Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Expert Opin Investig Drugs ; : 1-6, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38980318

RESUMO

INTRODUCTION: Guillain-Barré syndrome (GBS) is a monophasic immune neuropathic disorder characterized by acute paralysis. A significant portion of patients are left with residual deficits, which presents a considerable global healthcare challenge. The precise mechanisms underlying GBS pathogenesis are not fully elucidated. Recent studies have focused on postinfectious molecular mimicry and identified involvement of IgG autoantibodies and innate immune effectors in GBS. Intravenous immunoglobulins (IVIg) and plasma exchange (PE) are two established evidence-based immunomodulatory treatments for GBS, but a significant proportion of GBS patients fails to respond adequately to either therapy. This emphasizes an urgent need for novel and more potent treatments. AREAS COVERED: We discuss novel immunomodulatory therapies presently at different phases of preclinical and clinical investigation. Some drugs in development target pathophysiologic mechanisms such as IgG autoantibody catabolism and complement activation, which are relevant to GBS. EXPERT OPINION: There is an unmet need for more effective immune therapies for GBS. New immunomodulatory therapies under development may provide more potent options for GBS patients who do not respond to IVIg or PE. Future directions may include incorporating neuroprotective interventions based on evolving understanding of mechanisms underlying nerve injury and axonal degeneration.

2.
Int Immunopharmacol ; 138: 112583, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971109

RESUMO

The neonatal Fc receptor (FcRn) can transport IgG and antigen-antibody complexes participating in mucosal immune responses that protect the host from most pathogens' invasion via the respiratory, digestive, and urogenital tracts. FcRn expression can be triggered upon stimulation with pathogenic invasion on mucosal surfaces, which may significantly modulate the innate immune response of the host. As an immunoglobulin transport receptor, FcRn is implicated in the pathophysiology of immune-related diseases such as infection and autoimmune disorders. In this review, we thoroughly summarize the recent advancement of FcRn in mucosal immunity and its therapeutic strategy. This includes insights into its regulation mechanisms of FcRn expression influenced by pathogens, its emerging role in mucosal immunity and its potential probability as a therapeutic target in infection and autoimmune diseases.

4.
Front Immunol ; 15: 1404191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903526

RESUMO

Myasthenia Gravis (MG) is a chronic disabling autoimmune disease caused by autoantibodies to the neuromuscular junction (NMJ), characterized clinically by fluctuating weakness and early fatigability of ocular, skeletal and bulbar muscles. Despite being commonly considered a prototypic autoimmune disorder, MG is a complex and heterogeneous condition, presenting with variable clinical phenotypes, likely due to distinct pathophysiological settings related with different immunoreactivities, symptoms' distribution, disease severity, age at onset, thymic histopathology and response to therapies. Current treatment of MG based on international consensus guidelines allows to effectively control symptoms, but most patients do not reach complete stable remission and require life-long immunosuppressive (IS) therapies. Moreover, a proportion of them is refractory to conventional IS treatment, highlighting the need for more specific and tailored strategies. Precision medicine is a new frontier of medicine that promises to greatly increase therapeutic success in several diseases, including autoimmune conditions. In MG, B cell activation, antibody recycling and NMJ damage by the complement system are crucial mechanisms, and their targeting by innovative biological drugs has been proven to be effective and safe in clinical trials. The switch from conventional IS to novel precision medicine approaches based on these drugs could prospectively and significantly improve MG care. In this review, we provide an overview of key immunopathogenetic processes underlying MG, and discuss on emerging biological drugs targeting them. We also discuss on future direction of research to address the need for patients' stratification in endotypes according with genetic and molecular biomarkers for successful clinical decision making within precision medicine workflow.


Assuntos
Autoanticorpos , Miastenia Gravis , Medicina de Precisão , Humanos , Miastenia Gravis/imunologia , Miastenia Gravis/terapia , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/diagnóstico , Autoanticorpos/imunologia , Autoimunidade , Animais , Imunossupressores/uso terapêutico , Junção Neuromuscular/imunologia
5.
Neuromuscul Disord ; 39: 37-41, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772072

RESUMO

The effect of treatment with efgartigimod in seronegative myasthenia gravis (MG) remains unclear. This retrospective study aimed to evaluate symptomatic changes and safety of treatment with efgartigimod in patients with generalized MG (gMG) double-seronegative for acetylcholine receptor antibody and muscle-specific kinase antibody. We reviewed the medical records of double-seronegative gMG treated with 10 mg/kg efgartigimod once/week per cycle (4 weeks) from June 2022 to June 2023. A total of 16 patients were included. MG-activities of daily living (ADL) scores improved from 9.2 to 7.4. Mean prednisolone dose was reduced from 5.4 to 4.1 mg/day. The duration before MG-ADL deterioration after the end of a cycle was 6.1 weeks. Five patients had mild adverse events. This retrospective study revealed no significant treatment benefit in the outcomes of patients with double-seronegative gMG treated with efgartigimod.


