas Moleculares/química , Sondas Moleculares/síntese química , Sondas Moleculares/farmacocinética , Receptor Tipo 1 de Angiotensina/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Estrutura Molecular , Distribuição Tecidual , Camundongos Nus
14.
Biomed Mater ; 19(3)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38626777

RESUMO

This study developed a probe Fe3O4-Cy5.5-trastuzumab with fluorescence and magnetic resonance imaging functions that can target breast cancer with high HER2 expression, aiming to provide a new theoretical method for the diagnosis of early breast cancer. Fe3O4-Cy5.5-trastuzumab nanoparticles were combined with Fe3O4for T2imaging and Cy5.5 for near-infrared imaging, and coupled with trastuzumab for HER2 targeting. We characterized the nanoparticles used transmission electron microscopy, hydration particle size, Zeta potential, UV and Fourier transform infrared spectroscopy, and examined its magnetism, fluorescence, and relaxation rate related properties. CCK-8 and blood biochemistry analysis evaluated the biosafety and stability of the nanoparticles, and validated the targeting ability of Fe3O4-Cy5.5 trastuzumab nanoparticles throughin vitroandin vivocell and animal experiments. Characterization results showed the successful synthesis of Fe3O4-Cy5.5-trastuzumab nanoparticles with a diameter of 93.72 ± 6.34 nm. The nanoparticles showed a T2relaxation rate 42.29 mM-1s-1, magnetic saturation strength of 27.58 emg g-1. Laser confocal and flow cytometry uptake assay showed that the nanoparticles could effectively target HER2 expressed by breast cancer cells. As indicated byin vitroandin vivostudies, Fe3O4-Cy5.5-trastuzumab were specifically taken up and effectively aggregated to tumour regions with prominent NIRF/MR imaging properties. CCK-8, blood biochemical analysis and histological results suggested Fe3O4-Cy5.5-trastuzumab that exhibited low toxicity to major organs and goodin vivobiocompatibility. The prepared Fe3O4-Cy5.5-trastuzumab exhibited excellent targeting, NIRF/MR imaging performance. It is expected to serve as a safe and effective diagnostic method that lays a theoretical basis for the effective diagnosis of early breast cancer. This study successfully prepared a kind of nanoparticles with near-infrared fluorescence imaging and T2imaging properties, which is expected to serve as a new theory and strategy for early detection of breast cancer.


Assuntos
Neoplasias da Mama , Carbocianinas , Imageamento por Ressonância Magnética , Receptor ErbB-2 , Trastuzumab , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Carbocianinas/química , Linhagem Celular Tumoral , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Tamanho da Partícula , Receptor ErbB-2/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Trastuzumab/química
15.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542401

RESUMO

Many efforts have been made to develop near-infrared (NIR) fluorescent dyes with high efficiency for the NIR laser-induced phototherapy of cancer. However, the low tumor targetability and high nonspecific tissue uptake of NIR dyes in vivo limit their applications in preclinical cancer imaging and therapy. Among the various NIR dyes, squaraine (SQ) dyes are widely used due to their high molar extinction coefficient, intense fluorescence, and excellent photostability. Previously, benzoindole-derived SQ (BSQ) was prepared by incorporating carboxypentyl benzoindolium end groups into a classical SQ backbone, followed by conjugating with cyclic RGD peptides for tumor-targeted imaging. In this study, we demonstrate that the structure-inherent tumor-targeting BSQ not only shows a high fluorescence quantum yield in serum but also exhibits superior reactive oxygen species (ROS) generation capability under the 671 nm laser irradiation for effective photodynamic therapy (PDT) in vitro and in vivo. Without targeting ligands, the BSQ was preferentially accumulated in tumor tissue 24 h post-injection, which was the optimal timing of the laser irradiation to induce increments of ROS production. Therefore, this work provides a promising strategy for the development of photodynamic therapeutic SQ dyes for targeted cancer therapy.


Assuntos
Ciclobutanos , Neoplasias , Fenóis , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Fluorescência , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Corantes Fluorescentes
16.
Adv Sci (Weinh) ; 11(17): e2308905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38419379

RESUMO

The precise theranostics of rheumatoid arthritis (RA) remains a formidable challenge in clinical practice. Exploring novel applications of contemporary therapeutic approaches like chemo-radiotherapy is promising as a highly effective strategy for RA. Herein, a novel activatable nanoradiosensitizer-40 (denoted as IRnR-40) is developed, based on encapsulating the clinically approved drugs cisplatin (DDP) and indocyanine green (ICG) within a gelatin shell to achieve second near-infrared fluorescence (NIR-II FL) imaging-guided safe-dose synergetic chemo-radiotherapy. The high concentration of matrix metalloproteinase-9 (MMP-9) in the RA microenvironment plays a pivotal role in triggering the responsive degradation of IRnR-40, leading to the rapid release of functional molecules DDP and ICG. The released ICG serves the dual purpose of illuminating the inflamed joints to facilitate accurate target volume delineation for guiding radiotherapy, as well as acting as a real-time reporter for quantifying the release of DDP to monitor efficacy. Meanwhile, the released DDP achieves highly effective synergistic chemotherapy and radiosensitization for RA via the dual reactive oxygen species (ROS)-mediated mitochondrial apoptotic pathway. To sum up, this activatable nanoradiosensitizer IRnR-40 is believed to be the first attempt to achieve efficient NIR-II FL imaging-guided safe-dose chemo-radiotherapy for RA, which provides a new paradigm for precise theranostics of refractory benign diseases.