Assuntos
Miastenia Gravis , Humanos , Miastenia Gravis/tratamento farmacológico , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Resultado do Tratamento , Atividades Cotidianas , Receptores Colinérgicos/imunologia , Autoanticorpos/sangue , Prednisolona/uso terapêutico
6.
Kidney Int ; 105(1): 54-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38707675

RESUMO

The neonatal Fc receptor (FcRn) was initially discovered as the receptor that allowed passive immunity in newborns by transporting maternal IgG through the placenta and enterocytes. Since its initial discovery, FcRn has been found to exist throughout all stages of life and in many different cell types. Beyond passive immunity, FcRn is necessary for intrinsic albumin and IgG recycling and is important for antigen processing and presentation. Given its multiple important roles, FcRn has been utilized in many disease treatments including a new class of agents that were developed to inhibit FcRn for treatment of a variety of autoimmune diseases. Certain cell populations within the kidney also express high levels of this receptor. Specifically, podocytes, proximal tubule epithelial cells, and vascular endothelial cells have been found to utilize FcRn. In this review, we summarize what is known about FcRn and its function within the kidney. We also discuss how FcRn has been used for therapeutic benefit, including how newer FcRn inhibiting agents are being used to treat autoimmune diseases. Lastly, we will discuss what renal diseases may respond to FcRn inhibitors and how further work studying FcRn within the kidney may lead to therapies for kidney diseases.


Assuntos
Antígenos de Histocompatibilidade Classe I , Nefropatias , Receptores Fc , Humanos , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Receptores Fc/metabolismo , Receptores Fc/imunologia , Receptores Fc/genética , Nefropatias/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/terapia , Nefropatias/imunologia , Animais , Rim/metabolismo , Rim/imunologia , Rim/patologia , Podócitos/metabolismo , Podócitos/imunologia , Imunoglobulina G/metabolismo , Imunoglobulina G/imunologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo
7.
Neurol Sci ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644454

RESUMO

Immunoglobulin G (IgG) autoantibodies can lead to the formation of autoimmune diseases through Fab and/or Fc-mediated interactions with host molecules as well as activated T cells. The neonatal Fc receptor (FcRn) binds at acidic pH IgG and albumin, and the mechanism for prolonging serum IgG half-life is making IgG re-entry into circulation by prompting it not to be degraded by lysosomes and back to the cell surface. Given the FcRn receptor's essential role in IgG homeostasis, one of the strategies to promote the quick degradation of endogenous IgG is to suppress the function of FcRn, which is beneficial to the treatment of IgG-driven autoimmune disorders like myasthenia gravis (MG), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), stiff person syndrome, and immune thrombocytopenia (ITP). We elaborately read the literature about efgartigimod and systematically reviewed the research progress and clinical application of this novel FcRn inhibitor in autoimmune diseases. Efgartigimod is the firstly FcRn antagonist developed and was approved on 17 December 2021 by the United States for the therapy of acetylcholine receptor-positive MG. In January 2022, efgartigimod received its second regulatory approval in Japan. In addition, the market authorization application in Europe was submitted and validated in August 2021. China's National Medical Products Administration officially accepted the marketing application of efgartigimod on July 13, 2022. To suppress the function of FcRn, which is beneficial to the treatment of IgG-driven autoimmune disorders like MG, CIDP, ITP, and stiff person syndrome. We review the rationale, clinical evidence, and future perspectives of efgartigimod for the treatment of autoimmune disease.

8.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607033

RESUMO

Research into the neonatal Fc receptor (FcRn) has increased dramatically ever since Simister and Mostov first purified a rat version of the receptor. Over the years, FcRn has been shown to function not only as a receptor that transfers immunity from mother to fetus but also performs an array of different functions that include transport and recycling of immunoglobulins and albumin in the adult. Due to its important cellular roles, several clinical trials have been designed to either inhibit/enhance FcRn function or develop of non-invasive therapeutic delivery system such as fusion of drugs to IgG Fc or albumin to enhance delivery inside the cells. Here, we report the accidental identification of several FcRn alternatively spliced variants in both mouse and human cells. The four new mouse splice variants are capable of binding immunoglobulins' Fc and Fab portions. In addition, we have identified FcRn-specific vesicles in which immunoglobulins and albumin can be stored and that are involved in the endosomal-lysosomal system. The complexity of FcRn functions offers significant potential to design and develop novel and targeted therapeutics.


Assuntos
Receptores Fc , Animais , Humanos , Camundongos , Ratos , Albuminas/metabolismo , Endossomos/metabolismo , Imunoglobulina G/metabolismo , Receptores Fc/genética , Receptores Fc/metabolismo , Isoformas de Proteínas
9.
MAbs ; 16(1): 2339337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634473

RESUMO

Recent development of amyloid-ß (Aß)-targeted immunotherapies for Alzheimer's disease (AD) have highlighted the need for accurate diagnostic methods. Antibody-based positron emission tomography (PET) ligands are well suited for this purpose as they can be directed toward the same target as the therapeutic antibody. Bispecific, brain-penetrating antibodies can achieve sufficient brain concentrations, but their slow blood clearance remains a challenge, since it prolongs the time required to achieve a target-specific PET signal. Here, two antibodies were designed based on the Aß antibody bapineuzumab (Bapi) - one monospecific IgG (Bapi) and one bispecific antibody with an antigen binding fragment (Fab) of the transferrin receptor (TfR) antibody 8D3 fused to one of the heavy chains (Bapi-Fab8D3) for active, TfR-mediated transport into the brain. A variant of each antibody was designed to harbor a mutation to the neonatal Fc receptor (FcRn) binding domain, to increase clearance. Blood and brain pharmacokinetics of radiolabeled antibodies were studied in wildtype (WT) and AD mice (AppNL-G-F). The FcRn mutation substantially reduced blood half-life of both Bapi and Bapi-Fab8D3. Bapi-Fab8D3 showed high brain uptake and the brain-to-blood ratio of its FcRn mutated form was significantly higher in AppNL-G-F mice than in WT mice 12 h after injection and increased further up to 168 h. Ex vivo autoradiography showed specific antibody retention in areas with abundant Aß pathology. Taken together, these results suggest that reducing FcRn binding of a full-sized bispecific antibody increases the systemic elimination and could thereby drastically reduce the time from injection to in vivo imaging.


Assuntos
Doença de Alzheimer , Anticorpos Biespecíficos , Antígenos de Histocompatibilidade Classe I , Receptores Fc , Receptores da Transferrina , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imunoglobulina G/metabolismo , Camundongos Transgênicos , Receptores Fc/imunologia , Receptores Fc/metabolismo , Receptores da Transferrina/imunologia , Receptores da Transferrina/metabolismo
10.
Front Neurosci ; 18: 1302714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362023

RESUMO

Introduction: Nipocalimab is a high-affinity, fully human, aglycosylated, effectorless, immunoglobulin G (IgG) 1 monoclonal antibody that targets the neonatal Fc receptor (FcRn), decreases systemic IgG including autoantibodies, and is under development in several IgG autoantibody- and alloantibody-mediated diseases, including generalized myasthenia gravis, chronic inflammatory demyelinating polyneuropathy, maternal-fetal medicine, and multiple other therapeutic areas. An initial phase 1 study with single and multiple ascending doses of nipocalimab infused intravenously (IV) over 2 h demonstrated dose-dependent serum pharmacokinetics and IgG reductions, with an adverse event (AE) profile comparable to placebo. Methods: The current investigation evaluates the safety, tolerability, pharmacokinetics, and pharmacodynamics of single doses of nipocalimab across various IV infusion rates in a randomized, double-blind, placebo-controlled, sequential-dose study. Forty participants were randomized to receive nipocalimab 30 mg/kg over 60, 30, 15 or 7.5 min (0.5, 1, 2, or 4 mg/kg/min); nipocalimab 60 mg/kg over 15 min (4 mg/kg/min); or matching placebo. Results: At doses up to 60 mg/kg and infusion rates up to 4 mg/kg/min (maximum clinically feasible rate), single doses of nipocalimab were tolerable, with 12 (40%) participants experiencing AEs across nipocalimab cohorts compared with 1 (10%) participant in the placebo cohort. AEs deemed treatment related occurred in 6 (20%) participants receiving nipocalimab and 1 (10%) participant receiving placebo. None of the AEs were severe, and no participants discontinued treatment due to AEs. Nipocalimab provided consistent, dose-dependent serum pharmacokinetics and IgG reductions, regardless of infusion rate. Discussion: This study supports the use of shortened durations of nipocalimab infusion for future studies.