Assuntos
Artrite Reumatoide , Cisplatino , Verde de Indocianina , Imagem Óptica , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/tratamento farmacológico , Animais , Verde de Indocianina/administração & dosagem , Camundongos , Imagem Óptica/métodos , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Radiossensibilizantes/administração & dosagem , Radiossensibilizantes/uso terapêutico , Humanos , Quimiorradioterapia/métodos
17.
Front Cardiovasc Med ; 11: 1352025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370159

RESUMO

Coronary atherosclerosis remains a leading cause of morbidity and mortality worldwide. The underlying pathophysiology includes a complex interplay of endothelial dysfunction, lipid accumulation and inflammatory pathways. Multiple structural and inflammatory features of the atherosclerotic lesions have become targets to identify high-risk lesions. Various intracoronary imaging devices have been developed to assess the morphological, biocompositional and molecular profile of the intracoronary atheromata. These techniques guide interventional and therapeutical management and allow the identification and stratification of atherosclerotic lesions. We sought to provide an overview of the inflammatory pathobiology of atherosclerosis, distinct high-risk plaque features and the ability to visualize this process with contemporary intracoronary imaging techniques.

18.
ACS Sens ; 9(2): 810-819, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38243350

RESUMO

Chronic wound healing is one of the most complicated biological processes in human life, which is also a serious challenge for human health. During the healing process, multiple biological pathways are activated, and various kinds of reactive oxygen species participate in this process. Hydrogen peroxide (H2O2) involves in chronic wounds and its concentration is fluctuated in different pathological stages during the wound healing process. Therefore, H2O2 may be recognized as a powerful biomarker to indicate the wound healing process. However, the pathological roles of H2O2 cannot be fully understood yet. Herein, we proposed a near-infrared fluorescent probe DCM-H2O2 for highly sensitive and rapid detection of H2O2 in living cells and scald and incision wound mice models. DCM-H2O2 exhibited a low detection limit and high specificity with low cytotoxicity for H2O2, which had great potential for its application in vivo. The probe was successfully utilized to monitor the fluctuation of endogenous H2O2 in the proliferation process of human immortalized epidermal (HACAT) cells, which confirmed that H2O2 participated in the cells' proliferation activity through a growth factor signaling pathway. In the scald and incision wound mice models, H2O2 concentration fluctuations at different pathological stages during the wound healing process could be obtained by in vivo fluorescence imaging. Finally, H2O2 concentrations in different stages of human diabetic foot tissues were also confirmed by the proposed probe. We expect that H2O2 could be a sensitive biomarker to indicate the wound healing process.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Humanos , Animais , Camundongos , Fluorescência , Cicatrização , Biomarcadores
19.
Adv Mater ; 36(1): e2304848, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37526997

RESUMO

Molecular fluorophores emitting in the second near-infrared (NIR-II, 1000-1700 nm) window with strong optical harvesting and high quantum yields hold great potential for in vivo deep-tissue bioimaging and high-resolution biosensing. Recently, J-aggregates are harnessed to engineer long-wavelength NIR-II emitters and show unique superiority in tumor detection, vessel mapping, surgical navigation, and phototheranostics due to their bathochromic-shifted optical bands in the required slip-stacked arrangement aggregation state. However, despite the preliminary progress of NIR-II J-aggregates and theoretical study of structure-property relationships, further paradigms of NIR-II J-aggregates remain scarce due to the lack of study on aggregated fluorophores with slip-stacked fashion. In this effort, how to utilize the specific molecular structure to form slip-stacked packing motifs with J-type aggregated exciton coupling is emphatically elucidated. First, several molecular regulating strategies to achieve NIR-II J-aggregates containing intermolecular interactions and external conditions are positively summarized and deeply analyzed. Then, the recent reports on J-aggregates for NIR-II bioimaging and theranostics are systematically summarized to provide a clear reference and direction for promoting the development of NIR-II organic fluorophores. Eventually, the prospective efforts on ameliorating and promoting NIR-II J-aggregates to further clinical practices are outlined.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Estudos Prospectivos , Imagem Óptica/métodos , Corantes Fluorescentes/química
20.
Nanomedicine ; 56: 102728, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061449

RESUMO

Cytoreductive surgery remains as the gold standard to treat ovarian cancer, but with limited efficacy since not all tumors can be intraoperatively visualized for resection. We have engineered erythrocyte-derived nano-constructs that encapsulate the near infrared (NIR) fluorophore, indocyanine green (ICG), as optical probes for NIR fluorescence imaging of ovarian tumors. Herein, we have enriched the membrane of these nano-constructs with cholesterol, and functionalized their surface with folic acid (FA) to target the folate receptor-α. Using a mouse model, we show that the average fraction of the injected dose per tumor mass for nano-constructs with both membrane cholesterol enrichment and FA functionalization was ~ sixfold higher than non-encapsulated ICG, ~ twofold higher than nano-constructs enriched with cholesterol alone, and 33 % higher than nano-constructs with only FA functionalization at 24-h post-injection. These results suggest that erythrocyte-derived nano-constructs containing both cholesterol and FA present a platform for improved fluorescence imaging of ovarian tumors.


Assuntos
Ácido Fólico , Neoplasias Ovarianas , Humanos , Feminino , Ácido Fólico/farmacologia , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Eritrócitos , Verde de Indocianina , Imagem Óptica/métodos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...