11.
Muscle Nerve ; 69(4): 389-396, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308492

RESUMO

Generalized myasthenia gravis (gMG) is a postsynaptic neuromuscular junction disorder that results in fatigable muscle weakness. The traditional treatment approach includes the use of acetylcholinesterase inhibitors, corticosteroids, and steroid-sparing immunosuppressant therapies (ISTs) for chronic management, whereas exacerbations and crises are managed with intravenous immunoglobulin (IVIg) and plasma exchange (PLEX). Over the past 6 years, four new therapeutic agents with novel immunological mechanisms of action-complement and neonatal Fc receptor (FcRn) inhibition-were approved as a result of clinically significant improvement in gMG symptoms of those treated with these newer agents in Phase 3 clinical trials. At present, it is unclear when and in whom to initiate these therapeutic agents and how to integrate them into the current treatment paradigm. When selecting a newer therapeutic agent, we use a simple equation: Value = Clinical Improvement/(Cost + Side Effects + Treatment Burden), which guides our decision-making. We consider using these novel therapeutic agents in two specific clinical situations. Firstly, the newer agents are fast-acting, suggesting they can be used in clinically unstable patients as "bridge therapy," and secondly, they provide additional options for those patients considered treatment-refractory. There are downsides, however, including treatment cost, unique side effect profiles, and intravenous and subcutaneous drug administration (though for some, this may be an advantage). As additional drugs enter the marketplace with unique mechanisms of action, routes of administration, and dosing schedules, the placement of the novel therapeutic agents in the gMG treatment algorithm will likely evolve.


Assuntos
Acetilcolinesterase , Miastenia Gravis , Recém-Nascido , Humanos , Miastenia Gravis/tratamento farmacológico , Imunoglobulinas Intravenosas/uso terapêutico , Imunossupressores/uso terapêutico , Debilidade Muscular/tratamento farmacológico
12.
Immunol Med ; 47(2): 106-109, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38270551

RESUMO

Congenital Myotonic Dystrophy (CMD) is an autosomal dominant hereditary disease caused by mutations in the dystrophia myotonica protein kinase gene. Patients with CMD often exhibit low immunoglobulin (Ig) G levels. While Ig replacement therapy for low IgG levels has been reported in several adult cases, there have been no reports on pediatric patients. This study presents a first pediatric case where Ig replacement therapy effectively eliminated susceptibility to infections. The CMD patient, a 1-year-old Japanese female with a history of premature birth and necrotizing enterocolitis, developed recurrent severe bacterial infections due to hypogammaglobulinemia. Intravenous immunoglobulin (IVIG) (600 mg/kg/month) was administered but failed to maintain sufficient serum trough IgG levels. The dosage was increased to 2 g/kg/month, and later, the treatment shifted to subcutaneous immunoglobulin (SCIG), resulting in a stable serum trough IgG level above 700 mg/dL for one year. The cause of hypogammaglobulinemia in CMD patients remains unclear, but potential mechanisms, including IgG-mediated hypercatabolism by alterations in the neonatal Fc receptor, have been considered. Genetic testing ruled out common variable immunodeficiency, and other potential causes were excluded. The study suggests that higher doses of IVIG or SCIG can effectively prevent severe infections associated with CMD-induced hypogammaglobulinemia in children.


This case report sheds light on the efficacy of immunoglobulin therapy in pediatric congenital myotonic dystrophy (CMD). We anticipate that our findings will have a positive impact on clinical practice by providing insights into the prevention of severe infections associated with CMD-induced hypogammaglobulinemia. This research is of great interest to the readers of the journal as it addresses an unmet need in pediatric CMD management by providing a strategy for successful immunoglobulin therapy for the treatment of pediatric CMD.


Assuntos
Agamaglobulinemia , Imunoglobulina G , Imunoglobulinas Intravenosas , Distrofia Miotônica , Humanos , Feminino , Distrofia Miotônica/imunologia , Distrofia Miotônica/genética , Imunoglobulinas Intravenosas/administração & dosagem , Lactente , Agamaglobulinemia/etiologia , Agamaglobulinemia/terapia , Imunização Passiva
13.
J Control Release ; 366: 621-636, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215986

RESUMO

Semaglutide is the first oral glucagon-like peptide-1 (GLP-1) analog commercially available for the treatment of type 2 diabetes. In this work, semaglutide was incorporated into poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles (NPs) to improve its delivery across the intestinal barrier. The nanocarriers were surface-decorated with either a peptide or an affibody that target the human neonatal Fc receptor (hFcRn), located on the luminal cell surface of the enterocytes. Both ligands were successfully conjugated with the PLGA-PEG via maleimide-thiol chemistry and thereafter, the functionalized polymers were used to produce semaglutide-loaded NPs. Monodisperse NPs with an average size of 170 nm, neutral surface charge and 3% of semaglutide loading were obtained. Both FcRn-targeted NPs exhibited improved interaction and association with Caco-2 cells (cells that endogenously express the hFcRn), compared to non-targeted NPs. Additionally, the uptake of FcRn-targeted NPs was also observed to occur in human intestinal organoids (HIOs) expressing hFcRn through microinjection into the lumen of HIOs, resulting in potential increase of semaglutide permeability for both ligand-functionalized nanocarriers. Herein, our study demonstrates valuable data and insights that the FcRn-targeted NPs has the capacity to promote intestinal absorption of therapeutic peptides.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeos Semelhantes ao Glucagon , Lactatos , Nanopartículas , Polietilenoglicóis , Recém-Nascido , Humanos , Células CACO-2 , Peptídeos , Receptores Fc
14.
Immunology ; 172(1): 46-60, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38247105

RESUMO

Chicken single-chain fragment variable (IgY-scFv) is a functional fragment and an emerging development in genetically engineered antibodies with a wide range of biomedical applications. However, scFvs have considerably shorter serum half-life due to the absence of antibody Fc region compared with the full-length antibody, and usually requires continuous intravenous administration for efficacy. A promising approach to overcome this limitation is to fuse scFv with immunoglobulin G (IgG) Fc region, for better recognition and mediation by the neonatal Fc receptor (FcRn) in the host. In this study, engineered mammalian ΔFc domains (CH2, CH3, and intact Fc region) were fused with anti-canine parvovirus-like particles avian IgY-scFv to produce chimeric antibodies and expressed in the HEK293 cell expression system. The obtained scFv-CH2, scFv-CH3, and scFv-Fc can bind with antigen specifically and dose-dependently. Surface plasmon resonance investigation confirmed that scFv-CH2, scFv-CH3, and scFv-Fc had different degrees of binding to FcRn, with scFv-Fc showing the highest affinity. scFv-Fc had a significantly longer half-life in mice compared with the unfused scFv. The identified ΔFcs are promising for the development of engineered Fc-based therapeutic antibodies and proteins with longer half-lives. The avian IgY-scFv-mammalian IgG Fc region opens up new avenues for antibody engineering, and it is a novel strategy to enhance the rapid development and screening of functional antibodies in veterinary and human medicine.


Assuntos
Quimerismo , Imunoglobulina G , Imunoglobulinas , Humanos , Camundongos , Animais , Células HEK293 , Fragmentos Fc das Imunoglobulinas/genética , Mamíferos/metabolismo
15.
Eur J Neurol ; 31(4): e16189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38164996

RESUMO

BACKGROUND AND PURPOSE: Inhibition of the neonatal Fc receptor (FcRn) for IgG is a promising new therapeutic strategy for antibody-mediated disorders. We report our real-life experience with efgartigimod (EFG) in 19 patients with generalized myasthenia gravis (gMG) along a clinical follow-up of 14 months. METHODS: EFG was administered according to the GENERATIVE protocol (consisting of a Fixed period of two treatment cycles [given 1 month apart] of four infusions at weekly intervals, followed by a Flexible period of re-cycling in case of worsening). Eight patients were positive for acetylcholine receptor antibody, four for muscle-specific tyrosine kinase antibody, and two for lipoprotein-related protein 4 antibody, and five were classified as triple negative. Efficacy of EFG was assessed by the Myasthenia Gravis Activities of Daily Living, Myasthenia Gravis Composite, and Quantitative Myasthenia Gravis scales. RESULTS: Fifty-three percent of patients needed three treatment cycles, 26% needed four, and 21% needed five along the 14-month clinical follow-up. Meaningful improvement was observed at the end of each cycle with the clinical scores adopted. EFG had a dramatic effect on disease course, as during the year before treatment eight of 19 patients (42%) were hospitalized, and 15 of 19 (79%) needed treatment with plasma exchange or immunoglobulins; three of 19 (16%) were admitted to the intensive care unit. During EFG, none of the patients was hospitalized and only one patient required plasma exchange and intravenous immunoglobulins. No major side effects or infusion-related reactions occurred. CONCLUSIONS: We observed that EFG was safe and modified significantly the course of the disease along a 14-month follow-up. Our experience strengthens the role of FcRn inhibition as an effective new tool for long-term treatment of gMG.


Assuntos
Atividades Cotidianas , Miastenia Gravis , Recém-Nascido , Humanos , Miastenia Gravis/tratamento farmacológico , Autoanticorpos , Troca Plasmática
16.
MAbs ; 16(1): 2300155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241085

RESUMO

Rozanolixizumab is a humanized anti-neonatal Fc receptor (FcRn) monoclonal antibody (mAb) of the immunoglobulin G4 (IgG4) sub-class, currently in clinical development for the treatment of IgG autoantibody-driven diseases. This format is frequently used for therapeutic mAbs due to its intrinsic lower affinity for Fc gamma receptors (FcγR) and lack of C1q engagement. However, with growing evidence suggesting that no Fc-containing agent is truly "silent" in this respect, we explored the engagement of FcγRs and potential functional consequences with rozanolixizumab. In the study presented here, rozanolixizumab was shown to bind to FcγRs in both protein-protein and cell-based assays, and the kinetic data were broadly as expected based on published data for an IgG4 mAb. Rozanolixizumab was also able to mediate antibody bipolar bridging (ABB), a phenomenon that led to a reduction of labeled FcγRI from the surface of human macrophages in an FcRn-dependent manner. However, the presence of exogenous human IgG, even at low concentrations, was able to prevent both binding and ABB events. Furthermore, data from in vitro experiments using relevant human cell types that express both FcRn and FcγRI indicated no evidence for functional sequelae in relation to cellular activation events (e.g., intracellular signaling, cytokine production) upon either FcRn or FcγR binding of rozanolixizumab. These data raise important questions about whether therapeutic antagonistic mAbs like rozanolixizumab would necessarily engage FcγRs at doses typically administered to patients in the clinic, and hence challenge the relevance and interpretation of in vitro assays performed in the absence of competing IgG.


Assuntos
Receptores Fc , Receptores de IgG , Humanos , Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais , Imunoglobulina G , Antígenos de Histocompatibilidade Classe I
17.
J Pathol ; 262(2): 161-174, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37929639

RESUMO

Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies targeting type XVII collagen (Col17) with the noncollagenous 16A (NC16A) ectodomain representing the immunodominant site. The role of additional extracellular targets of Col17 outside NC16A has not been unequivocally demonstrated. In this study, we showed that Col17 ectodomain-reactive patient sera depleted in NC16A IgG induced dermal-epidermal separation in a cryosection model indicating the pathogenic potential of anti-Col17 non-NC16A extracellular IgG. Moreover, injection of IgG targeting the murine Col17 NC14-1 domains (downstream of NC15A, the murine homologue of human NC16A) into C57BL/6J mice resulted in erythematous skin lesions and erosions. Clinical findings were accompanied by IgG/C3 deposits along the basement membrane and subepidermal blistering with inflammatory infiltrates. Disease development was significantly reduced in either Fc-gamma receptor (FcγR)- or complement-5a receptor-1 (C5aR1)-deficient mice. Inhibition of the neonatal FcR (FcRn), an atypical FcγR regulating IgG homeostasis, with the murine Fc fragment IgG2c-ABDEG, a derivative of efgartigimod, reduced anti-NC14-1 IgG levels, resulting in ameliorated skin inflammation compared with isotype-treated controls. These data demonstrate that the pathogenic effects of IgG targeting the Col17 domain outside human NC16A/murine NC15A are partly attributable to antibody-mediated FcγR- and C5aR1 effector mechanisms while pharmacological inhibition of the FcRn represents a promising treatment for BP. The mouse model of BP will be instrumental in further investigating the role of Col17 non-NC16A/NC15A extracellular epitopes and validating new therapies for this disease. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Colágeno Tipo XVII , Penfigoide Bolhoso , Animais , Camundongos , Humanos , Penfigoide Bolhoso/tratamento farmacológico , Receptores de IgG/genética , Autoantígenos/genética , Colágenos não Fibrilares/genética , Camundongos Endogâmicos C57BL , Autoanticorpos , Imunoglobulina G
18.
Eur J Neurol ; 31(1): e16098, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37843174

RESUMO

BACKGROUND AND PURPOSE: Generalized myasthenia gravis (gMG) is a rare, chronic, neuromuscular autoimmune disease mediated by pathogenic immunoglobulin G (IgG) autoantibodies. Patients with gMG experience debilitating muscle weakness, resulting in impaired mobility, speech, swallowing, vision and respiratory function. Efgartigimod is a human IgG1 antibody Fc fragment engineered for increased binding affinity to neonatal Fc receptor. The neonatal Fc receptor blockade by efgartigimod competitively inhibits endogenous IgG binding, leading to decreased IgG recycling and increased degradation resulting in lower IgG concentration. METHODS: The safety and efficacy of efgartigimod were evaluated in the ADAPT study. Key efficacy outcome measures included Myasthenia Gravis Activities of Daily Living (MG-ADL) and Quantitative Myasthenia Gravis (QMG) scores. Efgartigimod demonstrated significant improvement in both the MG-ADL and QMG scores. This post hoc analysis aimed to determine whether all subdomains of MG-ADL and QMG improved with efgartigimod treatment. Individual items of MG-ADL and QMG were grouped into four subdomains: bulbar, ocular, limb/gross motor and respiratory. Change from baseline over 10 weeks in each subdomain was calculated for each group. RESULTS: Greater improvements from baseline were seen across MG-ADL subdomains in participants treated with efgartigimod compared with placebo. These improvements were typically observed 1 to 2 weeks after the first infusion and correlated with reductions in IgG. Similar results were observed across most QMG subdomains. CONCLUSIONS: These post hoc analyses of MG-ADL and QMG subdomain data from ADAPT suggest that efgartigimod is beneficial in improving muscle function and strength across all muscle groups, leading to the observed efficacy in participants with gMG.


Assuntos
Atividades Cotidianas , Miastenia Gravis , Recém-Nascido , Humanos , Miastenia Gravis/tratamento farmacológico , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Imunoglobulina G , Músculos
20.
Diagnostics (Basel) ; 13(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132243

RESUMO

BACKGROUND: Endometrial cancer (EC) has robust molecular diagnostic evidence that correlates well with prognosis. In various types of cancers, FcRn has been identified as an early marker for prognosis. This study aims to assess FcRn expression and its association with clinicopathological features in endometrial cancer. MATERIALS AND METHODS: We employed a tissue microarray (TMA) from a retrospective cohort of 41 patients diagnosed with endometrioid endometrial cancer post hysterectomy between January 2002 and December 2009 at Gyeongsang National University Hospital. Relevant clinical data collection for the cohort involved reviewing patients' electronic medical charts. FcRn expression in microarrays of patient EC tissue was examined in conjunction with clinicopathologic data. Experiments, including siRNA knock-down, PCR mRNA semiquantification, Western blot, and confluence change tests, were conducted on the Ishikawa cell line. RESULTS: The overall FcRn expression rate in EC patients was 41.8%. FIGO stage showed a statistically significant relationship with FcRn expression, while age, lymphovascular invasion, myometrial invasion, and tumor size had no effect. In endometrioid cancer cells of FIGO stage IA, FcRn was less frequently expressed than in other high-staged EC patients (p = 0.021). In experiments on the Ishikawa cell line, the siRNA knock-down group exhibited quantitatively lower FCGRT mRNA expression and lower FcRn protein signal compared to the scrambled RNA control group. The change in confluence over time measured at three hotspots did not show a significant difference between groups. CONCLUSIONS: To the best of our knowledge, this study represents the initial assessment of FcRn expression in endometrioid EC samples. FcRn expression was significantly associated with the FIGO stage. Ishikawa cell line proliferation did not significantly change in response to decreased FcRn expression. Further studies are needed to elucidate FcRn expression in EC as a potential molecular parameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...